1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18 && !noasm
package kernels
import (
"unsafe"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/compute/exec"
"github.com/apache/arrow-go/v18/arrow/internal/debug"
"golang.org/x/exp/constraints"
"golang.org/x/sys/cpu"
)
func getAvx2ArithmeticBinaryNumeric[T arrow.NumericType](op ArithmeticOp) binaryOps[T, T, T] {
typ := arrow.GetType[T]()
return binaryOps[T, T, T]{
arrArr: func(_ *exec.KernelCtx, Arg0, Arg1, Out []T) error {
arithmeticAvx2(typ, op, arrow.GetBytes(Arg0), arrow.GetBytes(Arg1), arrow.GetBytes(Out), len(Arg0))
return nil
},
arrScalar: func(_ *exec.KernelCtx, Arg0 []T, Arg1 T, Out []T) error {
arithmeticArrScalarAvx2(typ, op, arrow.GetBytes(Arg0), unsafe.Pointer(&Arg1), arrow.GetBytes(Out), len(Arg0))
return nil
},
scalarArr: func(_ *exec.KernelCtx, Arg0 T, Arg1, Out []T) error {
arithmeticScalarArrAvx2(typ, op, unsafe.Pointer(&Arg0), arrow.GetBytes(Arg1), arrow.GetBytes(Out), len(Arg1))
return nil
},
}
}
func getSSE4ArithmeticBinaryNumeric[T arrow.NumericType](op ArithmeticOp) binaryOps[T, T, T] {
typ := arrow.GetType[T]()
return binaryOps[T, T, T]{
arrArr: func(_ *exec.KernelCtx, Arg0, Arg1, Out []T) error {
arithmeticSSE4(typ, op, arrow.GetBytes(Arg0), arrow.GetBytes(Arg1), arrow.GetBytes(Out), len(Arg0))
return nil
},
arrScalar: func(_ *exec.KernelCtx, Arg0 []T, Arg1 T, Out []T) error {
arithmeticArrScalarSSE4(typ, op, arrow.GetBytes(Arg0), unsafe.Pointer(&Arg1), arrow.GetBytes(Out), len(Arg0))
return nil
},
scalarArr: func(_ *exec.KernelCtx, Arg0 T, Arg1, Out []T) error {
arithmeticScalarArrSSE4(typ, op, unsafe.Pointer(&Arg0), arrow.GetBytes(Arg1), arrow.GetBytes(Out), len(Arg1))
return nil
},
}
}
func getArithmeticOpIntegral[InT, OutT arrow.UintType | arrow.IntType](op ArithmeticOp) exec.ArrayKernelExec {
if cpu.X86.HasAVX2 {
switch op {
case OpAdd, OpSub, OpMul:
return ScalarBinary(getAvx2ArithmeticBinaryNumeric[InT](op))
case OpAbsoluteValue, OpNegate:
typ := arrow.GetType[InT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg, out []InT) error {
arithmeticUnaryAvx2(typ, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
case OpSign:
inType, outType := arrow.GetType[InT](), arrow.GetType[OutT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
arithmeticUnaryDiffTypesAvx2(inType, outType, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
}
} else if cpu.X86.HasSSE42 {
switch op {
case OpAdd, OpSub, OpMul:
return ScalarBinary(getSSE4ArithmeticBinaryNumeric[InT](op))
case OpAbsoluteValue, OpNegate:
typ := arrow.GetType[InT]()
return ScalarUnary(func(ctx *exec.KernelCtx, arg, out []InT) error {
arithmeticUnarySSE4(typ, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
case OpSign:
inType, outType := arrow.GetType[InT](), arrow.GetType[OutT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg []InT, out []OutT) error {
arithmeticUnaryDiffTypesSSE4(inType, outType, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
}
}
// no SIMD for POWER or SQRT functions
// integral checked funcs need to use NotNull versions
return getGoArithmeticOpIntegral[InT, OutT](op)
}
func getArithmeticOpFloating[InT, OutT constraints.Float](op ArithmeticOp) exec.ArrayKernelExec {
if cpu.X86.HasAVX2 {
switch op {
case OpAdd, OpSub, OpAddChecked, OpSubChecked, OpMul, OpMulChecked:
if arrow.GetType[InT]() != arrow.GetType[OutT]() {
debug.Assert(false, "not implemented")
return nil
}
return ScalarBinary(getAvx2ArithmeticBinaryNumeric[InT](op))
case OpAbsoluteValue, OpAbsoluteValueChecked, OpNegate, OpNegateChecked, OpSign:
if arrow.GetType[InT]() != arrow.GetType[OutT]() {
debug.Assert(false, "not implemented")
return nil
}
typ := arrow.GetType[InT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg, out []InT) error {
arithmeticUnaryAvx2(typ, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
}
} else if cpu.X86.HasSSE42 {
switch op {
case OpAdd, OpSub, OpAddChecked, OpSubChecked, OpMul, OpMulChecked:
if arrow.GetType[InT]() != arrow.GetType[OutT]() {
debug.Assert(false, "not implemented")
return nil
}
return ScalarBinary(getSSE4ArithmeticBinaryNumeric[InT](op))
case OpAbsoluteValue, OpAbsoluteValueChecked, OpNegate, OpNegateChecked, OpSign:
if arrow.GetType[InT]() != arrow.GetType[OutT]() {
debug.Assert(false, "not implemented")
return nil
}
typ := arrow.GetType[InT]()
return ScalarUnary(func(_ *exec.KernelCtx, arg, out []InT) error {
arithmeticUnarySSE4(typ, op, arrow.GetBytes(arg), arrow.GetBytes(out), len(arg))
return nil
})
}
}
// no SIMD for POWER or SQRT functions
return getGoArithmeticOpFloating[InT, OutT](op)
}
|