1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bitutils
import (
"math"
"math/bits"
"unsafe"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/internal/utils"
)
func loadWord(byt []byte) uint64 {
return utils.ToLEUint64(*(*uint64)(unsafe.Pointer(&byt[0])))
}
func shiftWord(current, next uint64, shift int64) uint64 {
if shift == 0 {
return current
}
return (current >> shift) | (next << (64 - shift))
}
// BitBlockCount is returned by the various bit block counter utilities
// in order to return a length of bits and the population count of that
// slice of bits.
type BitBlockCount struct {
Len int16
Popcnt int16
}
// NoneSet returns true if ALL the bits were 0 in this set, ie: Popcnt == 0
func (b BitBlockCount) NoneSet() bool {
return b.Popcnt == 0
}
// AllSet returns true if ALL the bits were 1 in this set, ie: Popcnt == Len
func (b BitBlockCount) AllSet() bool {
return b.Len == b.Popcnt
}
// BitBlockCounter is a utility for grabbing chunks of a bitmap at a time and efficiently
// counting the number of bits which are 1.
type BitBlockCounter struct {
bitmap []byte
bitsRemaining int64
bitOffset int8
}
const (
wordBits int64 = 64
fourWordsBits int64 = wordBits * 4
)
// NewBitBlockCounter returns a BitBlockCounter for the passed bitmap starting at startOffset
// of length nbits.
func NewBitBlockCounter(bitmap []byte, startOffset, nbits int64) *BitBlockCounter {
return &BitBlockCounter{
bitmap: bitmap[startOffset/8:],
bitsRemaining: nbits,
bitOffset: int8(startOffset % 8),
}
}
// getBlockSlow is for returning a block of the requested size when there aren't
// enough bits remaining to do a full word computation.
func (b *BitBlockCounter) getBlockSlow(blockSize int64) BitBlockCount {
runlen := int16(utils.Min(b.bitsRemaining, blockSize))
popcnt := int16(bitutil.CountSetBits(b.bitmap, int(b.bitOffset), int(runlen)))
b.bitsRemaining -= int64(runlen)
b.bitmap = b.bitmap[runlen/8:]
return BitBlockCount{runlen, popcnt}
}
// NextFourWords returns the next run of available bits, usually 256. The
// returned pair contains the size of run and the number of true values.
// The last block will have a length less than 256 if the bitmap length
// is not a multiple of 256, and will return 0-length blocks in subsequent
// invocations.
func (b *BitBlockCounter) NextFourWords() BitBlockCount {
if b.bitsRemaining == 0 {
return BitBlockCount{0, 0}
}
totalPopcnt := 0
if b.bitOffset == 0 {
// if we're aligned at 0 bitoffset, then we can easily just jump from
// word to word nice and easy.
if b.bitsRemaining < fourWordsBits {
return b.getBlockSlow(fourWordsBits)
}
totalPopcnt += bits.OnesCount64(loadWord(b.bitmap))
totalPopcnt += bits.OnesCount64(loadWord(b.bitmap[8:]))
totalPopcnt += bits.OnesCount64(loadWord(b.bitmap[16:]))
totalPopcnt += bits.OnesCount64(loadWord(b.bitmap[24:]))
} else {
// When the offset is > 0, we need there to be a word beyond the last
// aligned word in the bitmap for the bit shifting logic.
if b.bitsRemaining < 5*fourWordsBits-int64(b.bitOffset) {
return b.getBlockSlow(fourWordsBits)
}
current := loadWord(b.bitmap)
next := loadWord(b.bitmap[8:])
totalPopcnt += bits.OnesCount64(shiftWord(current, next, int64(b.bitOffset)))
current = next
next = loadWord(b.bitmap[16:])
totalPopcnt += bits.OnesCount64(shiftWord(current, next, int64(b.bitOffset)))
current = next
next = loadWord(b.bitmap[24:])
totalPopcnt += bits.OnesCount64(shiftWord(current, next, int64(b.bitOffset)))
current = next
next = loadWord(b.bitmap[32:])
totalPopcnt += bits.OnesCount64(shiftWord(current, next, int64(b.bitOffset)))
}
b.bitmap = b.bitmap[bitutil.BytesForBits(fourWordsBits):]
b.bitsRemaining -= fourWordsBits
return BitBlockCount{256, int16(totalPopcnt)}
}
// NextWord returns the next run of available bits, usually 64. The returned
// pair contains the size of run and the number of true values. The last
// block will have a length less than 64 if the bitmap length is not a
// multiple of 64, and will return 0-length blocks in subsequent
// invocations.
func (b *BitBlockCounter) NextWord() BitBlockCount {
if b.bitsRemaining == 0 {
return BitBlockCount{0, 0}
}
popcnt := 0
if b.bitOffset == 0 {
if b.bitsRemaining < wordBits {
return b.getBlockSlow(wordBits)
}
popcnt = bits.OnesCount64(loadWord(b.bitmap))
} else {
// When the offset is > 0, we need there to be a word beyond the last
// aligned word in the bitmap for the bit shifting logic.
if b.bitsRemaining < (2*wordBits - int64(b.bitOffset)) {
return b.getBlockSlow(wordBits)
}
popcnt = bits.OnesCount64(shiftWord(loadWord(b.bitmap), loadWord(b.bitmap[8:]), int64(b.bitOffset)))
}
b.bitmap = b.bitmap[wordBits/8:]
b.bitsRemaining -= wordBits
return BitBlockCount{64, int16(popcnt)}
}
// OptionalBitBlockCounter is a useful counter to iterate through a possibly
// nonexistent validity bitmap to allow us to write one code path for both
// the with-nulls and no-nulls cases without giving up a lot of performance.
type OptionalBitBlockCounter struct {
hasBitmap bool
pos int64
len int64
counter *BitBlockCounter
}
// NewOptionalBitBlockCounter constructs and returns a new bit block counter that
// can properly handle the case when a bitmap is null, if it is guaranteed that the
// the bitmap is not nil, then prefer NewBitBlockCounter here.
func NewOptionalBitBlockCounter(bitmap []byte, offset, length int64) *OptionalBitBlockCounter {
var counter *BitBlockCounter
if bitmap != nil {
counter = NewBitBlockCounter(bitmap, offset, length)
}
return &OptionalBitBlockCounter{
hasBitmap: bitmap != nil,
pos: 0,
len: length,
counter: counter,
}
}
// NextBlock returns block count for next word when the bitmap is available otherwise
// return a block with length up to INT16_MAX when there is no validity
// bitmap (so all the referenced values are not null).
func (obc *OptionalBitBlockCounter) NextBlock() BitBlockCount {
const maxBlockSize = math.MaxInt16
if obc.hasBitmap {
block := obc.counter.NextWord()
obc.pos += int64(block.Len)
return block
}
blockSize := int16(utils.Min(maxBlockSize, obc.len-obc.pos))
obc.pos += int64(blockSize)
// all values are non-null
return BitBlockCount{blockSize, blockSize}
}
// NextWord is like NextBlock, but returns a word-sized block even when there is no
// validity bitmap
func (obc *OptionalBitBlockCounter) NextWord() BitBlockCount {
const wordsize = 64
if obc.hasBitmap {
block := obc.counter.NextWord()
obc.pos += int64(block.Len)
return block
}
blockSize := int16(utils.Min(wordsize, obc.len-obc.pos))
obc.pos += int64(blockSize)
// all values are non-null
return BitBlockCount{blockSize, blockSize}
}
// VisitBitBlocks is a utility for easily iterating through the blocks of bits in a bitmap,
// calling the appropriate visitValid/visitInvalid function as we iterate through the bits.
// visitValid is called with the bitoffset of the valid bit. Don't use this inside a tight
// loop when performance is needed and instead prefer manually constructing these loops
// in that scenario.
func VisitBitBlocks(bitmap []byte, offset, length int64, visitValid func(pos int64), visitInvalid func()) {
counter := NewOptionalBitBlockCounter(bitmap, offset, length)
pos := int64(0)
for pos < length {
block := counter.NextBlock()
if block.AllSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
visitValid(pos)
}
} else if block.NoneSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
visitInvalid()
}
} else {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
if bitutil.BitIsSet(bitmap, int(offset+pos)) {
visitValid(pos)
} else {
visitInvalid()
}
}
}
}
}
// VisitBitBlocks is a utility for easily iterating through the blocks of bits in a bitmap,
// calling the appropriate visitValid/visitInvalid function as we iterate through the bits.
// visitValid is called with the bitoffset of the valid bit. Don't use this inside a tight
// loop when performance is needed and instead prefer manually constructing these loops
// in that scenario.
func VisitBitBlocksShort(bitmap []byte, offset, length int64, visitValid func(pos int64) error, visitInvalid func() error) error {
counter := NewOptionalBitBlockCounter(bitmap, offset, length)
pos := int64(0)
for pos < length {
block := counter.NextBlock()
if block.AllSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
if err := visitValid(pos); err != nil {
return err
}
}
} else if block.NoneSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
if err := visitInvalid(); err != nil {
return err
}
}
} else {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
if bitutil.BitIsSet(bitmap, int(offset+pos)) {
if err := visitValid(pos); err != nil {
return err
}
} else {
if err := visitInvalid(); err != nil {
return err
}
}
}
}
}
return nil
}
func VisitTwoBitBlocks(leftBitmap, rightBitmap []byte, leftOffset, rightOffset int64, len int64, visitValid func(pos int64), visitNull func()) {
if leftBitmap == nil || rightBitmap == nil {
// at most one is present
if leftBitmap == nil {
VisitBitBlocks(rightBitmap, rightOffset, len, visitValid, visitNull)
} else {
VisitBitBlocks(leftBitmap, leftOffset, len, visitValid, visitNull)
}
return
}
bitCounter := NewBinaryBitBlockCounter(leftBitmap, rightBitmap, leftOffset, rightOffset, len)
var pos int64
for pos < len {
block := bitCounter.NextAndWord()
if block.AllSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
visitValid(pos)
}
} else if block.NoneSet() {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
visitNull()
}
} else {
for i := 0; i < int(block.Len); i, pos = i+1, pos+1 {
if bitutil.BitIsSet(leftBitmap, int(leftOffset+pos)) && bitutil.BitIsSet(rightBitmap, int(rightOffset+pos)) {
visitValid(pos)
} else {
visitNull()
}
}
}
}
}
type bitOp struct {
bit func(bool, bool) bool
word func(uint64, uint64) uint64
}
var (
bitBlockAnd = bitOp{
bit: func(a, b bool) bool { return a && b },
word: func(a, b uint64) uint64 { return a & b },
}
bitBlockAndNot = bitOp{
bit: func(a, b bool) bool { return a && !b },
word: func(a, b uint64) uint64 { return a &^ b },
}
bitBlockOr = bitOp{
bit: func(a, b bool) bool { return a || b },
word: func(a, b uint64) uint64 { return a | b },
}
bitBlockOrNot = bitOp{
bit: func(a, b bool) bool { return a || !b },
word: func(a, b uint64) uint64 { return a | ^b },
}
)
// BinaryBitBlockCounter computes popcounts on the result of bitwise
// operations between two bitmaps, 64 bits at a time. A 64-bit word
// is loaded from each bitmap, then the popcount is computed on
// e.g. the bitwise-and of the two words
type BinaryBitBlockCounter struct {
left []byte
right []byte
bitsRemaining int64
leftOffset, rightOffset int64
bitsRequiredForWords int64
}
// NewBinaryBitBlockCounter constructs a binary bit block counter for
// computing the popcounts on the results of operations between
// the passed in bitmaps, with their respective offsets.
func NewBinaryBitBlockCounter(left, right []byte, leftOffset, rightOffset int64, length int64) *BinaryBitBlockCounter {
ret := &BinaryBitBlockCounter{
left: left[leftOffset/8:],
right: right[rightOffset/8:],
leftOffset: leftOffset % 8,
rightOffset: rightOffset % 8,
bitsRemaining: length,
}
leftBitsReq := int64(64)
if ret.leftOffset != 0 {
leftBitsReq = 64 + (64 - ret.leftOffset)
}
rightBitsReq := int64(64)
if ret.rightOffset != 0 {
rightBitsReq = 64 + (64 - ret.rightOffset)
}
if leftBitsReq > rightBitsReq {
ret.bitsRequiredForWords = leftBitsReq
} else {
ret.bitsRequiredForWords = rightBitsReq
}
return ret
}
// NextAndWord returns the popcount of the bitwise-and of the next run
// of available bits, up to 64. The returned pair contains the size of
// the run and the number of true values. the last block will have a
// length less than 64 if the bitmap length is not a multiple of 64,
// and will return 0-length blocks in subsequent invocations
func (b *BinaryBitBlockCounter) NextAndWord() BitBlockCount { return b.nextWord(bitBlockAnd) }
// NextAndNotWord is like NextAndWord but performs x &^ y on each run
func (b *BinaryBitBlockCounter) NextAndNotWord() BitBlockCount { return b.nextWord(bitBlockAndNot) }
// NextOrWord is like NextAndWord but performs x | y on each run
func (b *BinaryBitBlockCounter) NextOrWord() BitBlockCount { return b.nextWord(bitBlockOr) }
// NextOrWord is like NextAndWord but performs x | ^y on each run
func (b *BinaryBitBlockCounter) NextOrNotWord() BitBlockCount { return b.nextWord(bitBlockOrNot) }
func (b *BinaryBitBlockCounter) nextWord(op bitOp) BitBlockCount {
if b.bitsRemaining == 0 {
return BitBlockCount{}
}
// when offset is >0, we need there to be a word beyond the last
// aligned word in the bitmap for the bit shifting logic
if b.bitsRemaining < b.bitsRequiredForWords {
runLength := int16(b.bitsRemaining)
if runLength > int16(wordBits) {
runLength = int16(wordBits)
}
var popcount int16
for i := int16(0); i < runLength; i++ {
if op.bit(bitutil.BitIsSet(b.left, int(b.leftOffset)+int(i)),
bitutil.BitIsSet(b.right, int(b.rightOffset)+int(i))) {
popcount++
}
}
// this code path should trigger _at most_ 2 times. in the "two times"
// case, the first time the run length will be a multiple of 8.
b.left = b.left[runLength/8:]
b.right = b.right[runLength/8:]
b.bitsRemaining -= int64(runLength)
return BitBlockCount{Len: runLength, Popcnt: popcount}
}
var popcount int
if b.leftOffset == 0 && b.rightOffset == 0 {
popcount = bits.OnesCount64(op.word(loadWord(b.left), loadWord(b.right)))
} else {
leftWord := shiftWord(loadWord(b.left), loadWord(b.left[8:]), b.leftOffset)
rightWord := shiftWord(loadWord(b.right), loadWord(b.right[8:]), b.rightOffset)
popcount = bits.OnesCount64(op.word(leftWord, rightWord))
}
b.left = b.left[wordBits/8:]
b.right = b.right[wordBits/8:]
b.bitsRemaining -= wordBits
return BitBlockCount{Len: int16(wordBits), Popcnt: int16(popcount)}
}
|