1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by the FlatBuffers compiler. DO NOT EDIT.
package flatbuf
import (
flatbuffers "github.com/google/flatbuffers/go"
)
// / Timestamp is a 64-bit signed integer representing an elapsed time since a
// / fixed epoch, stored in either of four units: seconds, milliseconds,
// / microseconds or nanoseconds, and is optionally annotated with a timezone.
// /
// / Timestamp values do not include any leap seconds (in other words, all
// / days are considered 86400 seconds long).
// /
// / Timestamps with a non-empty timezone
// / ------------------------------------
// /
// / If a Timestamp column has a non-empty timezone value, its epoch is
// / 1970-01-01 00:00:00 (January 1st 1970, midnight) in the *UTC* timezone
// / (the Unix epoch), regardless of the Timestamp's own timezone.
// /
// / Therefore, timestamp values with a non-empty timezone correspond to
// / physical points in time together with some additional information about
// / how the data was obtained and/or how to display it (the timezone).
// /
// / For example, the timestamp value 0 with the timezone string "Europe/Paris"
// / corresponds to "January 1st 1970, 00h00" in the UTC timezone, but the
// / application may prefer to display it as "January 1st 1970, 01h00" in
// / the Europe/Paris timezone (which is the same physical point in time).
// /
// / One consequence is that timestamp values with a non-empty timezone
// / can be compared and ordered directly, since they all share the same
// / well-known point of reference (the Unix epoch).
// /
// / Timestamps with an unset / empty timezone
// / -----------------------------------------
// /
// / If a Timestamp column has no timezone value, its epoch is
// / 1970-01-01 00:00:00 (January 1st 1970, midnight) in an *unknown* timezone.
// /
// / Therefore, timestamp values without a timezone cannot be meaningfully
// / interpreted as physical points in time, but only as calendar / clock
// / indications ("wall clock time") in an unspecified timezone.
// /
// / For example, the timestamp value 0 with an empty timezone string
// / corresponds to "January 1st 1970, 00h00" in an unknown timezone: there
// / is not enough information to interpret it as a well-defined physical
// / point in time.
// /
// / One consequence is that timestamp values without a timezone cannot
// / be reliably compared or ordered, since they may have different points of
// / reference. In particular, it is *not* possible to interpret an unset
// / or empty timezone as the same as "UTC".
// /
// / Conversion between timezones
// / ----------------------------
// /
// / If a Timestamp column has a non-empty timezone, changing the timezone
// / to a different non-empty value is a metadata-only operation:
// / the timestamp values need not change as their point of reference remains
// / the same (the Unix epoch).
// /
// / However, if a Timestamp column has no timezone value, changing it to a
// / non-empty value requires to think about the desired semantics.
// / One possibility is to assume that the original timestamp values are
// / relative to the epoch of the timezone being set; timestamp values should
// / then adjusted to the Unix epoch (for example, changing the timezone from
// / empty to "Europe/Paris" would require converting the timestamp values
// / from "Europe/Paris" to "UTC", which seems counter-intuitive but is
// / nevertheless correct).
// /
// / Guidelines for encoding data from external libraries
// / ----------------------------------------------------
// /
// / Date & time libraries often have multiple different data types for temporal
// / data. In order to ease interoperability between different implementations the
// / Arrow project has some recommendations for encoding these types into a Timestamp
// / column.
// /
// / An "instant" represents a physical point in time that has no relevant timezone
// / (for example, astronomical data). To encode an instant, use a Timestamp with
// / the timezone string set to "UTC", and make sure the Timestamp values
// / are relative to the UTC epoch (January 1st 1970, midnight).
// /
// / A "zoned date-time" represents a physical point in time annotated with an
// / informative timezone (for example, the timezone in which the data was
// / recorded). To encode a zoned date-time, use a Timestamp with the timezone
// / string set to the name of the timezone, and make sure the Timestamp values
// / are relative to the UTC epoch (January 1st 1970, midnight).
// /
// / (There is some ambiguity between an instant and a zoned date-time with the
// / UTC timezone. Both of these are stored the same in Arrow. Typically,
// / this distinction does not matter. If it does, then an application should
// / use custom metadata or an extension type to distinguish between the two cases.)
// /
// / An "offset date-time" represents a physical point in time combined with an
// / explicit offset from UTC. To encode an offset date-time, use a Timestamp
// / with the timezone string set to the numeric timezone offset string
// / (e.g. "+03:00"), and make sure the Timestamp values are relative to
// / the UTC epoch (January 1st 1970, midnight).
// /
// / A "naive date-time" (also called "local date-time" in some libraries)
// / represents a wall clock time combined with a calendar date, but with
// / no indication of how to map this information to a physical point in time.
// / Naive date-times must be handled with care because of this missing
// / information, and also because daylight saving time (DST) may make
// / some values ambiguous or nonexistent. A naive date-time may be
// / stored as a struct with Date and Time fields. However, it may also be
// / encoded into a Timestamp column with an empty timezone. The timestamp
// / values should be computed "as if" the timezone of the date-time values
// / was UTC; for example, the naive date-time "January 1st 1970, 00h00" would
// / be encoded as timestamp value 0.
type Timestamp struct {
_tab flatbuffers.Table
}
func GetRootAsTimestamp(buf []byte, offset flatbuffers.UOffsetT) *Timestamp {
n := flatbuffers.GetUOffsetT(buf[offset:])
x := &Timestamp{}
x.Init(buf, n+offset)
return x
}
func (rcv *Timestamp) Init(buf []byte, i flatbuffers.UOffsetT) {
rcv._tab.Bytes = buf
rcv._tab.Pos = i
}
func (rcv *Timestamp) Table() flatbuffers.Table {
return rcv._tab
}
func (rcv *Timestamp) Unit() TimeUnit {
o := flatbuffers.UOffsetT(rcv._tab.Offset(4))
if o != 0 {
return TimeUnit(rcv._tab.GetInt16(o + rcv._tab.Pos))
}
return 0
}
func (rcv *Timestamp) MutateUnit(n TimeUnit) bool {
return rcv._tab.MutateInt16Slot(4, int16(n))
}
// / The timezone is an optional string indicating the name of a timezone,
// / one of:
// /
// / * As used in the Olson timezone database (the "tz database" or
// / "tzdata"), such as "America/New_York".
// / * An absolute timezone offset of the form "+XX:XX" or "-XX:XX",
// / such as "+07:30".
// /
// / Whether a timezone string is present indicates different semantics about
// / the data (see above).
func (rcv *Timestamp) Timezone() []byte {
o := flatbuffers.UOffsetT(rcv._tab.Offset(6))
if o != 0 {
return rcv._tab.ByteVector(o + rcv._tab.Pos)
}
return nil
}
// / The timezone is an optional string indicating the name of a timezone,
// / one of:
// /
// / * As used in the Olson timezone database (the "tz database" or
// / "tzdata"), such as "America/New_York".
// / * An absolute timezone offset of the form "+XX:XX" or "-XX:XX",
// / such as "+07:30".
// /
// / Whether a timezone string is present indicates different semantics about
// / the data (see above).
func TimestampStart(builder *flatbuffers.Builder) {
builder.StartObject(2)
}
func TimestampAddUnit(builder *flatbuffers.Builder, unit TimeUnit) {
builder.PrependInt16Slot(0, int16(unit), 0)
}
func TimestampAddTimezone(builder *flatbuffers.Builder, timezone flatbuffers.UOffsetT) {
builder.PrependUOffsetTSlot(1, flatbuffers.UOffsetT(timezone), 0)
}
func TimestampEnd(builder *flatbuffers.Builder) flatbuffers.UOffsetT {
return builder.EndObject()
}
|