1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
// Code generated by tensor/numeric.gen.go.tmpl. DO NOT EDIT.
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tensor
import (
"github.com/apache/arrow-go/v18/arrow"
)
// Int8 is an n-dim array of int8s.
type Int8 struct {
tensorBase
values []int8
}
// NewInt8 returns a new n-dimensional array of int8s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewInt8(data arrow.ArrayData, shape, strides []int64, names []string) *Int8 {
tsr := &Int8{tensorBase: *newTensor(arrow.PrimitiveTypes.Int8, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Int8Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Int8) Value(i []int64) int8 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Int8) Int8Values() []int8 { return tsr.values }
// Int16 is an n-dim array of int16s.
type Int16 struct {
tensorBase
values []int16
}
// NewInt16 returns a new n-dimensional array of int16s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewInt16(data arrow.ArrayData, shape, strides []int64, names []string) *Int16 {
tsr := &Int16{tensorBase: *newTensor(arrow.PrimitiveTypes.Int16, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Int16Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Int16) Value(i []int64) int16 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Int16) Int16Values() []int16 { return tsr.values }
// Int32 is an n-dim array of int32s.
type Int32 struct {
tensorBase
values []int32
}
// NewInt32 returns a new n-dimensional array of int32s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewInt32(data arrow.ArrayData, shape, strides []int64, names []string) *Int32 {
tsr := &Int32{tensorBase: *newTensor(arrow.PrimitiveTypes.Int32, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Int32Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Int32) Value(i []int64) int32 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Int32) Int32Values() []int32 { return tsr.values }
// Int64 is an n-dim array of int64s.
type Int64 struct {
tensorBase
values []int64
}
// NewInt64 returns a new n-dimensional array of int64s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewInt64(data arrow.ArrayData, shape, strides []int64, names []string) *Int64 {
tsr := &Int64{tensorBase: *newTensor(arrow.PrimitiveTypes.Int64, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Int64Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Int64) Value(i []int64) int64 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Int64) Int64Values() []int64 { return tsr.values }
// Uint8 is an n-dim array of uint8s.
type Uint8 struct {
tensorBase
values []uint8
}
// NewUint8 returns a new n-dimensional array of uint8s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewUint8(data arrow.ArrayData, shape, strides []int64, names []string) *Uint8 {
tsr := &Uint8{tensorBase: *newTensor(arrow.PrimitiveTypes.Uint8, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Uint8Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Uint8) Value(i []int64) uint8 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Uint8) Uint8Values() []uint8 { return tsr.values }
// Uint16 is an n-dim array of uint16s.
type Uint16 struct {
tensorBase
values []uint16
}
// NewUint16 returns a new n-dimensional array of uint16s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewUint16(data arrow.ArrayData, shape, strides []int64, names []string) *Uint16 {
tsr := &Uint16{tensorBase: *newTensor(arrow.PrimitiveTypes.Uint16, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Uint16Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Uint16) Value(i []int64) uint16 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Uint16) Uint16Values() []uint16 { return tsr.values }
// Uint32 is an n-dim array of uint32s.
type Uint32 struct {
tensorBase
values []uint32
}
// NewUint32 returns a new n-dimensional array of uint32s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewUint32(data arrow.ArrayData, shape, strides []int64, names []string) *Uint32 {
tsr := &Uint32{tensorBase: *newTensor(arrow.PrimitiveTypes.Uint32, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Uint32Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Uint32) Value(i []int64) uint32 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Uint32) Uint32Values() []uint32 { return tsr.values }
// Uint64 is an n-dim array of uint64s.
type Uint64 struct {
tensorBase
values []uint64
}
// NewUint64 returns a new n-dimensional array of uint64s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewUint64(data arrow.ArrayData, shape, strides []int64, names []string) *Uint64 {
tsr := &Uint64{tensorBase: *newTensor(arrow.PrimitiveTypes.Uint64, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Uint64Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Uint64) Value(i []int64) uint64 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Uint64) Uint64Values() []uint64 { return tsr.values }
// Float32 is an n-dim array of float32s.
type Float32 struct {
tensorBase
values []float32
}
// NewFloat32 returns a new n-dimensional array of float32s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewFloat32(data arrow.ArrayData, shape, strides []int64, names []string) *Float32 {
tsr := &Float32{tensorBase: *newTensor(arrow.PrimitiveTypes.Float32, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Float32Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Float32) Value(i []int64) float32 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Float32) Float32Values() []float32 { return tsr.values }
// Float64 is an n-dim array of float64s.
type Float64 struct {
tensorBase
values []float64
}
// NewFloat64 returns a new n-dimensional array of float64s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewFloat64(data arrow.ArrayData, shape, strides []int64, names []string) *Float64 {
tsr := &Float64{tensorBase: *newTensor(arrow.PrimitiveTypes.Float64, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Float64Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Float64) Value(i []int64) float64 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Float64) Float64Values() []float64 { return tsr.values }
// Date32 is an n-dim array of date32s.
type Date32 struct {
tensorBase
values []arrow.Date32
}
// NewDate32 returns a new n-dimensional array of date32s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewDate32(data arrow.ArrayData, shape, strides []int64, names []string) *Date32 {
tsr := &Date32{tensorBase: *newTensor(arrow.PrimitiveTypes.Date32, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Date32Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Date32) Value(i []int64) arrow.Date32 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Date32) Date32Values() []arrow.Date32 { return tsr.values }
// Date64 is an n-dim array of date64s.
type Date64 struct {
tensorBase
values []arrow.Date64
}
// NewDate64 returns a new n-dimensional array of date64s.
// If strides is nil, row-major strides will be inferred.
// If names is nil, a slice of empty strings will be created.
func NewDate64(data arrow.ArrayData, shape, strides []int64, names []string) *Date64 {
tsr := &Date64{tensorBase: *newTensor(arrow.PrimitiveTypes.Date64, data, shape, strides, names)}
vals := tsr.data.Buffers()[1]
if vals != nil {
tsr.values = arrow.Date64Traits.CastFromBytes(vals.Bytes())
beg := tsr.data.Offset()
end := beg + tsr.data.Len()
tsr.values = tsr.values[beg:end]
}
return tsr
}
func (tsr *Date64) Value(i []int64) arrow.Date64 { j := int(tsr.offset(i)); return tsr.values[j] }
func (tsr *Date64) Date64Values() []arrow.Date64 { return tsr.values }
var (
_ Interface = (*Int8)(nil)
_ Interface = (*Int16)(nil)
_ Interface = (*Int32)(nil)
_ Interface = (*Int64)(nil)
_ Interface = (*Uint8)(nil)
_ Interface = (*Uint16)(nil)
_ Interface = (*Uint32)(nil)
_ Interface = (*Uint64)(nil)
_ Interface = (*Float32)(nil)
_ Interface = (*Float64)(nil)
_ Interface = (*Date32)(nil)
_ Interface = (*Date64)(nil)
)
|