1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
package kernels
import (
"fmt"
"math"
"math/bits"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/compute/exec"
"github.com/apache/arrow-go/v18/arrow/decimal128"
"github.com/apache/arrow-go/v18/arrow/decimal256"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"github.com/apache/arrow-go/v18/internal/utils"
"golang.org/x/exp/constraints"
)
type ArithmeticOp int8
const (
OpAdd ArithmeticOp = iota
OpSub
OpMul
OpDiv
OpAbsoluteValue
OpNegate
// NO SIMD for the following yet
OpSqrt
OpPower
OpSin
OpCos
OpTan
OpAsin
OpAcos
OpAtan
OpAtan2
OpLn
OpLog10
OpLog2
OpLog1p
OpLogb
// End NO SIMD
OpSign
// Checked versions will not use SIMD except for float32/float64 impls
OpAddChecked
OpSubChecked
OpMulChecked
OpDivChecked
OpAbsoluteValueChecked
OpNegateChecked
// No SIMD impls for the rest of these yet
OpSqrtChecked
OpPowerChecked
OpSinChecked
OpCosChecked
OpTanChecked
OpAsinChecked
OpAcosChecked
OpLnChecked
OpLog10Checked
OpLog2Checked
OpLog1pChecked
OpLogbChecked
)
func mulWithOverflow[T arrow.IntType | arrow.UintType](a, b T) (T, error) {
min, max := MinOf[T](), MaxOf[T]()
switch {
case a > 0:
if b > 0 {
if a > (max / b) {
return 0, errOverflow
}
} else {
if b < (min / a) {
return 0, errOverflow
}
}
case b > 0:
if a < (min / b) {
return 0, errOverflow
}
default:
if (a != 0) && (b < (max / a)) {
return 0, errOverflow
}
}
return a * b, nil
}
func getGoArithmeticBinary[OutT, Arg0T, Arg1T arrow.NumericType](op func(a Arg0T, b Arg1T, e *error) OutT) binaryOps[OutT, Arg0T, Arg1T] {
return binaryOps[OutT, Arg0T, Arg1T]{
arrArr: func(_ *exec.KernelCtx, left []Arg0T, right []Arg1T, out []OutT) error {
var err error
for i := range out {
out[i] = op(left[i], right[i], &err)
}
return err
},
arrScalar: func(_ *exec.KernelCtx, left []Arg0T, right Arg1T, out []OutT) error {
var err error
for i := range out {
out[i] = op(left[i], right, &err)
}
return err
},
scalarArr: func(_ *exec.KernelCtx, left Arg0T, right []Arg1T, out []OutT) error {
var err error
for i := range out {
out[i] = op(left, right[i], &err)
}
return err
},
}
}
var (
errOverflow = fmt.Errorf("%w: overflow", arrow.ErrInvalid)
errDivByZero = fmt.Errorf("%w: divide by zero", arrow.ErrInvalid)
errNegativeSqrt = fmt.Errorf("%w: square root of negative number", arrow.ErrInvalid)
errNegativePower = fmt.Errorf("%w: integers to negative integer powers are not allowed", arrow.ErrInvalid)
errDomainErr = fmt.Errorf("%w: domain error", arrow.ErrInvalid)
errLogZero = fmt.Errorf("%w: logarithm of zero", arrow.ErrInvalid)
errLogNeg = fmt.Errorf("%w: logarithm of negative number", arrow.ErrInvalid)
)
func getGoArithmeticOpIntegral[InT, OutT arrow.UintType | arrow.IntType](op ArithmeticOp) exec.ArrayKernelExec {
switch op {
case OpAdd:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a + b) }))
case OpSub:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a - b) }))
case OpMul:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a * b) }))
case OpDiv:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) OutT {
if b == 0 {
*e = errDivByZero
return 0
}
return OutT(a / b)
})
case OpAbsoluteValue:
if ones := ^InT(0); ones < 0 {
shiftBy := (SizeOf[InT]() * 8) - 1
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
// get abs without branching
for i, v := range arg {
// right shift (sign check)
mask := v >> shiftBy
// add the mask '+' and '-' balance
v = v + mask
// invert and return
out[i] = OutT(v ^ mask)
}
return nil
})
}
if SizeOf[InT]() == SizeOf[OutT]() {
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
in, output := arrow.GetBytes(arg), arrow.GetBytes(out)
copy(output, in)
return nil
})
} else {
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
DoStaticCast(arg, out)
return nil
})
}
case OpNegate:
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
out[i] = OutT(-v)
}
return nil
})
case OpSign:
if ^InT(0) < 0 {
var neg int8 = -1
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
neg := OutT(neg)
for i, v := range arg {
switch {
case v > 0:
out[i] = 1
case v < 0:
out[i] = neg
default:
out[i] = 0
}
}
return nil
})
}
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
if v > 0 {
out[i] = 1
} else {
out[i] = 0
}
}
return nil
})
case OpPower:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, err *error) OutT {
if b < 0 {
*err = errNegativePower
return 0
}
// integer power
var (
base = uint64(a)
exp = uint64(b)
pow uint64 = 1
)
// right to left 0(logn) power
for exp != 0 {
if exp&1 != 0 {
pow *= base
}
base *= base
exp >>= 1
}
return OutT(pow)
}))
case OpAddChecked:
shiftBy := (SizeOf[InT]() * 8) - 1
// ie: uint32 does a >> 31 at the end, int32 does >> 30
if ^InT(0) < 0 {
shiftBy--
}
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
out = OutT(a + b)
// see math/bits/bits.go Add64 for explanation of logic
carry := (OutT(a&b) | (OutT(a|b) &^ out)) >> shiftBy
if carry > 0 {
*e = errOverflow
}
return
})
case OpSubChecked:
shiftBy := (SizeOf[InT]() * 8) - 1
// ie: uint32 does a >> 31 at the end, int32 does >> 30
if ^InT(0) < 0 {
shiftBy--
}
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
out = OutT(a - b)
// see math/bits/bits.go Sub64 for explanation of bit logic
carry := (OutT(^a&b) | (^OutT(a^b) & out)) >> shiftBy
if carry > 0 {
*e = errOverflow
}
return
})
case OpMulChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, e *error) (out OutT) {
o, err := mulWithOverflow(a, b)
if err != nil {
*e = err
}
return OutT(o)
}))
case OpDivChecked:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
if b == 0 {
*e = errDivByZero
return
}
return OutT(a / b)
})
case OpAbsoluteValueChecked:
if ones := ^InT(0); ones < 0 {
shiftBy := (SizeOf[InT]() * 8) - 1
min := MinOf[InT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
if v == min {
return errOverflow
}
// right shift (sign check)
mask := v >> shiftBy
// add the mask '+' and '-' balance
v = v + mask
// invert and return
out[i] = OutT(v ^ mask)
}
return nil
})
}
if SizeOf[InT]() == SizeOf[OutT]() {
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
in, output := arrow.GetBytes(arg), arrow.GetBytes(out)
copy(output, in)
return nil
})
} else {
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
DoStaticCast(arg, out)
return nil
})
}
case OpNegateChecked:
if ones := ^InT(0); ones < 0 {
min := MinOf[InT]()
// signed
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
if v != min {
out[i] = OutT(-v)
} else {
return errOverflow
}
}
return nil
})
}
case OpPowerChecked:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, base, exp InT, e *error) OutT {
if exp < 0 {
*e = errNegativePower
return 0
} else if exp == 0 {
return 1
}
// left to right 0(logn) power with overflow checks
var (
overflow bool
bitmask = uint64(1) << (63 - bits.LeadingZeros64(uint64(exp)))
pow InT = 1
err error
)
for bitmask != 0 {
pow, err = mulWithOverflow(pow, pow)
overflow = overflow || (err != nil)
if uint64(exp)&bitmask != 0 {
pow, err = mulWithOverflow(pow, base)
overflow = overflow || (err != nil)
}
bitmask >>= 1
}
if overflow {
*e = errOverflow
}
return OutT(pow)
})
}
debug.Assert(false, "invalid arithmetic op")
return nil
}
func getGoArithmeticOpFloating[InT, OutT constraints.Float](op ArithmeticOp) exec.ArrayKernelExec {
switch op {
case OpAdd, OpAddChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a + b) }))
case OpSub, OpSubChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a - b) }))
case OpMul, OpMulChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a * b) }))
case OpDiv:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
return OutT(a / b)
})
case OpDivChecked:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
if b == 0 {
*e = errDivByZero
return
}
return OutT(a / b)
})
case OpAbsoluteValue, OpAbsoluteValueChecked:
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
out[i] = OutT(math.Abs(float64(v)))
}
return nil
})
case OpNegate, OpNegateChecked:
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
out[i] = OutT(-v)
}
return nil
})
case OpSqrt:
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
out[i] = OutT(math.Sqrt(float64(v)))
}
return nil
})
case OpSqrtChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if arg < 0 {
*e = errNegativeSqrt
return OutT(math.NaN())
}
return OutT(math.Sqrt(float64(arg)))
})
case OpSign:
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
for i, v := range arg {
switch {
case math.IsNaN(float64(v)):
out[i] = OutT(v)
case v == 0:
out[i] = 0
case math.Signbit(float64(v)):
out[i] = -1
default:
out[i] = 1
}
}
return nil
})
case OpPower, OpPowerChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT {
return OutT(math.Pow(float64(a), float64(b)))
}))
case OpSin:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Sin(float64(v)))
}
return nil
})
case OpSinChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if math.IsInf(float64(arg), 0) {
*e = errDomainErr
return OutT(arg)
}
return OutT(math.Sin(float64(arg)))
})
case OpCos:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Cos(float64(v)))
}
return nil
})
case OpCosChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if math.IsInf(float64(arg), 0) {
*e = errDomainErr
return OutT(arg)
}
return OutT(math.Cos(float64(arg)))
})
case OpTan:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Tan(float64(v)))
}
return nil
})
case OpTanChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if math.IsInf(float64(arg), 0) {
*e = errDomainErr
return OutT(arg)
}
return OutT(math.Tan(float64(arg)))
})
case OpAsin:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Asin(float64(v)))
}
return nil
})
case OpAsinChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if arg < -1 || arg > 1 {
*e = errDomainErr
return OutT(arg)
}
return OutT(math.Asin(float64(arg)))
})
case OpAcos:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Acos(float64(v)))
}
return nil
})
case OpAcosChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
if arg < -1 || arg > 1 {
*e = errDomainErr
return OutT(arg)
}
return OutT(math.Acos(float64(arg)))
})
case OpAtan:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Atan(float64(v)))
}
return nil
})
case OpAtan2:
return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT {
return OutT(math.Atan2(float64(a), float64(b)))
}))
case OpLn:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Log(float64(v)))
}
return nil
})
case OpLnChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
switch {
case arg == 0:
*e = errLogZero
return OutT(arg)
case arg < 0:
*e = errLogNeg
return OutT(arg)
}
return OutT(math.Log(float64(arg)))
})
case OpLog10:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Log10(float64(v)))
}
return nil
})
case OpLog10Checked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
switch {
case arg == 0:
*e = errLogZero
return OutT(arg)
case arg < 0:
*e = errLogNeg
return OutT(arg)
}
return OutT(math.Log10(float64(arg)))
})
case OpLog2:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Log2(float64(v)))
}
return nil
})
case OpLog2Checked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
switch {
case arg == 0:
*e = errLogZero
return OutT(arg)
case arg < 0:
*e = errLogNeg
return OutT(arg)
}
return OutT(math.Log2(float64(arg)))
})
case OpLog1p:
return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
for i, v := range vals {
out[i] = OutT(math.Log1p(float64(v)))
}
return nil
})
case OpLog1pChecked:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
switch {
case arg == -1:
*e = errLogZero
return OutT(arg)
case arg < -1:
*e = errLogNeg
return OutT(arg)
}
return OutT(math.Log1p(float64(arg)))
})
case OpLogb:
return ScalarBinary(getGoArithmeticBinary(func(x, base InT, _ *error) OutT {
if x == 0 {
if base == 0 || base < 0 {
return OutT(math.NaN())
} else {
return OutT(math.Inf(-1))
}
} else if x < 0 {
return OutT(math.NaN())
}
return OutT(math.Log(float64(x)) / math.Log(float64(base)))
}))
case OpLogbChecked:
return ScalarBinaryNotNull((func(_ *exec.KernelCtx, x, base InT, e *error) OutT {
if x == 0 || base == 0 {
*e = errLogZero
return OutT(x)
} else if x < 0 || base < 0 {
*e = errLogNeg
return OutT(x)
}
return OutT(math.Log(float64(x)) / math.Log(float64(base)))
}))
}
debug.Assert(false, "invalid arithmetic op")
return nil
}
func timeDurationOp[OutT, Arg0T, Arg1T ~int32 | ~int64](multiple int64, op ArithmeticOp) exec.ArrayKernelExec {
switch op {
case OpAdd:
return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) OutT {
result := OutT(a) + OutT(b)
if result < 0 || multiple <= int64(result) {
*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
}
return result
}))
case OpSub:
return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) OutT {
result := OutT(a) - OutT(b)
if result < 0 || multiple <= int64(result) {
*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
}
return result
}))
case OpAddChecked:
shiftBy := (SizeOf[OutT]() * 8) - 1
// ie: uint32 does a >> 31 at the end, int32 does >> 30
if ^OutT(0) < 0 {
shiftBy--
}
return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) (result OutT) {
left, right := OutT(a), OutT(b)
result = left + right
carry := ((left & right) | ((left | right) &^ result)) >> shiftBy
if carry > 0 {
*e = errOverflow
return
}
if result < 0 || multiple <= int64(result) {
*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
}
return
}))
case OpSubChecked:
shiftBy := (SizeOf[OutT]() * 8) - 1
// ie: uint32 does a >> 31 at the end, int32 does >> 30
if ^OutT(0) < 0 {
shiftBy--
}
return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) (result OutT) {
left, right := OutT(a), OutT(b)
result = left - right
carry := ((^left & right) | (^(left ^ right) & result)) >> shiftBy
if carry > 0 {
*e = errOverflow
return
}
if result < 0 || multiple <= int64(result) {
*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
}
return
}))
}
return nil
}
func SubtractDate32(op ArithmeticOp) exec.ArrayKernelExec {
const secondsPerDay = 86400
switch op {
case OpSub:
return ScalarBinary(getGoArithmeticBinary(func(a, b arrow.Time32, e *error) (result arrow.Duration) {
return arrow.Duration((a - b) * secondsPerDay)
}))
case OpSubChecked:
return ScalarBinary(getGoArithmeticBinary(func(a, b arrow.Time32, e *error) (result arrow.Duration) {
result = arrow.Duration(a) - arrow.Duration(b)
val, ok := utils.Mul64(int64(result), secondsPerDay)
if !ok {
*e = errOverflow
}
return arrow.Duration(val)
}))
}
panic("invalid op for subtractDate32")
}
type decOps[T decimal128.Num | decimal256.Num] struct {
Add func(T, T) T
Sub func(T, T) T
Div func(T, T) T
Mul func(T, T) T
Abs func(T) T
Neg func(T) T
Sign func(T) int
}
var dec128Ops = decOps[decimal128.Num]{
Add: func(a, b decimal128.Num) decimal128.Num { return a.Add(b) },
Sub: func(a, b decimal128.Num) decimal128.Num { return a.Sub(b) },
Mul: func(a, b decimal128.Num) decimal128.Num { return a.Mul(b) },
Div: func(a, b decimal128.Num) decimal128.Num {
a, _ = a.Div(b)
return a
},
Abs: func(a decimal128.Num) decimal128.Num { return a.Abs() },
Neg: func(a decimal128.Num) decimal128.Num { return a.Negate() },
Sign: func(a decimal128.Num) int { return a.Sign() },
}
var dec256Ops = decOps[decimal256.Num]{
Add: func(a, b decimal256.Num) decimal256.Num { return a.Add(b) },
Sub: func(a, b decimal256.Num) decimal256.Num { return a.Sub(b) },
Mul: func(a, b decimal256.Num) decimal256.Num { return a.Mul(b) },
Div: func(a, b decimal256.Num) decimal256.Num {
a, _ = a.Div(b)
return a
},
Abs: func(a decimal256.Num) decimal256.Num { return a.Abs() },
Neg: func(a decimal256.Num) decimal256.Num { return a.Negate() },
Sign: func(a decimal256.Num) int { return a.Sign() },
}
func getArithmeticOpDecimalImpl[T decimal128.Num | decimal256.Num](op ArithmeticOp, fns decOps[T]) exec.ArrayKernelExec {
if op >= OpAddChecked {
op -= OpAddChecked // decimal128/256 checked is the same as unchecked
}
switch op {
case OpAdd:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
return fns.Add(arg0, arg1)
})
case OpSub:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
return fns.Sub(arg0, arg1)
})
case OpMul:
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
return fns.Mul(arg0, arg1)
})
case OpDiv:
var z T
return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, e *error) (out T) {
if arg1 == z {
*e = errDivByZero
return
}
return fns.Div(arg0, arg1)
})
case OpAbsoluteValue:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) T {
return fns.Abs(arg)
})
case OpNegate:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) T {
return fns.Neg(arg)
})
case OpSign:
return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) int64 {
return int64(fns.Sign(arg))
})
}
debug.Assert(false, "unimplemented arithmetic op")
return nil
}
func getArithmeticDecimal[T decimal128.Num | decimal256.Num](op ArithmeticOp) exec.ArrayKernelExec {
var def T
switch any(def).(type) {
case decimal128.Num:
return getArithmeticOpDecimalImpl(op, dec128Ops)
case decimal256.Num:
return getArithmeticOpDecimalImpl(op, dec256Ops)
}
panic("should never get here")
}
func ArithmeticExecSameType(ty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
switch ty {
case arrow.INT8:
return getArithmeticOpIntegral[int8, int8](op)
case arrow.UINT8:
return getArithmeticOpIntegral[uint8, uint8](op)
case arrow.INT16:
return getArithmeticOpIntegral[int16, int16](op)
case arrow.UINT16:
return getArithmeticOpIntegral[uint16, uint16](op)
case arrow.INT32, arrow.TIME32:
return getArithmeticOpIntegral[int32, int32](op)
case arrow.UINT32:
return getArithmeticOpIntegral[uint32, uint32](op)
case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
return getArithmeticOpIntegral[int64, int64](op)
case arrow.UINT64:
return getArithmeticOpIntegral[uint64, uint64](op)
case arrow.FLOAT32:
return getArithmeticOpFloating[float32, float32](op)
case arrow.FLOAT64:
return getArithmeticOpFloating[float64, float64](op)
}
debug.Assert(false, "invalid arithmetic type")
return nil
}
func arithmeticExec[InT arrow.IntType | arrow.UintType](oty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
switch oty {
case arrow.INT8:
return getArithmeticOpIntegral[InT, int8](op)
case arrow.UINT8:
return getArithmeticOpIntegral[InT, uint8](op)
case arrow.INT16:
return getArithmeticOpIntegral[InT, int16](op)
case arrow.UINT16:
return getArithmeticOpIntegral[InT, uint16](op)
case arrow.INT32, arrow.TIME32:
return getArithmeticOpIntegral[InT, int32](op)
case arrow.UINT32:
return getArithmeticOpIntegral[InT, uint32](op)
case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
return getArithmeticOpIntegral[InT, int64](op)
case arrow.UINT64:
return getArithmeticOpIntegral[InT, uint64](op)
}
debug.Assert(false, "arithmetic integral to floating not implemented")
return nil
}
func ArithmeticExec(ity, oty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
if ity == oty {
return ArithmeticExecSameType(ity, op)
}
switch ity {
case arrow.INT8:
return arithmeticExec[int8](oty, op)
case arrow.UINT8:
return arithmeticExec[uint8](oty, op)
case arrow.INT16:
return arithmeticExec[int16](oty, op)
case arrow.UINT16:
return arithmeticExec[uint16](oty, op)
case arrow.INT32, arrow.TIME32:
return arithmeticExec[int32](oty, op)
case arrow.UINT32:
return arithmeticExec[uint32](oty, op)
case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
return arithmeticExec[int64](oty, op)
case arrow.UINT64:
return arithmeticExec[uint64](oty, op)
case arrow.FLOAT32:
if oty == arrow.FLOAT32 {
return getArithmeticOpFloating[float32, float32](op)
}
return getArithmeticOpFloating[float32, float64](op)
case arrow.FLOAT64:
if oty == arrow.FLOAT32 {
return getArithmeticOpFloating[float64, float32](op)
}
return getArithmeticOpFloating[float64, float64](op)
}
return nil
}
|