1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by the FlatBuffers compiler. DO NOT EDIT.
package flatbuf
import (
flatbuffers "github.com/google/flatbuffers/go"
)
/// Exact decimal value represented as an integer value in two's
/// complement. Currently 32-bit (4-byte), 64-bit (8-byte),
/// 128-bit (16-byte) and 256-bit (32-byte) integers are used.
/// The representation uses the endianness indicated in the Schema.
type Decimal struct {
_tab flatbuffers.Table
}
func GetRootAsDecimal(buf []byte, offset flatbuffers.UOffsetT) *Decimal {
n := flatbuffers.GetUOffsetT(buf[offset:])
x := &Decimal{}
x.Init(buf, n+offset)
return x
}
func (rcv *Decimal) Init(buf []byte, i flatbuffers.UOffsetT) {
rcv._tab.Bytes = buf
rcv._tab.Pos = i
}
func (rcv *Decimal) Table() flatbuffers.Table {
return rcv._tab
}
/// Total number of decimal digits
func (rcv *Decimal) Precision() int32 {
o := flatbuffers.UOffsetT(rcv._tab.Offset(4))
if o != 0 {
return rcv._tab.GetInt32(o + rcv._tab.Pos)
}
return 0
}
/// Total number of decimal digits
func (rcv *Decimal) MutatePrecision(n int32) bool {
return rcv._tab.MutateInt32Slot(4, n)
}
/// Number of digits after the decimal point "."
func (rcv *Decimal) Scale() int32 {
o := flatbuffers.UOffsetT(rcv._tab.Offset(6))
if o != 0 {
return rcv._tab.GetInt32(o + rcv._tab.Pos)
}
return 0
}
/// Number of digits after the decimal point "."
func (rcv *Decimal) MutateScale(n int32) bool {
return rcv._tab.MutateInt32Slot(6, n)
}
/// Number of bits per value. The accepted widths are 32, 64, 128 and 256.
/// We use bitWidth for consistency with Int::bitWidth.
func (rcv *Decimal) BitWidth() int32 {
o := flatbuffers.UOffsetT(rcv._tab.Offset(8))
if o != 0 {
return rcv._tab.GetInt32(o + rcv._tab.Pos)
}
return 128
}
/// Number of bits per value. The accepted widths are 32, 64, 128 and 256.
/// We use bitWidth for consistency with Int::bitWidth.
func (rcv *Decimal) MutateBitWidth(n int32) bool {
return rcv._tab.MutateInt32Slot(8, n)
}
func DecimalStart(builder *flatbuffers.Builder) {
builder.StartObject(3)
}
func DecimalAddPrecision(builder *flatbuffers.Builder, precision int32) {
builder.PrependInt32Slot(0, precision, 0)
}
func DecimalAddScale(builder *flatbuffers.Builder, scale int32) {
builder.PrependInt32Slot(1, scale, 0)
}
func DecimalAddBitWidth(builder *flatbuffers.Builder, bitWidth int32) {
builder.PrependInt32Slot(2, bitWidth, 128)
}
func DecimalEnd(builder *flatbuffers.Builder) flatbuffers.UOffsetT {
return builder.EndObject()
}
|