1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package encoded
import (
"math"
"sort"
"github.com/apache/arrow-go/v18/arrow"
)
// FindPhysicalIndex performs a binary search on the run-ends to return
// the appropriate physical offset into the values/run-ends that corresponds
// with the logical index provided when called. If the array's logical offset
// is provided, this is equivalent to calling FindPhysicalOffset.
//
// For example, an array with run-ends [10, 20, 30, 40, 50] and a logicalIdx
// of 25 will return the value 2. This returns the smallest offset
// whose run-end is greater than the logicalIdx requested, which would
// also be the index into the values that contains the correct value.
//
// This function assumes it receives Run End Encoded array data
func FindPhysicalIndex(arr arrow.ArrayData, logicalIdx int) int {
data := arr.Children()[0]
if data.Len() == 0 {
return 0
}
switch data.DataType().ID() {
case arrow.INT16:
runEnds := arrow.Int16Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[data.Offset() : data.Offset()+data.Len()]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int16(logicalIdx) })
case arrow.INT32:
runEnds := arrow.Int32Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[data.Offset() : data.Offset()+data.Len()]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int32(logicalIdx) })
case arrow.INT64:
runEnds := arrow.Int64Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[data.Offset() : data.Offset()+data.Len()]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int64(logicalIdx) })
default:
panic("only int16, int32, and int64 are allowed for the run-ends")
}
}
// FindPhysicalOffset performs a binary search on the run-ends to return
// the appropriate physical offset into the values/run-ends that corresponds
// with the logical offset defined in the array.
//
// For example, an array with run-ends [10, 20, 30, 40, 50] and a logical
// offset of 25 will return the value 2. This returns the smallest offset
// whose run-end is greater than the logical offset, which would also be the
// offset index into the values that contains the correct value.
//
// This function assumes it receives Run End Encoded array data
func FindPhysicalOffset(arr arrow.ArrayData) int {
return FindPhysicalIndex(arr, arr.Offset())
}
// GetPhysicalLength returns the physical number of values which are in
// the passed in RunEndEncoded array data. This will take into account
// the offset and length of the array as reported in the array data
// (so that it properly handles slices).
//
// This function assumes it receives Run End Encoded array data
func GetPhysicalLength(arr arrow.ArrayData) int {
if arr.Len() == 0 {
return 0
}
data := arr.Children()[0]
physicalOffset := FindPhysicalOffset(arr)
start, length := data.Offset()+physicalOffset, data.Len()-physicalOffset
offset := arr.Offset() + arr.Len() - 1
switch data.DataType().ID() {
case arrow.INT16:
runEnds := arrow.Int16Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[start : start+length]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int16(offset) }) + 1
case arrow.INT32:
runEnds := arrow.Int32Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[start : start+length]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int32(offset) }) + 1
case arrow.INT64:
runEnds := arrow.Int64Traits.CastFromBytes(data.Buffers()[1].Bytes())
runEnds = runEnds[start : start+length]
return sort.Search(len(runEnds), func(i int) bool { return runEnds[i] > int64(offset) }) + 1
default:
panic("arrow/rle: can only get rle.PhysicalLength for int16/int32/int64 run ends array")
}
}
func getRunEnds(arr arrow.ArrayData) func(int64) int64 {
switch arr.DataType().ID() {
case arrow.INT16:
runEnds := arrow.Int16Traits.CastFromBytes(arr.Buffers()[1].Bytes())
runEnds = runEnds[arr.Offset() : arr.Offset()+arr.Len()]
return func(i int64) int64 { return int64(runEnds[i]) }
case arrow.INT32:
runEnds := arrow.Int32Traits.CastFromBytes(arr.Buffers()[1].Bytes())
runEnds = runEnds[arr.Offset() : arr.Offset()+arr.Len()]
return func(i int64) int64 { return int64(runEnds[i]) }
case arrow.INT64:
runEnds := arrow.Int64Traits.CastFromBytes(arr.Buffers()[1].Bytes())
runEnds = runEnds[arr.Offset() : arr.Offset()+arr.Len()]
return func(i int64) int64 { return int64(runEnds[i]) }
default:
panic("only int16, int32, and int64 are allowed for the run-ends")
}
}
// MergedRuns is used to take two Run End Encoded arrays and iterate
// them, finding the correct physical indices to correspond with the
// runs.
type MergedRuns struct {
inputs [2]arrow.Array
runIndex [2]int64
inputRunEnds [2]func(int64) int64
runEnds [2]int64
logicalLen int
logicalPos int
mergedEnd int64
}
// NewMergedRuns takes two RunEndEncoded arrays and returns a MergedRuns
// object that will allow iterating over the physical indices of the runs.
func NewMergedRuns(inputs [2]arrow.Array) *MergedRuns {
if len(inputs) == 0 {
return &MergedRuns{logicalLen: 0}
}
mr := &MergedRuns{inputs: inputs, logicalLen: inputs[0].Len()}
for i, in := range inputs {
if in.DataType().ID() != arrow.RUN_END_ENCODED {
panic("arrow/rle: NewMergedRuns can only be called with RunLengthEncoded arrays")
}
if in.Len() != mr.logicalLen {
panic("arrow/rle: can only merge runs of RLE arrays of the same length")
}
mr.inputRunEnds[i] = getRunEnds(in.Data().Children()[0])
// initialize the runIndex at the physical offset - 1 so the first
// call to Next will increment it to the correct initial offset
// since the initial state is logicalPos == 0 and mergedEnd == 0
mr.runIndex[i] = int64(FindPhysicalOffset(in.Data())) - 1
}
return mr
}
// Next returns true if there are more values/runs to iterate and false
// when one of the arrays has reached the end.
func (mr *MergedRuns) Next() bool {
mr.logicalPos = int(mr.mergedEnd)
if mr.isEnd() {
return false
}
for i := range mr.inputs {
if mr.logicalPos == int(mr.runEnds[i]) {
mr.runIndex[i]++
}
}
mr.findMergedRun()
return true
}
// IndexIntoBuffer returns the physical index into the value buffer of
// the passed in array index (ie: 0 for the first array and 1 for the second)
// this takes into account the offset of the array so it is the true physical
// index into the value *buffer* in the child.
func (mr *MergedRuns) IndexIntoBuffer(id int) int64 {
return mr.runIndex[id] + int64(mr.inputs[id].Data().Children()[1].Offset())
}
// IndexIntoArray is like IndexIntoBuffer but it doesn't take into account
// the array offset and instead is the index that can be used with the .Value
// method on the array to get the correct value.
func (mr *MergedRuns) IndexIntoArray(id int) int64 { return mr.runIndex[id] }
// RunLength returns the logical length of the current merged run being looked at.
func (mr *MergedRuns) RunLength() int64 { return mr.mergedEnd - int64(mr.logicalPos) }
// AccumulatedRunLength returns the logical run end of the current merged run.
func (mr *MergedRuns) AccumulatedRunLength() int64 { return mr.mergedEnd }
func (mr *MergedRuns) findMergedRun() {
mr.mergedEnd = int64(math.MaxInt64)
for i, in := range mr.inputs {
// logical indices of the end of the run we are currently in each input
mr.runEnds[i] = int64(mr.inputRunEnds[i](mr.runIndex[i]) - int64(in.Data().Offset()))
// the logical length may end in the middle of a run, in case the array was sliced
if mr.logicalLen < int(mr.runEnds[i]) {
mr.runEnds[i] = int64(mr.logicalLen)
}
if mr.runEnds[i] < mr.mergedEnd {
mr.mergedEnd = mr.runEnds[i]
}
}
}
func (mr *MergedRuns) isEnd() bool { return mr.logicalPos == mr.logicalLen }
|