File: base_arithmetic.cc

package info (click to toggle)
golang-github-apache-arrow-go 18.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,200 kB
  • sloc: asm: 477,547; ansic: 5,369; cpp: 759; sh: 585; makefile: 319; python: 190; sed: 5
file content (483 lines) | stat: -rw-r--r-- 17,827 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <arch.h>
#include <math.h>
#include <stdint.h>
#include <limits.h>
#include "types.h"

// Corresponds to equivalent ArithmeticOp enum in base_arithmetic.go
// for passing across which operation to perform. This allows simpler
// implementation at the cost of having to pass the extra int8 and
// perform a switch.
//
// In cases of small arrays, this is completely negligible. In cases
// of large arrays, the time saved by using SIMD here is significantly
// worth the cost.
enum class optype : int8_t {
    ADD,
    SUB,
    MUL,
    DIV,
    ABSOLUTE_VALUE,
    NEGATE,
    SQRT,
    POWER,
    SIN,
    COS,
    TAN,
    ASIN,
    ACOS,
    ATAN,
    ATAN2,
    LN,
    LOG10,
    LOG2,
    LOG1P,
    LOGB,
    SIGN,

    // this impl doesn't actually perform any overflow checks as we need
    // to only run overflow checks on non-null entries
    ADD_CHECKED,
    SUB_CHECKED,
    MUL_CHECKED,
    DIV_CHECKED,
    ABSOLUTE_VALUE_CHECKED,
    NEGATE_CHECKED,
    SQRT_CHECKED,
    POWER_CHECKED,
    SIN_CHECKED,
    COS_CHECKED,
    TAN_CHECKED,
    ASIN_CHECKED,
    ACOS_CHECKED,    
    LN_CHECKED,
    LOG10_CHECKED,
    LOG2_CHECKED,
    LOG1P_CHECKED,
    LOGB_CHECKED,
};

struct Add {
    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        if constexpr (is_arithmetic_v<T>)
            return left + right;
    }
};

struct Sub {
    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        if constexpr (is_arithmetic_v<T>)
            return left - right;
    }
};

struct AddChecked {
    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        static_assert(is_same<T, Arg0>::value && is_same<T, Arg1>::value, "");
        if constexpr(is_arithmetic_v<T>) {
            return left + right;
        }
    }
};


struct SubChecked {
    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        static_assert(is_same<T, Arg0>::value && is_same<T, Arg1>::value, "");
        if constexpr(is_arithmetic_v<T>) {
            return left - right;
        }
    }
};

template <typename T>
using maybe_make_unsigned = conditional_t<is_integral_v<T> && !is_same_v<T, bool>, make_unsigned_t<T>, T>;

template <typename T, typename Unsigned = maybe_make_unsigned<T>>
constexpr Unsigned to_unsigned(T signed_) {
    return static_cast<Unsigned>(signed_);
}

struct Multiply {
    static_assert(is_same_v<decltype(int8_t() * int8_t()), int32_t>, "");
    static_assert(is_same_v<decltype(uint8_t() * uint8_t()), int32_t>, "");
    static_assert(is_same_v<decltype(int16_t() * int16_t()), int32_t>, "");
    static_assert(is_same_v<decltype(uint16_t() * uint16_t()), int32_t>, "");
    static_assert(is_same_v<decltype(int32_t() * int32_t()), int32_t>, "");
    static_assert(is_same_v<decltype(uint32_t() * uint32_t()), uint32_t>, "");
    static_assert(is_same_v<decltype(int64_t() * int64_t()), int64_t>, "");
    static_assert(is_same_v<decltype(uint64_t() * uint64_t()), uint64_t>, "");

    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        static_assert(is_same_v<T, Arg0> && is_same_v<T, Arg1>, "");
        if constexpr(is_floating_point_v<T>) {
            return left * right;
        } else if constexpr(is_unsigned_v<T> && !is_same_v<T, uint16_t>) {
            return left * right;
        } else if constexpr(is_signed_v<T> && !is_same_v<T, int16_t>) {
            return to_unsigned(left) * to_unsigned(right);
        } else if constexpr(is_same_v<T, int16_t> || is_same_v<T, uint16_t>) {
            // multiplication of 16 bit integer types implicitly promotes to
            // signed 32 bit integer. However, some inputs may overflow (which
            // triggers undefined behavior). Therefore we first cast to 32 bit
            // unsigned integers where overflow is well defined.
            return static_cast<uint32_t>(left) * static_cast<uint32_t>(right);
        }
    }
};

struct MultiplyChecked {
    template <typename T, typename Arg0, typename Arg1>
    static constexpr T Call(Arg0 left, Arg1 right) {
        static_assert(is_same_v<T, Arg0> && is_same_v<T, Arg1>, "");
        if constexpr(is_arithmetic_v<T>) {
            return left * right;
        }
    }
};

struct AbsoluteValue {
    template <typename T, typename Arg>
    static constexpr T Call(Arg input) {
        if constexpr(is_same_v<Arg, float>) {
            *(((int*)&input)+0) &= 0x7fffffff;
            return input;
        } else if constexpr(is_same_v<Arg, double>) {
            *(((int*)&input)+1) &= 0x7fffffff;
            return input;
        } else if constexpr(is_unsigned_v<Arg>) {
            return input;
        } else {
            const auto mask = input >> (sizeof(Arg) * CHAR_BIT - 1);
            return (input + mask) ^ mask;
        }
    }
};

struct AbsoluteValueChecked {
    template <typename T, typename Arg>
    static constexpr T Call(Arg input) {
        if constexpr(is_same_v<Arg, float>) {
            *(((int*)&input)+0) &= 0x7fffffff;
            return input;
        } else if constexpr(is_same_v<Arg, double>) {
            *(((int*)&input)+1) &= 0x7fffffff;
            return input;
        } else if constexpr(is_unsigned_v<Arg>) {
            return input;
        } else {
            const auto mask = input >> (sizeof(Arg) * CHAR_BIT - 1);
            return (input + mask) ^ mask;
        }
    }
};

struct Negate {
    template <typename T, typename Arg>
    static constexpr T Call(Arg input) {
        if constexpr(is_floating_point_v<Arg>) {
            return -input;
        } else if constexpr(is_unsigned_v<Arg>) {
            return ~input + 1;
        } else {
            return -input;
        }
    }
};

struct NegateChecked {
    template <typename T, typename Arg>
    static constexpr T Call(Arg input) {
        static_assert(is_same_v<T, Arg>, "");
        if constexpr(is_floating_point_v<Arg>) {
            return -input;
        } else if constexpr(is_unsigned_v<Arg>) {
            return 0;
        } else {
            return -input;
        }
    }
};

struct Sign {
    template <typename T, typename Arg>
    static constexpr T Call(Arg input) {
        if constexpr(is_floating_point_v<Arg>) {
            return isnan(input) ? input : ((input == 0) ? 0 : (signbit(input) ? -1 : 1));
        } else if constexpr(is_unsigned_v<Arg>) {
            return input > 0 ? 1 : 0;
        } else if constexpr(is_signed_v<Arg>) {
            return input > 0 ? 1 : (input ? -1 : 0);
        }
    }
};

template <typename T, typename Op, typename OutT = T>
struct arithmetic_op_arr_arr_impl {
    static inline void exec(const void* in_left, const void* in_right, void* out, const int len) {
        const T* left = reinterpret_cast<const T*>(in_left);
        const T* right = reinterpret_cast<const T*>(in_right);
        OutT* output = reinterpret_cast<OutT*>(out);

        for (int i = 0; i < len; ++i) {
            output[i] = Op::template Call<OutT, T, T>(left[i], right[i]);
        }
    }
};

template <typename T, typename Op, typename OutT = T>
struct arithmetic_op_arr_scalar_impl {
    static inline void exec(const void* in_left, const void* scalar_right, void* out, const int len) {
        const T* left = reinterpret_cast<const T*>(in_left);
        const T right = *reinterpret_cast<const T*>(scalar_right);
        OutT* output = reinterpret_cast<OutT*>(out);

        for (int i = 0; i < len; ++i) {
            output[i] = Op::template Call<OutT, T, T>(left[i], right);
        }
    }
};

template <typename T, typename Op, typename OutT = T>
struct arithmetic_op_scalar_arr_impl {
    static inline void exec(const void* scalar_left, const void* in_right, void* out, const int len) {
        const T left = *reinterpret_cast<const T*>(scalar_left);
        const T* right = reinterpret_cast<const T*>(in_right);
        OutT* output = reinterpret_cast<OutT*>(out);

        for (int i = 0; i < len; ++i) {
            output[i] = Op::template Call<OutT, T, T>(left, right[i]);
        }
    }
};

template <typename T, typename Op, typename OutT = T>
struct arithmetic_unary_op_impl {
    static inline void exec(const void* arg, void* out, const int len) {
        const T* input = reinterpret_cast<const T*>(arg);
        OutT* output = reinterpret_cast<OutT*>(out);

        for (int i = 0; i < len; ++i) {
            output[i] = Op::template Call<OutT, T>(input[i]);
        }
    }
};

template <typename Op, template<typename...> typename Impl>
static inline void arithmetic_op(const int type, const void* in_left, const void* in_right, void* output, const int len) {
    const auto intype = static_cast<arrtype>(type);

    switch (intype) {
    case arrtype::UINT8:
        return Impl<uint8_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::INT8:
        return Impl<int8_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::UINT16:
        return Impl<uint16_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::INT16:
        return Impl<int16_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::UINT32:
        return Impl<uint32_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::INT32:
        return Impl<int32_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::UINT64:
        return Impl<uint64_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::INT64:
        return Impl<int64_t, Op>::exec(in_left, in_right, output, len);
    case arrtype::FLOAT32:
        return Impl<float, Op>::exec(in_left, in_right, output, len);
    case arrtype::FLOAT64:
        return Impl<double, Op>::exec(in_left, in_right, output, len);
    default:
        break;
    }
}

template <typename Op, template <typename...> typename Impl, typename Input>
static inline void arithmetic_op(const int otype, const void* input, void* output, const int len) {
    const auto outtype = static_cast<arrtype>(otype);

    switch (outtype) {
    case arrtype::UINT8:
        return Impl<Input, Op, uint8_t>::exec(input, output, len);
    case arrtype::INT8:
        return Impl<Input, Op, int8_t>::exec(input, output, len);
    case arrtype::UINT16:
        return Impl<Input, Op, uint16_t>::exec(input, output, len);
    case arrtype::INT16:
        return Impl<Input, Op, int16_t>::exec(input, output, len);
    case arrtype::UINT32:
        return Impl<Input, Op, uint32_t>::exec(input, output, len);
    case arrtype::INT32:
        return Impl<Input, Op, int32_t>::exec(input, output, len);
    case arrtype::UINT64:
        return Impl<Input, Op, uint64_t>::exec(input, output, len);
    case arrtype::INT64:
        return Impl<Input, Op, int64_t>::exec(input, output, len);
    case arrtype::FLOAT32:
        return Impl<Input, Op, float>::exec(input, output, len);
    case arrtype::FLOAT64:
        return Impl<Input, Op, double>::exec(input, output, len);
    default:
        break;
    }
}


template <typename Op, template <typename...> typename Impl>
static inline void arithmetic_op(const int type, const void* input, void* output, const int len) {
    const auto intype = static_cast<arrtype>(type);

    switch (intype) {
    case arrtype::UINT8:
        return Impl<uint8_t, Op>::exec(input, output, len);
    case arrtype::INT8:
        return Impl<int8_t, Op>::exec(input, output, len);
    case arrtype::UINT16:
        return Impl<uint16_t, Op>::exec(input, output, len);
    case arrtype::INT16:
        return Impl<int16_t, Op>::exec(input, output, len);
    case arrtype::UINT32:
        return Impl<uint32_t, Op>::exec(input, output, len);
    case arrtype::INT32:
        return Impl<int32_t, Op>::exec(input, output, len);
    case arrtype::UINT64:
        return Impl<uint64_t, Op>::exec(input, output, len);
    case arrtype::INT64:
        return Impl<int64_t, Op>::exec(input, output, len);
    case arrtype::FLOAT32:
        return Impl<float, Op>::exec(input, output, len);
    case arrtype::FLOAT64:
        return Impl<double, Op>::exec(input, output, len);
    default:
        break;
    }
}

template <typename Op, template <typename...> typename Impl>
static inline void arithmetic_op(const int itype, const int otype, const void* input, void* output, const int len) {
    const auto intype = static_cast<arrtype>(itype);

    switch (intype) {
    case arrtype::UINT8:
        return arithmetic_op<Op, Impl, uint8_t>(otype, input, output, len);
    case arrtype::INT8:
        return arithmetic_op<Op, Impl, int8_t>(otype, input, output, len);
    case arrtype::UINT16:
        return arithmetic_op<Op, Impl, uint16_t>(otype, input, output, len);
    case arrtype::INT16:
        return arithmetic_op<Op, Impl, int16_t>(otype, input, output, len);
    case arrtype::UINT32:
        return arithmetic_op<Op, Impl, uint32_t>(otype, input, output, len);
    case arrtype::INT32:
        return arithmetic_op<Op, Impl, int32_t>(otype, input, output, len);
    case arrtype::UINT64:
        return arithmetic_op<Op, Impl, uint64_t>(otype, input, output, len);
    case arrtype::INT64:
        return arithmetic_op<Op, Impl, int64_t>(otype, input, output, len);
    case arrtype::FLOAT32:
        return arithmetic_op<Op, Impl, float>(otype, input, output, len);
    case arrtype::FLOAT64:
        return arithmetic_op<Op, Impl, double>(otype, input, output, len);
    default:
        break;
    }
}

template <template <typename...> class Impl>
static inline void arithmetic_unary_impl_same_types(const int type, const int8_t op, const void* input, void* output, const int len) {
    const auto opt = static_cast<optype>(op);

    switch (opt) {
    case optype::ABSOLUTE_VALUE:
        return arithmetic_op<AbsoluteValue, Impl>(type, input, output, len);
    case optype::ABSOLUTE_VALUE_CHECKED:
        return arithmetic_op<AbsoluteValueChecked, Impl>(type, input, output, len);
    case optype::NEGATE:
        return arithmetic_op<Negate, Impl>(type, input, output, len);
    case optype::NEGATE_CHECKED:
        return arithmetic_op<NegateChecked, Impl>(type, input, output, len);
    case optype::SIGN:
        return arithmetic_op<Sign, Impl>(type, input, output, len);
    default:
        break;
    }
}


template <template <typename...> class Impl>
static inline void arithmetic_unary_impl(const int itype, const int otype, const int8_t op, const void* input, void* output, const int len) {
    const auto opt = static_cast<optype>(op);

    switch (opt) {
    case optype::SIGN:
        return arithmetic_op<Sign, Impl>(itype, otype, input, output, len);
    default:
        break;
    }
}

template <template <typename...> class Impl>
static inline void arithmetic_binary_impl(const int type, const int8_t op, const void* in_left, const void* in_right, void* out, const int len) {
    const auto opt = static_cast<optype>(op);

    switch (opt) {
    case optype::ADD:
        return arithmetic_op<Add, Impl>(type, in_left, in_right, out, len);
    case optype::ADD_CHECKED:
        return arithmetic_op<AddChecked, Impl>(type, in_left, in_right, out, len);
    case optype::SUB:
        return arithmetic_op<Sub, Impl>(type, in_left, in_right, out, len);
    case optype::SUB_CHECKED:
        return arithmetic_op<SubChecked, Impl>(type, in_left, in_right, out, len);
    case optype::MUL:
        return arithmetic_op<Multiply, Impl>(type, in_left, in_right, out, len);
    case optype::MUL_CHECKED:
        return arithmetic_op<MultiplyChecked, Impl>(type, in_left, in_right, out, len);
    default:
        // don't implement divide here as we can only divide on non-null entries
        // so we can avoid dividing by zero
        break;
    }
}

extern "C" void FULL_NAME(arithmetic_binary)(const int type, const int8_t op, const void* in_left, const void* in_right, void* out, const int len) {
    arithmetic_binary_impl<arithmetic_op_arr_arr_impl>(type, op, in_left, in_right, out, len);
}

extern "C" void FULL_NAME(arithmetic_arr_scalar)(const int type, const int8_t op, const void* in_left, const void* in_right, void* out, const int len) {
    arithmetic_binary_impl<arithmetic_op_arr_scalar_impl>(type, op, in_left, in_right, out, len);
}

extern "C" void FULL_NAME(arithmetic_scalar_arr)(const int type, const int8_t op, const void* in_left, const void* in_right, void* out, const int len) {
    arithmetic_binary_impl<arithmetic_op_scalar_arr_impl>(type, op, in_left, in_right, out, len);
}

extern "C" void FULL_NAME(arithmetic_unary_same_types)(const int type, const int8_t op, const void* input, void* output, const int len) {
    arithmetic_unary_impl_same_types<arithmetic_unary_op_impl>(type, op, input, output, len);
}

extern "C" void FULL_NAME(arithmetic_unary_diff_type)(const int itype, const int otype, const int8_t op, const void* input, void* output, const int len) {
    arithmetic_unary_impl<arithmetic_unary_op_impl>(itype, otype, op, input, output, len);
}