File: rounding.go

package info (click to toggle)
golang-github-apache-arrow-go 18.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,200 kB
  • sloc: asm: 477,547; ansic: 5,369; cpp: 759; sh: 585; makefile: 319; python: 190; sed: 5
file content (809 lines) | stat: -rw-r--r-- 24,370 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//go:build go1.18

package kernels

import (
	"fmt"
	"math"

	"github.com/apache/arrow-go/v18/arrow"
	"github.com/apache/arrow-go/v18/arrow/compute/exec"
	"github.com/apache/arrow-go/v18/arrow/decimal128"
	"github.com/apache/arrow-go/v18/arrow/decimal256"
	"github.com/apache/arrow-go/v18/arrow/scalar"
	"golang.org/x/exp/constraints"
)

//go:generate stringer -type=RoundMode

type RoundMode int8

const (
	// Round to nearest integer less than or equal in magnitude (aka "floor")
	RoundDown RoundMode = iota
	// Round to nearest integer greater than or equal in magnitude (aka "ceil")
	RoundUp
	// Get integral part without fractional digits (aka "trunc")
	TowardsZero
	// Round negative values with DOWN and positive values with UP
	AwayFromZero
	// Round ties with DOWN (aka "round half towards negative infinity")
	HalfDown
	// Round ties with UP (aka "round half towards positive infinity")
	HalfUp
	// Round ties with TowardsZero (aka "round half away from infinity")
	HalfTowardsZero
	// Round ties with AwayFromZero (aka "round half towards infinity")
	HalfAwayFromZero
	// Round ties to nearest even integer
	HalfToEven
	// Round ties to nearest odd integer
	HalfToOdd
)

type RoundOptions struct {
	NDigits int64
	Mode    RoundMode
}

func (RoundOptions) TypeName() string { return "RoundOptions" }

type RoundState struct {
	RoundOptions
	Pow10 float64
}

func InitRoundState(_ *exec.KernelCtx, args exec.KernelInitArgs) (exec.KernelState, error) {
	var rs RoundState

	opts, ok := args.Options.(*RoundOptions)
	if ok {
		rs.RoundOptions = *opts
	} else {
		if rs.RoundOptions, ok = args.Options.(RoundOptions); !ok {
			return nil, fmt.Errorf("%w: attempted to initialize kernel state from invalid function options",
				arrow.ErrInvalid)
		}
	}

	// Only positive exponents for powers of 10 are used because combining
	// multiply and division operations produced more stable rounding than
	// using multiply-only.  Refer to NumPy's round implementation:
	// https://github.com/numpy/numpy/blob/7b2f20b406d27364c812f7a81a9c901afbd3600c/numpy/core/src/multiarray/calculation.c#L589
	rs.Pow10 = math.Pow10(int(math.Abs(float64(rs.NDigits))))
	return rs, nil
}

type RoundToMultipleOptions struct {
	// Multiple is the multiple to round to.
	//
	// Should be a positive numeric scalar of a type compatible
	// with the argument to be rounded. The cast kernel is used
	// to convert the rounding multiple to match the result type.
	Multiple scalar.Scalar
	// Mode is the rounding and tie-breaking mode
	Mode RoundMode
}

func (RoundToMultipleOptions) TypeName() string { return "RoundToMultipleOptions" }

type RoundToMultipleState = RoundToMultipleOptions

func isPositive(s scalar.Scalar) bool {
	switch s := s.(type) {
	case *scalar.Decimal128:
		return s.Value.Greater(decimal128.Num{})
	case *scalar.Decimal256:
		return s.Value.Greater(decimal256.Num{})
	case *scalar.Int8:
		return s.Value > 0
	case *scalar.Uint8, *scalar.Uint16, *scalar.Uint32, *scalar.Uint64:
		return true
	case *scalar.Int16:
		return s.Value > 0
	case *scalar.Int32:
		return s.Value > 0
	case *scalar.Int64:
		return s.Value > 0
	case *scalar.Float32:
		return s.Value > 0
	case *scalar.Float64:
		return s.Value > 0
	default:
		return false
	}
}

func InitRoundToMultipleState(_ *exec.KernelCtx, args exec.KernelInitArgs) (exec.KernelState, error) {
	var rs RoundToMultipleState

	opts, ok := args.Options.(*RoundToMultipleOptions)
	if ok {
		rs = *opts
	} else {
		if rs, ok = args.Options.(RoundToMultipleOptions); !ok {
			return nil, fmt.Errorf("%w: attempted to initialize kernel state from invalid function options",
				arrow.ErrInvalid)
		}
	}

	mult := rs.Multiple
	if mult == nil || !mult.IsValid() {
		return nil, fmt.Errorf("%w: rounding multiple must be non-null and valid",
			arrow.ErrInvalid)
	}

	if !isPositive(mult) {
		return nil, fmt.Errorf("%w: rounding multiple must be positive", arrow.ErrInvalid)
	}

	// ensure the rounding multiple option matches the kernel's output type.
	// the output type is not available here, so we use the following rule:
	// if "multiple" is neither a floating-point nor decimal type,
	// then cast to float64, else cast to the kernel's input type.
	var toType arrow.DataType
	if !arrow.IsFloating(mult.DataType().ID()) && !arrow.IsDecimal(mult.DataType().ID()) {
		toType = arrow.PrimitiveTypes.Float64
	} else {
		toType = args.Inputs[0]
	}

	if !arrow.TypeEqual(mult.DataType(), toType) {
		castedMultiple, err := mult.CastTo(toType)
		if err != nil {
			return nil, err
		}

		rs.Multiple = castedMultiple
	}

	return rs, nil
}

func getFloatRoundImpl[T constraints.Float](mode RoundMode) func(T) T {
	switch mode {
	case RoundDown:
		return func(t T) T { return T(math.Floor(float64(t))) }
	case RoundUp:
		return func(t T) T { return T(math.Ceil(float64(t))) }
	case TowardsZero: // truncate
		return func(t T) T { return T(math.Trunc(float64(t))) }
	case AwayFromZero:
		return func(t T) T {
			v := float64(t)
			if math.Signbit(v) {
				return T(math.Floor(v))
			}
			return T(math.Ceil(v))
		}
	// the Half variants are only called when the fractional portion
	// was 0.5
	case HalfDown:
		return func(t T) T { return T(math.Floor(float64(t))) }
	case HalfUp:
		return func(t T) T { return T(math.Ceil(float64(t))) }
	case HalfTowardsZero:
		return func(t T) T { return T(math.Trunc(float64(t))) }
	case HalfAwayFromZero:
		return func(t T) T {
			v := float64(t)
			if math.Signbit(v) {
				return T(math.Floor(v))
			}
			return T(math.Ceil(v))
		}
	case HalfToEven:
		return func(t T) T { return T(math.RoundToEven(float64(t))) }
	case HalfToOdd:
		return func(t T) T {
			v := float64(t)
			return T(math.Floor(v*0.5) + math.Ceil(v*0.5))
		}
	}
	panic("invalid rounding mode")
}

func getDecRounding[T decimal128.Num | decimal256.Num](mode RoundMode, opsImpl *roundDecImpl[T]) func(val, remainder T, pow10 T, scale int32) T {
	var (
		z   T
		one = opsImpl.fromI64(1)
		neg = opsImpl.fromI64(-1)
	)

	switch mode {
	case RoundDown:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(val) < 0 {
				val = opsImpl.Sub(val, pow10)
			}
			return val
		}
	case RoundUp:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(val) > 0 && remainder != z {
				val = opsImpl.Add(val, pow10)
			}
			return val
		}
	case TowardsZero:
		return func(val, remainder, _ T, _ int32) T {
			return opsImpl.Sub(val, remainder)
		}
	case AwayFromZero:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(remainder) < 0 {
				val = opsImpl.Sub(val, pow10)
			} else if opsImpl.Sign(remainder) > 0 && remainder != z {
				val = opsImpl.Add(val, pow10)
			}
			return val
		}
	// variants for Half_* modes are only invoked when the fractional part
	// is equal to 0.5
	case HalfDown:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(val) < 0 {
				val = opsImpl.Sub(val, pow10)
			}
			return val
		}
	case HalfUp:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(val) > 0 && remainder != z {
				val = opsImpl.Add(val, pow10)
			}
			return val
		}
	case HalfTowardsZero:
		return func(val, remainder, _ T, _ int32) T {
			return opsImpl.Sub(val, remainder)
		}
	case HalfAwayFromZero:
		return func(val, remainder, pow10 T, _ int32) T {
			val = opsImpl.Sub(val, remainder)
			if opsImpl.Sign(remainder) < 0 {
				val = opsImpl.Sub(val, pow10)
			} else if opsImpl.Sign(remainder) > 0 && remainder != z {
				val = opsImpl.Add(val, pow10)
			}
			return val
		}
	case HalfToEven:
		return func(val, remainder, _ T, scale int32) T {
			scaled := opsImpl.reduceScale(val, scale, false)
			if opsImpl.lowBits(scaled)%2 != 0 {
				if opsImpl.Sign(remainder) >= 0 {
					scaled = opsImpl.Add(scaled, one)
				} else {
					scaled = opsImpl.Add(scaled, neg)
				}
			}
			return opsImpl.increaseScale(scaled, scale)
		}
	case HalfToOdd:
		return func(val, remainder, _ T, scale int32) T {
			scaled := opsImpl.reduceScale(val, scale, false)
			if opsImpl.lowBits(scaled)%2 == 0 {
				if opsImpl.Sign(remainder) != 0 {
					scaled = opsImpl.Add(scaled, one)
				} else {
					scaled = opsImpl.Add(scaled, neg)
				}
			}
			return opsImpl.increaseScale(scaled, scale)
		}
	}
	panic("invalid rounding mode")
}

type round[T constraints.Float] struct {
	pow10   T
	ndigits int64
	mode    RoundMode

	fn func(T) T
}

func (rnd *round[T]) call(_ *exec.KernelCtx, arg T, e *error) T {
	val := float64(arg)
	// do not process INF or NaN because they will trigger overflow errors
	// at the end of this
	if math.IsInf(val, 0) || math.IsNaN(val) {
		return arg
	}

	var roundVal T
	if rnd.ndigits >= 0 {
		roundVal = arg * rnd.pow10
	} else {
		roundVal = arg / rnd.pow10
	}

	frac := roundVal - T(math.Floor(float64(roundVal)))
	if frac == 0 {
		// scaled value has no fractional component
		// no rounding is needed.
		return arg
	}

	if rnd.mode >= HalfDown && frac != 0.5 {
		roundVal = T(math.Round(float64(roundVal)))
	} else {
		roundVal = rnd.fn(roundVal)
	}

	// equality check is omitted so that the common case of 10^0
	// (integer rounding) uses multiply-only
	if rnd.ndigits > 0 {
		roundVal /= rnd.pow10
	} else {
		roundVal *= rnd.pow10
	}
	if math.IsInf(float64(roundVal), 0) || math.IsNaN(float64(roundVal)) {
		*e = errOverflow
		return arg
	}

	return roundVal
}

func roundKernelFloating[T constraints.Float](ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
	opts := ctx.State.(RoundState)
	rnd := round[T]{
		pow10:   T(opts.Pow10),
		ndigits: opts.NDigits,
		mode:    opts.Mode,
		fn:      getFloatRoundImpl[T](opts.Mode),
	}

	return ScalarUnaryNotNull(rnd.call)(ctx, batch, out)
}

func roundToMultipleFloating[T constraints.Float](ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
	opts := ctx.State.(RoundToMultipleState)
	rnd := roundToMultiple[T]{
		mode:     opts.Mode,
		multiple: UnboxScalar[T](opts.Multiple.(scalar.PrimitiveScalar)),
		fn:       getFloatRoundImpl[T](opts.Mode),
	}

	return ScalarUnaryNotNull(rnd.call)(ctx, batch, out)
}

type roundDecImpl[T decimal128.Num | decimal256.Num] struct {
	*decOps[T]
	scaleMultiplier     func(int) T
	halfScaleMultiplier func(int) T
	divide              func(a, b T) (res, rem T)
	fitsInPrec          func(T, int32) bool
	less                func(a, b T) bool
	reduceScale         func(T, int32, bool) T
	increaseScale       func(T, int32) T
	lowBits             func(T) uint64
	fromI64             func(int64) T
	str                 func(T, int32) string
}

var (
	roundDec128 = roundDecImpl[decimal128.Num]{
		decOps:              &dec128Ops,
		scaleMultiplier:     decimal128.GetScaleMultiplier,
		halfScaleMultiplier: decimal128.GetHalfScaleMultiplier,
		divide:              func(a, b decimal128.Num) (res, rem decimal128.Num) { return a.Div(b) },
		fitsInPrec:          func(a decimal128.Num, prec int32) bool { return a.FitsInPrecision(prec) },
		less:                func(a, b decimal128.Num) bool { return a.Less(b) },
		reduceScale:         func(a decimal128.Num, scale int32, round bool) decimal128.Num { return a.ReduceScaleBy(scale, round) },
		increaseScale:       func(a decimal128.Num, scale int32) decimal128.Num { return a.IncreaseScaleBy(scale) },
		lowBits:             func(a decimal128.Num) uint64 { return a.LowBits() },
		fromI64:             func(v int64) decimal128.Num { return decimal128.FromI64(v) },
		str:                 func(a decimal128.Num, scale int32) string { return a.ToString(scale) },
	}
	roundDec256 = roundDecImpl[decimal256.Num]{
		decOps:              &dec256Ops,
		scaleMultiplier:     decimal256.GetScaleMultiplier,
		halfScaleMultiplier: decimal256.GetHalfScaleMultiplier,
		divide:              func(a, b decimal256.Num) (res, rem decimal256.Num) { return a.Div(b) },
		fitsInPrec:          func(a decimal256.Num, prec int32) bool { return a.FitsInPrecision(prec) },
		less:                func(a, b decimal256.Num) bool { return a.Less(b) },
		reduceScale:         func(a decimal256.Num, scale int32, round bool) decimal256.Num { return a.ReduceScaleBy(scale, round) },
		increaseScale:       func(a decimal256.Num, scale int32) decimal256.Num { return a.IncreaseScaleBy(scale) },
		lowBits:             func(a decimal256.Num) uint64 { return a.LowBits() },
		fromI64:             func(v int64) decimal256.Num { return decimal256.FromI64(v) },
		str:                 func(a decimal256.Num, scale int32) string { return a.ToString(scale) },
	}
)

type roundDec[T decimal128.Num | decimal256.Num] struct {
	ty      arrow.DecimalType
	mode    RoundMode
	ndigits int64
	pow     int32
	// pow10 is "1" for the given decimal scale. Similarly halfPow10 is "0.5"
	pow10, halfPow10, negHalfPow10 T

	opsImpl *roundDecImpl[T]
	fn      func(T, T, T, int32) T
}

func (rnd *roundDec[T]) call(_ *exec.KernelCtx, arg T, e *error) T {
	var def T
	if rnd.pow >= rnd.ty.GetPrecision() {
		*e = fmt.Errorf("%w: rounding to %d digits will not fit in precision of %s",
			arrow.ErrInvalid, rnd.ndigits, rnd.ty)
		return def
	} else if rnd.pow < 0 {
		// no-op copy output to input
		return arg
	}

	_, remainder := rnd.opsImpl.divide(arg, rnd.pow10)
	// the remainder is effectively the scaled fractional part after division
	if remainder == def {
		return arg
	}

	if rnd.mode >= HalfDown {
		if remainder == rnd.halfPow10 || remainder == rnd.negHalfPow10 {
			// on the halfway point, use tiebreaker
			arg = rnd.fn(arg, remainder, rnd.pow10, rnd.pow)
		} else if rnd.opsImpl.Sign(remainder) >= 0 {
			// positive, round up/down
			arg = rnd.opsImpl.Sub(arg, remainder)
			if rnd.opsImpl.less(rnd.halfPow10, remainder) {
				arg = rnd.opsImpl.Add(arg, rnd.pow10)
			}
		} else {
			// negative, round up/down
			arg = rnd.opsImpl.Sub(arg, remainder)
			if rnd.opsImpl.less(remainder, rnd.negHalfPow10) {
				arg = rnd.opsImpl.Sub(arg, rnd.pow10)
			}
		}
	} else {
		arg = rnd.fn(arg, remainder, rnd.pow10, rnd.pow)
	}

	if !rnd.opsImpl.fitsInPrec(arg, rnd.ty.GetPrecision()) {
		*e = fmt.Errorf("%w: rounded value %s does not fit in precision of %s",
			arrow.ErrInvalid, rnd.opsImpl.str(arg, rnd.ty.GetScale()), rnd.ty)
		return def
	}
	return arg
}

func getRoundKernelDecimal[T decimal128.Num | decimal256.Num]() exec.ArrayKernelExec {
	var def T
	switch any(def).(type) {
	case decimal128.Num:
		return func(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
			return roundKernelDecimal(&roundDec128, ctx, batch, out)
		}
	case decimal256.Num:
		return func(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
			return roundKernelDecimal(&roundDec256, ctx, batch, out)
		}
	}
	panic("should never get here")
}

func roundKernelDecimal[T decimal128.Num | decimal256.Num](opsImpl *roundDecImpl[T], ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
	opts := ctx.State.(RoundState)
	rnd := roundDec[T]{
		ty:      out.Type.(arrow.DecimalType),
		ndigits: opts.NDigits,
		mode:    opts.Mode,
		opsImpl: opsImpl,
		fn:      getDecRounding(opts.Mode, opsImpl),
	}

	rnd.pow = rnd.ty.GetScale() - int32(rnd.ndigits)
	if rnd.pow < rnd.ty.GetPrecision() && rnd.pow >= 0 {
		rnd.pow10 = opsImpl.scaleMultiplier(int(rnd.pow))
		rnd.halfPow10 = opsImpl.halfScaleMultiplier(int(rnd.pow))
		rnd.negHalfPow10 = opsImpl.Neg(rnd.halfPow10)
	}

	return ScalarUnaryNotNull(rnd.call)(ctx, batch, out)
}

func getRoundToMultipleKernelDecimal[T decimal128.Num | decimal256.Num]() exec.ArrayKernelExec {
	var def T
	switch any(def).(type) {
	case decimal128.Num:
		return func(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
			return roundToMultipleDecimal(&roundDec128, ctx, batch, out)
		}
	case decimal256.Num:
		return func(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
			return roundToMultipleDecimal(&roundDec256, ctx, batch, out)
		}
	}
	panic("should never get here")
}

func roundToMultipleDecimal[T decimal128.Num | decimal256.Num](opsImpl *roundDecImpl[T], ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
	opts := ctx.State.(RoundToMultipleState)
	rnd := roundToMultipleDec[T]{
		ty:      out.Type.(arrow.DecimalType),
		mode:    opts.Mode,
		opsImpl: opsImpl,
		fn:      getDecRounding(opts.Mode, opsImpl),
		mult:    UnboxScalar[T](opts.Multiple.(scalar.PrimitiveScalar)),
	}

	rnd.halfMult = opsImpl.Div(rnd.mult, opsImpl.fromI64(2))
	rnd.negHalfMult = opsImpl.Neg(rnd.halfMult)
	rnd.hasHalfwayPoint = opsImpl.lowBits(rnd.mult)%2 == 0

	return ScalarUnaryNotNull(rnd.call)(ctx, batch, out)
}

type roundToMultiple[T constraints.Float] struct {
	multiple T
	mode     RoundMode

	fn func(T) T
}

func (rnd *roundToMultiple[T]) call(_ *exec.KernelCtx, arg T, e *error) T {
	val := float64(arg)
	// do not process Inf or NaN because they will trigger the overflow error
	// at the end of this.
	if math.IsInf(val, 0) || math.IsNaN(val) {
		return arg
	}

	roundVal := arg / rnd.multiple
	frac := roundVal - T(math.Floor(float64(roundVal)))
	if frac == 0 {
		// scaled value is an integer, no rounding needed
		return arg
	}

	if rnd.mode >= HalfDown && frac != 0.5 {
		roundVal = T(math.Round(float64(roundVal)))
	} else {
		roundVal = rnd.fn(roundVal)
	}
	roundVal *= rnd.multiple

	if math.IsInf(float64(roundVal), 0) || math.IsNaN(float64(roundVal)) {
		*e = errOverflow
		return arg
	}

	return roundVal
}

type roundToMultipleDec[T decimal128.Num | decimal256.Num] struct {
	ty   arrow.DecimalType
	mode RoundMode

	mult, halfMult, negHalfMult T
	hasHalfwayPoint             bool

	opsImpl *roundDecImpl[T]
	fn      func(T, T, T, int32) T
}

func (rnd *roundToMultipleDec[T]) call(_ *exec.KernelCtx, arg T, e *error) T {
	var def T

	val, remainder := rnd.opsImpl.divide(arg, rnd.mult)
	if remainder == def {
		return arg
	}

	one := rnd.opsImpl.fromI64(1)
	if rnd.mode >= HalfDown {
		if rnd.hasHalfwayPoint && (remainder == rnd.halfMult || remainder == rnd.negHalfMult) {
			// on the halfway point, use tiebreaker
			// manually implement rounding since we aren't actually rounding
			// a decimal value, but rather manipulating the multiple
			switch rnd.mode {
			case HalfDown:
				if rnd.opsImpl.Sign(remainder) < 0 {
					val = rnd.opsImpl.Sub(val, one)
				}
			case HalfUp:
				if rnd.opsImpl.Sign(remainder) >= 0 {
					val = rnd.opsImpl.Add(val, one)
				}
			case HalfTowardsZero:
			case HalfAwayFromZero:
				if rnd.opsImpl.Sign(remainder) >= 0 {
					val = rnd.opsImpl.Add(val, one)
				} else {
					val = rnd.opsImpl.Sub(val, one)
				}
			case HalfToEven:
				if rnd.opsImpl.lowBits(val)%2 != 0 {
					if rnd.opsImpl.Sign(remainder) >= 0 {
						val = rnd.opsImpl.Add(val, one)
					} else {
						val = rnd.opsImpl.Sub(val, one)
					}
				}
			case HalfToOdd:
				if rnd.opsImpl.lowBits(val)%2 == 0 {
					if rnd.opsImpl.Sign(remainder) >= 0 {
						val = rnd.opsImpl.Add(val, one)
					} else {
						val = rnd.opsImpl.Sub(val, one)
					}
				}
			}
		} else if rnd.opsImpl.Sign(remainder) >= 0 {
			// positive, round up/down
			if rnd.opsImpl.less(rnd.halfMult, remainder) {
				val = rnd.opsImpl.Add(val, one)
			}
		} else {
			// negative, round up/down
			if rnd.opsImpl.less(remainder, rnd.negHalfMult) {
				val = rnd.opsImpl.Sub(val, one)
			}
		}
	} else {
		// manually implement rounding since we aren't actually rounding
		// a decimal value, but rather manipulating the multiple
		switch rnd.mode {
		case RoundDown:
			if rnd.opsImpl.Sign(remainder) < 0 {
				val = rnd.opsImpl.Sub(val, one)
			}
		case RoundUp:
			if rnd.opsImpl.Sign(remainder) >= 0 {
				val = rnd.opsImpl.Add(val, one)
			}
		case TowardsZero:
		case AwayFromZero:
			if rnd.opsImpl.Sign(remainder) >= 0 {
				val = rnd.opsImpl.Add(val, one)
			} else {
				val = rnd.opsImpl.Sub(val, one)
			}
		}
	}

	roundVal := rnd.opsImpl.Mul(val, rnd.mult)
	if !rnd.opsImpl.fitsInPrec(roundVal, rnd.ty.GetPrecision()) {
		*e = fmt.Errorf("%w: rounded value %s does not fit in precision of %s",
			arrow.ErrInvalid, rnd.opsImpl.str(roundVal, rnd.ty.GetScale()), rnd.ty)
		return def
	}
	return roundVal
}

func UnaryRoundExec(ty arrow.Type) exec.ArrayKernelExec {
	switch ty {
	case arrow.FLOAT32:
		return roundKernelFloating[float32]
	case arrow.FLOAT64:
		return roundKernelFloating[float64]
	case arrow.DECIMAL128:
		return getRoundKernelDecimal[decimal128.Num]()
	case arrow.DECIMAL256:
		return getRoundKernelDecimal[decimal256.Num]()
	}
	panic("should never get here")
}

func UnaryRoundToMultipleExec(ty arrow.Type) exec.ArrayKernelExec {
	switch ty {
	case arrow.FLOAT32:
		return roundToMultipleFloating[float32]
	case arrow.FLOAT64:
		return roundToMultipleFloating[float64]
	case arrow.DECIMAL128:
		return getRoundToMultipleKernelDecimal[decimal128.Num]()
	case arrow.DECIMAL256:
		return getRoundToMultipleKernelDecimal[decimal256.Num]()
	}
	panic("should never get here")
}

func GetRoundUnaryKernels(init exec.KernelInitFn, knFn func(arrow.Type) exec.ArrayKernelExec) []exec.ScalarKernel {
	kernels := make([]exec.ScalarKernel, 0)
	for _, ty := range []arrow.DataType{arrow.PrimitiveTypes.Float32, arrow.PrimitiveTypes.Float64,
		&arrow.Decimal128Type{Precision: 1}, &arrow.Decimal256Type{Precision: 1}} {
		tyID := ty.ID()

		var out exec.OutputType
		if arrow.IsDecimal(tyID) {
			out = OutputFirstType
		} else {
			out = exec.NewOutputType(ty)
		}

		kernels = append(kernels, exec.NewScalarKernel(
			[]exec.InputType{exec.NewIDInput(tyID)}, out, knFn(tyID), init))
	}

	return append(kernels, NullExecKernel(1))
}

func GetSimpleRoundKernels(mode RoundMode) []exec.ScalarKernel {
	kernels := make([]exec.ScalarKernel, 0)
	for _, ty := range floatingTypes {
		var ex exec.ArrayKernelExec
		switch ty.ID() {
		case arrow.FLOAT32:
			fn := getFloatRoundImpl[float32](mode)
			ex = ScalarUnary(func(_ *exec.KernelCtx, in []float32, out []float32) error {
				for i, v := range in {
					out[i] = fn(v)
				}
				return nil
			})
		case arrow.FLOAT64:
			fn := getFloatRoundImpl[float64](mode)
			ex = ScalarUnary(func(_ *exec.KernelCtx, in []float64, out []float64) error {
				for i, v := range in {
					out[i] = fn(v)
				}
				return nil
			})
		}
		kernels = append(kernels, exec.NewScalarKernel(
			[]exec.InputType{exec.NewExactInput(ty)}, exec.NewOutputType(ty),
			ex, nil))
	}
	return append(kernels, NullExecKernel(1))
}

func fixedRoundDecimalExec[T decimal128.Num | decimal256.Num](opsImpl *roundDecImpl[T], mode RoundMode) exec.ArrayKernelExec {
	return func(ctx *exec.KernelCtx, batch *exec.ExecSpan, out *exec.ExecResult) error {
		rnd := roundDec[T]{
			ty:      out.Type.(arrow.DecimalType),
			mode:    mode,
			opsImpl: opsImpl,
			fn:      getDecRounding(mode, opsImpl),
		}

		rnd.pow = rnd.ty.GetScale() - int32(rnd.ndigits)
		if rnd.pow < rnd.ty.GetPrecision() && rnd.pow >= 0 {
			rnd.pow10 = opsImpl.scaleMultiplier(int(rnd.pow))
			rnd.halfPow10 = opsImpl.halfScaleMultiplier(int(rnd.pow))
			rnd.negHalfPow10 = opsImpl.Neg(rnd.halfPow10)
		}

		return ScalarUnaryNotNull(rnd.call)(ctx, batch, out)
	}
}

func FixedRoundDecimalExec[T decimal128.Num | decimal256.Num](mode RoundMode) exec.ArrayKernelExec {
	var def T
	switch any(def).(type) {
	case decimal128.Num:
		return func() exec.ArrayKernelExec {
			return fixedRoundDecimalExec(&roundDec128, mode)
		}()
	case decimal256.Num:
		return func() exec.ArrayKernelExec {
			return fixedRoundDecimalExec(&roundDec256, mode)
		}()
	}
	panic("should never get here")
}