File: base_arithmetic.go

package info (click to toggle)
golang-github-apache-arrow-go 18.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,200 kB
  • sloc: asm: 477,547; ansic: 5,369; cpp: 759; sh: 585; makefile: 319; python: 190; sed: 5
file content (897 lines) | stat: -rw-r--r-- 24,657 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//go:build go1.18

package kernels

import (
	"fmt"
	"math"
	"math/bits"

	"github.com/apache/arrow-go/v18/arrow"
	"github.com/apache/arrow-go/v18/arrow/compute/exec"
	"github.com/apache/arrow-go/v18/arrow/decimal128"
	"github.com/apache/arrow-go/v18/arrow/decimal256"
	"github.com/apache/arrow-go/v18/arrow/internal/debug"
	"github.com/apache/arrow-go/v18/internal/utils"
	"golang.org/x/exp/constraints"
)

type ArithmeticOp int8

const (
	OpAdd ArithmeticOp = iota
	OpSub
	OpMul
	OpDiv
	OpAbsoluteValue
	OpNegate
	// NO SIMD for the following yet
	OpSqrt
	OpPower
	OpSin
	OpCos
	OpTan
	OpAsin
	OpAcos
	OpAtan
	OpAtan2
	OpLn
	OpLog10
	OpLog2
	OpLog1p
	OpLogb
	// End NO SIMD
	OpSign

	// Checked versions will not use SIMD except for float32/float64 impls
	OpAddChecked
	OpSubChecked
	OpMulChecked
	OpDivChecked
	OpAbsoluteValueChecked
	OpNegateChecked
	// No SIMD impls for the rest of these yet
	OpSqrtChecked
	OpPowerChecked
	OpSinChecked
	OpCosChecked
	OpTanChecked
	OpAsinChecked
	OpAcosChecked
	OpLnChecked
	OpLog10Checked
	OpLog2Checked
	OpLog1pChecked
	OpLogbChecked
)

func mulWithOverflow[T arrow.IntType | arrow.UintType](a, b T) (T, error) {
	min, max := MinOf[T](), MaxOf[T]()
	switch {
	case a > 0:
		if b > 0 {
			if a > (max / b) {
				return 0, errOverflow
			}
		} else {
			if b < (min / a) {
				return 0, errOverflow
			}
		}
	case b > 0:
		if a < (min / b) {
			return 0, errOverflow
		}
	default:
		if (a != 0) && (b < (max / a)) {
			return 0, errOverflow
		}
	}

	return a * b, nil
}

func getGoArithmeticBinary[OutT, Arg0T, Arg1T arrow.NumericType](op func(a Arg0T, b Arg1T, e *error) OutT) binaryOps[OutT, Arg0T, Arg1T] {
	return binaryOps[OutT, Arg0T, Arg1T]{
		arrArr: func(_ *exec.KernelCtx, left []Arg0T, right []Arg1T, out []OutT) error {
			var err error
			for i := range out {
				out[i] = op(left[i], right[i], &err)
			}
			return err
		},
		arrScalar: func(_ *exec.KernelCtx, left []Arg0T, right Arg1T, out []OutT) error {
			var err error
			for i := range out {
				out[i] = op(left[i], right, &err)
			}
			return err
		},
		scalarArr: func(_ *exec.KernelCtx, left Arg0T, right []Arg1T, out []OutT) error {
			var err error
			for i := range out {
				out[i] = op(left, right[i], &err)
			}
			return err
		},
	}
}

var (
	errOverflow      = fmt.Errorf("%w: overflow", arrow.ErrInvalid)
	errDivByZero     = fmt.Errorf("%w: divide by zero", arrow.ErrInvalid)
	errNegativeSqrt  = fmt.Errorf("%w: square root of negative number", arrow.ErrInvalid)
	errNegativePower = fmt.Errorf("%w: integers to negative integer powers are not allowed", arrow.ErrInvalid)
	errDomainErr     = fmt.Errorf("%w: domain error", arrow.ErrInvalid)
	errLogZero       = fmt.Errorf("%w: logarithm of zero", arrow.ErrInvalid)
	errLogNeg        = fmt.Errorf("%w: logarithm of negative number", arrow.ErrInvalid)
)

func getGoArithmeticOpIntegral[InT, OutT arrow.UintType | arrow.IntType](op ArithmeticOp) exec.ArrayKernelExec {
	switch op {
	case OpAdd:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a + b) }))
	case OpSub:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a - b) }))
	case OpMul:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a * b) }))
	case OpDiv:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) OutT {
			if b == 0 {
				*e = errDivByZero
				return 0
			}
			return OutT(a / b)
		})
	case OpAbsoluteValue:
		if ones := ^InT(0); ones < 0 {
			shiftBy := (SizeOf[InT]() * 8) - 1
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				// get abs without branching
				for i, v := range arg {
					// right shift (sign check)
					mask := v >> shiftBy
					// add the mask '+' and '-' balance
					v = v + mask
					// invert and return
					out[i] = OutT(v ^ mask)
				}
				return nil
			})
		}

		if SizeOf[InT]() == SizeOf[OutT]() {
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				in, output := arrow.GetBytes(arg), arrow.GetBytes(out)
				copy(output, in)
				return nil
			})
		} else {
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				DoStaticCast(arg, out)
				return nil
			})
		}
	case OpNegate:
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				out[i] = OutT(-v)
			}
			return nil
		})
	case OpSign:
		if ^InT(0) < 0 {
			var neg int8 = -1
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				neg := OutT(neg)
				for i, v := range arg {
					switch {
					case v > 0:
						out[i] = 1
					case v < 0:
						out[i] = neg
					default:
						out[i] = 0
					}
				}
				return nil
			})
		}
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				if v > 0 {
					out[i] = 1
				} else {
					out[i] = 0
				}
			}
			return nil
		})
	case OpPower:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, err *error) OutT {
			if b < 0 {
				*err = errNegativePower
				return 0
			}
			// integer power
			var (
				base        = uint64(a)
				exp         = uint64(b)
				pow  uint64 = 1
			)

			// right to left 0(logn) power
			for exp != 0 {
				if exp&1 != 0 {
					pow *= base
				}
				base *= base
				exp >>= 1
			}
			return OutT(pow)
		}))
	case OpAddChecked:
		shiftBy := (SizeOf[InT]() * 8) - 1
		// ie: uint32 does a >> 31 at the end, int32 does >> 30
		if ^InT(0) < 0 {
			shiftBy--
		}
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
			out = OutT(a + b)
			// see math/bits/bits.go Add64 for explanation of logic
			carry := (OutT(a&b) | (OutT(a|b) &^ out)) >> shiftBy
			if carry > 0 {
				*e = errOverflow
			}
			return
		})
	case OpSubChecked:
		shiftBy := (SizeOf[InT]() * 8) - 1
		// ie: uint32 does a >> 31 at the end, int32 does >> 30
		if ^InT(0) < 0 {
			shiftBy--
		}
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
			out = OutT(a - b)
			// see math/bits/bits.go Sub64 for explanation of bit logic
			carry := (OutT(^a&b) | (^OutT(a^b) & out)) >> shiftBy
			if carry > 0 {
				*e = errOverflow
			}
			return
		})
	case OpMulChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, e *error) (out OutT) {
			o, err := mulWithOverflow(a, b)
			if err != nil {
				*e = err
			}
			return OutT(o)
		}))
	case OpDivChecked:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
			if b == 0 {
				*e = errDivByZero
				return
			}
			return OutT(a / b)
		})
	case OpAbsoluteValueChecked:
		if ones := ^InT(0); ones < 0 {
			shiftBy := (SizeOf[InT]() * 8) - 1
			min := MinOf[InT]()
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				for i, v := range arg {
					if v == min {
						return errOverflow
					}

					// right shift (sign check)
					mask := v >> shiftBy
					// add the mask '+' and '-' balance
					v = v + mask
					// invert and return
					out[i] = OutT(v ^ mask)
				}
				return nil
			})
		}
		if SizeOf[InT]() == SizeOf[OutT]() {
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				in, output := arrow.GetBytes(arg), arrow.GetBytes(out)
				copy(output, in)
				return nil
			})
		} else {
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				DoStaticCast(arg, out)
				return nil
			})
		}
	case OpNegateChecked:
		if ones := ^InT(0); ones < 0 {
			min := MinOf[InT]()
			// signed
			return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
				for i, v := range arg {
					if v != min {
						out[i] = OutT(-v)
					} else {
						return errOverflow
					}
				}
				return nil
			})
		}
	case OpPowerChecked:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, base, exp InT, e *error) OutT {
			if exp < 0 {
				*e = errNegativePower
				return 0
			} else if exp == 0 {
				return 1
			}

			// left to right 0(logn) power with overflow checks
			var (
				overflow bool
				bitmask      = uint64(1) << (63 - bits.LeadingZeros64(uint64(exp)))
				pow      InT = 1
				err      error
			)

			for bitmask != 0 {
				pow, err = mulWithOverflow(pow, pow)
				overflow = overflow || (err != nil)
				if uint64(exp)&bitmask != 0 {
					pow, err = mulWithOverflow(pow, base)
					overflow = overflow || (err != nil)
				}
				bitmask >>= 1
			}
			if overflow {
				*e = errOverflow
			}
			return OutT(pow)
		})
	}
	debug.Assert(false, "invalid arithmetic op")
	return nil
}

func getGoArithmeticOpFloating[InT, OutT constraints.Float](op ArithmeticOp) exec.ArrayKernelExec {
	switch op {
	case OpAdd, OpAddChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a + b) }))
	case OpSub, OpSubChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a - b) }))
	case OpMul, OpMulChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT { return OutT(a * b) }))
	case OpDiv:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
			return OutT(a / b)
		})
	case OpDivChecked:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, a, b InT, e *error) (out OutT) {
			if b == 0 {
				*e = errDivByZero
				return
			}
			return OutT(a / b)
		})
	case OpAbsoluteValue, OpAbsoluteValueChecked:
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				out[i] = OutT(math.Abs(float64(v)))
			}
			return nil
		})
	case OpNegate, OpNegateChecked:
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				out[i] = OutT(-v)
			}
			return nil
		})
	case OpSqrt:
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				out[i] = OutT(math.Sqrt(float64(v)))
			}
			return nil
		})
	case OpSqrtChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if arg < 0 {
				*e = errNegativeSqrt
				return OutT(math.NaN())
			}
			return OutT(math.Sqrt(float64(arg)))
		})
	case OpSign:
		return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
			for i, v := range arg {
				switch {
				case math.IsNaN(float64(v)):
					out[i] = OutT(v)
				case v == 0:
					out[i] = 0
				case math.Signbit(float64(v)):
					out[i] = -1
				default:
					out[i] = 1
				}
			}
			return nil
		})
	case OpPower, OpPowerChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT {
			return OutT(math.Pow(float64(a), float64(b)))
		}))
	case OpSin:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Sin(float64(v)))
			}
			return nil
		})
	case OpSinChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if math.IsInf(float64(arg), 0) {
				*e = errDomainErr
				return OutT(arg)
			}
			return OutT(math.Sin(float64(arg)))
		})
	case OpCos:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Cos(float64(v)))
			}
			return nil
		})
	case OpCosChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if math.IsInf(float64(arg), 0) {
				*e = errDomainErr
				return OutT(arg)
			}
			return OutT(math.Cos(float64(arg)))
		})
	case OpTan:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Tan(float64(v)))
			}
			return nil
		})
	case OpTanChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if math.IsInf(float64(arg), 0) {
				*e = errDomainErr
				return OutT(arg)
			}
			return OutT(math.Tan(float64(arg)))
		})
	case OpAsin:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Asin(float64(v)))
			}
			return nil
		})
	case OpAsinChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if arg < -1 || arg > 1 {
				*e = errDomainErr
				return OutT(arg)
			}
			return OutT(math.Asin(float64(arg)))
		})
	case OpAcos:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Acos(float64(v)))
			}
			return nil
		})
	case OpAcosChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			if arg < -1 || arg > 1 {
				*e = errDomainErr
				return OutT(arg)
			}
			return OutT(math.Acos(float64(arg)))
		})
	case OpAtan:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Atan(float64(v)))
			}
			return nil
		})
	case OpAtan2:
		return ScalarBinary(getGoArithmeticBinary(func(a, b InT, _ *error) OutT {
			return OutT(math.Atan2(float64(a), float64(b)))
		}))
	case OpLn:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Log(float64(v)))
			}
			return nil
		})
	case OpLnChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			switch {
			case arg == 0:
				*e = errLogZero
				return OutT(arg)
			case arg < 0:
				*e = errLogNeg
				return OutT(arg)
			}

			return OutT(math.Log(float64(arg)))
		})
	case OpLog10:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Log10(float64(v)))
			}
			return nil
		})
	case OpLog10Checked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			switch {
			case arg == 0:
				*e = errLogZero
				return OutT(arg)
			case arg < 0:
				*e = errLogNeg
				return OutT(arg)
			}

			return OutT(math.Log10(float64(arg)))
		})
	case OpLog2:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Log2(float64(v)))
			}
			return nil
		})
	case OpLog2Checked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			switch {
			case arg == 0:
				*e = errLogZero
				return OutT(arg)
			case arg < 0:
				*e = errLogNeg
				return OutT(arg)
			}

			return OutT(math.Log2(float64(arg)))
		})
	case OpLog1p:
		return ScalarUnary(func(_ *exec.KernelCtx, vals []InT, out []OutT) error {
			for i, v := range vals {
				out[i] = OutT(math.Log1p(float64(v)))
			}
			return nil
		})
	case OpLog1pChecked:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg InT, e *error) OutT {
			switch {
			case arg == -1:
				*e = errLogZero
				return OutT(arg)
			case arg < -1:
				*e = errLogNeg
				return OutT(arg)
			}

			return OutT(math.Log1p(float64(arg)))
		})
	case OpLogb:
		return ScalarBinary(getGoArithmeticBinary(func(x, base InT, _ *error) OutT {
			if x == 0 {
				if base == 0 || base < 0 {
					return OutT(math.NaN())
				} else {
					return OutT(math.Inf(-1))
				}
			} else if x < 0 {
				return OutT(math.NaN())
			}
			return OutT(math.Log(float64(x)) / math.Log(float64(base)))
		}))
	case OpLogbChecked:
		return ScalarBinaryNotNull((func(_ *exec.KernelCtx, x, base InT, e *error) OutT {
			if x == 0 || base == 0 {
				*e = errLogZero
				return OutT(x)
			} else if x < 0 || base < 0 {
				*e = errLogNeg
				return OutT(x)
			}
			return OutT(math.Log(float64(x)) / math.Log(float64(base)))
		}))
	}
	debug.Assert(false, "invalid arithmetic op")
	return nil
}

func timeDurationOp[OutT, Arg0T, Arg1T ~int32 | ~int64](multiple int64, op ArithmeticOp) exec.ArrayKernelExec {
	switch op {
	case OpAdd:
		return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) OutT {
			result := OutT(a) + OutT(b)
			if result < 0 || multiple <= int64(result) {
				*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
			}
			return result
		}))
	case OpSub:
		return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) OutT {
			result := OutT(a) - OutT(b)
			if result < 0 || multiple <= int64(result) {
				*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
			}
			return result
		}))
	case OpAddChecked:
		shiftBy := (SizeOf[OutT]() * 8) - 1
		// ie: uint32 does a >> 31 at the end, int32 does >> 30
		if ^OutT(0) < 0 {
			shiftBy--
		}
		return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) (result OutT) {
			left, right := OutT(a), OutT(b)
			result = left + right
			carry := ((left & right) | ((left | right) &^ result)) >> shiftBy
			if carry > 0 {
				*e = errOverflow
				return
			}
			if result < 0 || multiple <= int64(result) {
				*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
			}
			return
		}))
	case OpSubChecked:
		shiftBy := (SizeOf[OutT]() * 8) - 1
		// ie: uint32 does a >> 31 at the end, int32 does >> 30
		if ^OutT(0) < 0 {
			shiftBy--
		}
		return ScalarBinary(getGoArithmeticBinary(func(a Arg0T, b Arg1T, e *error) (result OutT) {
			left, right := OutT(a), OutT(b)
			result = left - right
			carry := ((^left & right) | (^(left ^ right) & result)) >> shiftBy
			if carry > 0 {
				*e = errOverflow
				return
			}
			if result < 0 || multiple <= int64(result) {
				*e = fmt.Errorf("%w: %d is not within acceptable range of [0, %d) s", arrow.ErrInvalid, result, multiple)
			}
			return
		}))
	}
	return nil
}

func SubtractDate32(op ArithmeticOp) exec.ArrayKernelExec {
	const secondsPerDay = 86400
	switch op {
	case OpSub:
		return ScalarBinary(getGoArithmeticBinary(func(a, b arrow.Time32, e *error) (result arrow.Duration) {
			return arrow.Duration((a - b) * secondsPerDay)
		}))
	case OpSubChecked:
		return ScalarBinary(getGoArithmeticBinary(func(a, b arrow.Time32, e *error) (result arrow.Duration) {
			result = arrow.Duration(a) - arrow.Duration(b)
			val, ok := utils.Mul64(int64(result), secondsPerDay)
			if !ok {
				*e = errOverflow
			}
			return arrow.Duration(val)
		}))
	}
	panic("invalid op for subtractDate32")
}

type decOps[T decimal128.Num | decimal256.Num] struct {
	Add  func(T, T) T
	Sub  func(T, T) T
	Div  func(T, T) T
	Mul  func(T, T) T
	Abs  func(T) T
	Neg  func(T) T
	Sign func(T) int
}

var dec128Ops = decOps[decimal128.Num]{
	Add: func(a, b decimal128.Num) decimal128.Num { return a.Add(b) },
	Sub: func(a, b decimal128.Num) decimal128.Num { return a.Sub(b) },
	Mul: func(a, b decimal128.Num) decimal128.Num { return a.Mul(b) },
	Div: func(a, b decimal128.Num) decimal128.Num {
		a, _ = a.Div(b)
		return a
	},
	Abs:  func(a decimal128.Num) decimal128.Num { return a.Abs() },
	Neg:  func(a decimal128.Num) decimal128.Num { return a.Negate() },
	Sign: func(a decimal128.Num) int { return a.Sign() },
}

var dec256Ops = decOps[decimal256.Num]{
	Add: func(a, b decimal256.Num) decimal256.Num { return a.Add(b) },
	Sub: func(a, b decimal256.Num) decimal256.Num { return a.Sub(b) },
	Mul: func(a, b decimal256.Num) decimal256.Num { return a.Mul(b) },
	Div: func(a, b decimal256.Num) decimal256.Num {
		a, _ = a.Div(b)
		return a
	},
	Abs:  func(a decimal256.Num) decimal256.Num { return a.Abs() },
	Neg:  func(a decimal256.Num) decimal256.Num { return a.Negate() },
	Sign: func(a decimal256.Num) int { return a.Sign() },
}

func getArithmeticOpDecimalImpl[T decimal128.Num | decimal256.Num](op ArithmeticOp, fns decOps[T]) exec.ArrayKernelExec {
	if op >= OpAddChecked {
		op -= OpAddChecked // decimal128/256 checked is the same as unchecked
	}

	switch op {
	case OpAdd:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
			return fns.Add(arg0, arg1)
		})
	case OpSub:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
			return fns.Sub(arg0, arg1)
		})
	case OpMul:
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, _ *error) T {
			return fns.Mul(arg0, arg1)
		})
	case OpDiv:
		var z T
		return ScalarBinaryNotNull(func(_ *exec.KernelCtx, arg0, arg1 T, e *error) (out T) {
			if arg1 == z {
				*e = errDivByZero
				return
			}
			return fns.Div(arg0, arg1)
		})
	case OpAbsoluteValue:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) T {
			return fns.Abs(arg)
		})
	case OpNegate:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) T {
			return fns.Neg(arg)
		})
	case OpSign:
		return ScalarUnaryNotNull(func(_ *exec.KernelCtx, arg T, _ *error) int64 {
			return int64(fns.Sign(arg))
		})
	}
	debug.Assert(false, "unimplemented arithmetic op")
	return nil
}

func getArithmeticDecimal[T decimal128.Num | decimal256.Num](op ArithmeticOp) exec.ArrayKernelExec {
	var def T
	switch any(def).(type) {
	case decimal128.Num:
		return getArithmeticOpDecimalImpl(op, dec128Ops)
	case decimal256.Num:
		return getArithmeticOpDecimalImpl(op, dec256Ops)
	}
	panic("should never get here")
}

func ArithmeticExecSameType(ty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
	switch ty {
	case arrow.INT8:
		return getArithmeticOpIntegral[int8, int8](op)
	case arrow.UINT8:
		return getArithmeticOpIntegral[uint8, uint8](op)
	case arrow.INT16:
		return getArithmeticOpIntegral[int16, int16](op)
	case arrow.UINT16:
		return getArithmeticOpIntegral[uint16, uint16](op)
	case arrow.INT32, arrow.TIME32:
		return getArithmeticOpIntegral[int32, int32](op)
	case arrow.UINT32:
		return getArithmeticOpIntegral[uint32, uint32](op)
	case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
		return getArithmeticOpIntegral[int64, int64](op)
	case arrow.UINT64:
		return getArithmeticOpIntegral[uint64, uint64](op)
	case arrow.FLOAT32:
		return getArithmeticOpFloating[float32, float32](op)
	case arrow.FLOAT64:
		return getArithmeticOpFloating[float64, float64](op)
	}
	debug.Assert(false, "invalid arithmetic type")
	return nil
}

func arithmeticExec[InT arrow.IntType | arrow.UintType](oty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
	switch oty {
	case arrow.INT8:
		return getArithmeticOpIntegral[InT, int8](op)
	case arrow.UINT8:
		return getArithmeticOpIntegral[InT, uint8](op)
	case arrow.INT16:
		return getArithmeticOpIntegral[InT, int16](op)
	case arrow.UINT16:
		return getArithmeticOpIntegral[InT, uint16](op)
	case arrow.INT32, arrow.TIME32:
		return getArithmeticOpIntegral[InT, int32](op)
	case arrow.UINT32:
		return getArithmeticOpIntegral[InT, uint32](op)
	case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
		return getArithmeticOpIntegral[InT, int64](op)
	case arrow.UINT64:
		return getArithmeticOpIntegral[InT, uint64](op)
	}
	debug.Assert(false, "arithmetic integral to floating not implemented")
	return nil
}

func ArithmeticExec(ity, oty arrow.Type, op ArithmeticOp) exec.ArrayKernelExec {
	if ity == oty {
		return ArithmeticExecSameType(ity, op)
	}

	switch ity {
	case arrow.INT8:
		return arithmeticExec[int8](oty, op)
	case arrow.UINT8:
		return arithmeticExec[uint8](oty, op)
	case arrow.INT16:
		return arithmeticExec[int16](oty, op)
	case arrow.UINT16:
		return arithmeticExec[uint16](oty, op)
	case arrow.INT32, arrow.TIME32:
		return arithmeticExec[int32](oty, op)
	case arrow.UINT32:
		return arithmeticExec[uint32](oty, op)
	case arrow.INT64, arrow.TIME64, arrow.DATE64, arrow.TIMESTAMP, arrow.DURATION:
		return arithmeticExec[int64](oty, op)
	case arrow.UINT64:
		return arithmeticExec[uint64](oty, op)
	case arrow.FLOAT32:
		if oty == arrow.FLOAT32 {
			return getArithmeticOpFloating[float32, float32](op)
		}
		return getArithmeticOpFloating[float32, float64](op)
	case arrow.FLOAT64:
		if oty == arrow.FLOAT32 {
			return getArithmeticOpFloating[float64, float32](op)
		}
		return getArithmeticOpFloating[float64, float64](op)
	}
	return nil
}