1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by the FlatBuffers compiler. DO NOT EDIT.
package flatbuf
import (
flatbuffers "github.com/google/flatbuffers/go"
)
// / ----------------------------------------------------------------------
// / EXPERIMENTAL: Data structures for sparse tensors
// / Coordinate (COO) format of sparse tensor index.
// /
// / COO's index list are represented as a NxM matrix,
// / where N is the number of non-zero values,
// / and M is the number of dimensions of a sparse tensor.
// /
// / indicesBuffer stores the location and size of the data of this indices
// / matrix. The value type and the stride of the indices matrix is
// / specified in indicesType and indicesStrides fields.
// /
// / For example, let X be a 2x3x4x5 tensor, and it has the following
// / 6 non-zero values:
// / ```text
// / X[0, 1, 2, 0] := 1
// / X[1, 1, 2, 3] := 2
// / X[0, 2, 1, 0] := 3
// / X[0, 1, 3, 0] := 4
// / X[0, 1, 2, 1] := 5
// / X[1, 2, 0, 4] := 6
// / ```
// / In COO format, the index matrix of X is the following 4x6 matrix:
// / ```text
// / [[0, 0, 0, 0, 1, 1],
// / [1, 1, 1, 2, 1, 2],
// / [2, 2, 3, 1, 2, 0],
// / [0, 1, 0, 0, 3, 4]]
// / ```
// / When isCanonical is true, the indices is sorted in lexicographical order
// / (row-major order), and it does not have duplicated entries. Otherwise,
// / the indices may not be sorted, or may have duplicated entries.
type SparseTensorIndexCOO struct {
_tab flatbuffers.Table
}
func GetRootAsSparseTensorIndexCOO(buf []byte, offset flatbuffers.UOffsetT) *SparseTensorIndexCOO {
n := flatbuffers.GetUOffsetT(buf[offset:])
x := &SparseTensorIndexCOO{}
x.Init(buf, n+offset)
return x
}
func (rcv *SparseTensorIndexCOO) Init(buf []byte, i flatbuffers.UOffsetT) {
rcv._tab.Bytes = buf
rcv._tab.Pos = i
}
func (rcv *SparseTensorIndexCOO) Table() flatbuffers.Table {
return rcv._tab
}
// / The type of values in indicesBuffer
func (rcv *SparseTensorIndexCOO) IndicesType(obj *Int) *Int {
o := flatbuffers.UOffsetT(rcv._tab.Offset(4))
if o != 0 {
x := rcv._tab.Indirect(o + rcv._tab.Pos)
if obj == nil {
obj = new(Int)
}
obj.Init(rcv._tab.Bytes, x)
return obj
}
return nil
}
// / The type of values in indicesBuffer
// / Non-negative byte offsets to advance one value cell along each dimension
// / If omitted, default to row-major order (C-like).
func (rcv *SparseTensorIndexCOO) IndicesStrides(j int) int64 {
o := flatbuffers.UOffsetT(rcv._tab.Offset(6))
if o != 0 {
a := rcv._tab.Vector(o)
return rcv._tab.GetInt64(a + flatbuffers.UOffsetT(j*8))
}
return 0
}
func (rcv *SparseTensorIndexCOO) IndicesStridesLength() int {
o := flatbuffers.UOffsetT(rcv._tab.Offset(6))
if o != 0 {
return rcv._tab.VectorLen(o)
}
return 0
}
// / Non-negative byte offsets to advance one value cell along each dimension
// / If omitted, default to row-major order (C-like).
func (rcv *SparseTensorIndexCOO) MutateIndicesStrides(j int, n int64) bool {
o := flatbuffers.UOffsetT(rcv._tab.Offset(6))
if o != 0 {
a := rcv._tab.Vector(o)
return rcv._tab.MutateInt64(a+flatbuffers.UOffsetT(j*8), n)
}
return false
}
// / The location and size of the indices matrix's data
func (rcv *SparseTensorIndexCOO) IndicesBuffer(obj *Buffer) *Buffer {
o := flatbuffers.UOffsetT(rcv._tab.Offset(8))
if o != 0 {
x := o + rcv._tab.Pos
if obj == nil {
obj = new(Buffer)
}
obj.Init(rcv._tab.Bytes, x)
return obj
}
return nil
}
// / The location and size of the indices matrix's data
// / This flag is true if and only if the indices matrix is sorted in
// / row-major order, and does not have duplicated entries.
// / This sort order is the same as of Tensorflow's SparseTensor,
// / but it is inverse order of SciPy's canonical coo_matrix
// / (SciPy employs column-major order for its coo_matrix).
func (rcv *SparseTensorIndexCOO) IsCanonical() bool {
o := flatbuffers.UOffsetT(rcv._tab.Offset(10))
if o != 0 {
return rcv._tab.GetBool(o + rcv._tab.Pos)
}
return false
}
// / This flag is true if and only if the indices matrix is sorted in
// / row-major order, and does not have duplicated entries.
// / This sort order is the same as of Tensorflow's SparseTensor,
// / but it is inverse order of SciPy's canonical coo_matrix
// / (SciPy employs column-major order for its coo_matrix).
func (rcv *SparseTensorIndexCOO) MutateIsCanonical(n bool) bool {
return rcv._tab.MutateBoolSlot(10, n)
}
func SparseTensorIndexCOOStart(builder *flatbuffers.Builder) {
builder.StartObject(4)
}
func SparseTensorIndexCOOAddIndicesType(builder *flatbuffers.Builder, indicesType flatbuffers.UOffsetT) {
builder.PrependUOffsetTSlot(0, flatbuffers.UOffsetT(indicesType), 0)
}
func SparseTensorIndexCOOAddIndicesStrides(builder *flatbuffers.Builder, indicesStrides flatbuffers.UOffsetT) {
builder.PrependUOffsetTSlot(1, flatbuffers.UOffsetT(indicesStrides), 0)
}
func SparseTensorIndexCOOStartIndicesStridesVector(builder *flatbuffers.Builder, numElems int) flatbuffers.UOffsetT {
return builder.StartVector(8, numElems, 8)
}
func SparseTensorIndexCOOAddIndicesBuffer(builder *flatbuffers.Builder, indicesBuffer flatbuffers.UOffsetT) {
builder.PrependStructSlot(2, flatbuffers.UOffsetT(indicesBuffer), 0)
}
func SparseTensorIndexCOOAddIsCanonical(builder *flatbuffers.Builder, isCanonical bool) {
builder.PrependBoolSlot(3, isCanonical, false)
}
func SparseTensorIndexCOOEnd(builder *flatbuffers.Builder) flatbuffers.UOffsetT {
return builder.EndObject()
}
|