1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package file
import (
"fmt"
"github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/parquet"
"github.com/apache/arrow-go/v18/parquet/metadata"
"github.com/apache/arrow-go/v18/parquet/internal/encoding"
format "github.com/apache/arrow-go/v18/parquet/internal/gen-go/parquet"
)
{{range .In}}
// {{.Name}}ColumnChunkWriter is the typed interface for writing columns to a parquet
// file for {{.Name}} columns.
type {{.Name}}ColumnChunkWriter struct {
columnWriter
}
// New{{.Name}}ColumnChunkWriter constructs a new column writer using the given metadata chunk builder
// provided Pager, and desired encoding and properties.
//
// This will likely not be often called directly by consumers but rather used internally.
//
// ColumnChunkWriters should be acquired by using fileWriter and RowGroupWriter objects
func New{{.Name}}ColumnChunkWriter(meta *metadata.ColumnChunkMetaDataBuilder, pager PageWriter, useDict bool, enc parquet.Encoding, props *parquet.WriterProperties) *{{.Name}}ColumnChunkWriter {
{{- if eq .Name "Boolean"}}
if useDict {
panic("cannot use dictionary for boolean writer")
}
{{- end}}
ret := &{{.Name}}ColumnChunkWriter{columnWriter: newColumnWriterBase(meta, pager, useDict, enc, props)}
ret.currentEncoder = encoding.{{.Name}}EncoderTraits.Encoder(format.Encoding(enc), useDict, meta.Descr(), props.Allocator())
return ret
}
// WriteBatch writes a batch of repetition levels, definition levels, and values to the
// column.
// `def_levels` (resp. `rep_levels`) can be null if the column's max definition level
// (resp. max repetition level) is 0.
// If not null, each of `def_levels` and `rep_levels` must have at least
// `len(values)`.
//
// The number of physical values written (taken from `values`) is returned.
// It can be smaller than `len(values)` is there are some undefined values.
//
// When using DataPageV2 to write a repeated column rows cannot cross data
// page boundaries. To ensure this the writer ensures that every batch of
// w.props.BatchSize begins and ends on a row boundary. As a consequence,
// the first value to WriteBatch must always be the beginning of a row if
// repLevels is not nil (repLevels[0] should always be 0) and using DataPageV2.
func (w *{{.Name}}ColumnChunkWriter) WriteBatch(values []{{.name}}, defLevels, repLevels []int16) (valueOffset int64, err error) {
defer func() {
if r := recover(); r != nil {
err = utils.FormatRecoveredError("unknown error type", r)
}
}()
// We check for DataPage limits only after we have inserted the values. If a user
// writes a large number of values, the DataPage size can be much above the limit.
// The purpose of this chunking is to bound this. Even if a user writes large number
// of values, the chunking will ensure the AddDataPage() is called at a reasonable
// pagesize limit
var n int64
switch {
case defLevels != nil:
n = int64(len(defLevels))
case values != nil:
n = int64(len(values))
}
w.doBatches(n, repLevels, func(offset, batch int64) {
var vals []{{.name}}
toWrite := w.writeLevels(batch, levelSliceOrNil(defLevels, offset, batch), levelSliceOrNil(repLevels, offset, batch))
if values != nil {
vals = values[valueOffset:valueOffset+toWrite]
}
w.writeValues(vals, batch - toWrite)
if err := w.commitWriteAndCheckPageLimit(batch, toWrite); err != nil {
panic(err)
}
valueOffset += toWrite
w.checkDictionarySizeLimit()
})
return
}
// WriteBatchSpaced writes a batch of repetition levels, definition levels, and values to the
// column.
//
// In comparison to WriteBatch the length of repetition and definition levels
// is the same as of the number of values read for max_definition_level == 1.
// In the case of max_definition_level > 1, the repetition and definition
// levels are larger than the values but the values include the null entries
// with definition_level == (max_definition_level - 1). Thus we have to differentiate
// in the parameters of this function if the input has the length of num_values or the
// _number of rows in the lowest nesting level_.
//
// In the case that the most inner node in the Parquet is required, the _number of rows
// in the lowest nesting level_ is equal to the number of non-null values. If the
// inner-most schema node is optional, the _number of rows in the lowest nesting level_
// also includes all values with definition_level == (max_definition_level - 1).
func (w *{{.Name}}ColumnChunkWriter) WriteBatchSpaced(values []{{.name}}, defLevels, repLevels []int16, validBits []byte, validBitsOffset int64) {
valueOffset := int64(0)
length := len(defLevels)
if defLevels == nil {
length = len(values)
}
doBatches(int64(length), w.props.WriteBatchSize(), func(offset, batch int64) {
var vals []{{.name}}
info := w.maybeCalculateValidityBits(levelSliceOrNil(defLevels, offset, batch), batch)
w.writeLevelsSpaced(batch, levelSliceOrNil(defLevels, offset, batch), levelSliceOrNil(repLevels, offset, batch))
if values != nil {
vals = values[valueOffset:valueOffset+info.numSpaced()]
}
if w.bitsBuffer != nil {
w.writeValuesSpaced(vals, info.batchNum, batch, w.bitsBuffer.Bytes(), 0)
} else {
w.writeValuesSpaced(vals, info.batchNum, batch, validBits, validBitsOffset+valueOffset)
}
w.commitWriteAndCheckPageLimit(batch, info.numSpaced())
valueOffset += info.numSpaced()
w.checkDictionarySizeLimit()
})
}
func (w *{{.Name}}ColumnChunkWriter) WriteDictIndices(indices arrow.Array, defLevels, repLevels []int16) (err error) {
defer func() {
if r := recover(); r != nil {
err = utils.FormatRecoveredError("unknown error type", r)
}
}()
valueOffset := int64(0)
length := len(defLevels)
if defLevels == nil {
length = indices.Len()
}
dictEncoder := w.currentEncoder.(encoding.DictEncoder)
doBatches(int64(length), w.props.WriteBatchSize(), func(offset, batch int64) {
info := w.maybeCalculateValidityBits(levelSliceOrNil(defLevels, offset, batch), batch)
w.writeLevelsSpaced(batch, levelSliceOrNil(defLevels, offset, batch), levelSliceOrNil(repLevels, offset, batch))
writeableIndices := array.NewSlice(indices, valueOffset, valueOffset+info.numSpaced())
defer writeableIndices.Release()
writeableIndices = w.maybeReplaceValidity(writeableIndices, info.nullCount)
defer writeableIndices.Release()
if err := dictEncoder.PutIndices(writeableIndices); err != nil {
panic(err) // caught above
}
if err := w.commitWriteAndCheckPageLimit(batch, info.batchNum); err != nil {
panic(err)
}
valueOffset += info.numSpaced()
})
return
}
func (w *{{.Name}}ColumnChunkWriter) writeValues(values []{{.name}}, numNulls int64) {
w.currentEncoder.(encoding.{{.Name}}Encoder).Put(values)
if w.pageStatistics != nil {
{{- if ne .Name "FixedLenByteArray"}}
w.pageStatistics.(*metadata.{{.Name}}Statistics).Update(values, numNulls)
{{- else}}
if w.Descr().LogicalType().Equals(schema.Float16LogicalType{}) {
w.pageStatistics.(*metadata.Float16Statistics).Update(values, numNulls)
} else {
w.pageStatistics.(*metadata.{{.Name}}Statistics).Update(values, numNulls)
}
{{- end}}
}
}
func (w *{{.Name}}ColumnChunkWriter) writeValuesSpaced(spacedValues []{{.name}}, numRead, numValues int64, validBits []byte, validBitsOffset int64) {
if len(spacedValues) != int(numRead) {
w.currentEncoder.(encoding.{{.Name}}Encoder).PutSpaced(spacedValues, validBits, validBitsOffset)
} else {
w.currentEncoder.(encoding.{{.Name}}Encoder).Put(spacedValues)
}
if w.pageStatistics != nil {
nulls := numValues - numRead
{{- if ne .Name "FixedLenByteArray"}}
w.pageStatistics.(*metadata.{{.Name}}Statistics).UpdateSpaced(spacedValues, validBits, validBitsOffset, nulls)
{{- else}}
if w.Descr().LogicalType().Equals(schema.Float16LogicalType{}) {
w.pageStatistics.(*metadata.Float16Statistics).UpdateSpaced(spacedValues, validBits, validBitsOffset, nulls)
} else {
w.pageStatistics.(*metadata.{{.Name}}Statistics).UpdateSpaced(spacedValues, validBits, validBitsOffset, nulls)
}
{{- end}}
}
}
func (w *{{.Name}}ColumnChunkWriter) checkDictionarySizeLimit() {
if !w.hasDict || w.fallbackToNonDict {
return
}
if w.currentEncoder.(encoding.DictEncoder).DictEncodedSize() >= int(w.props.DictionaryPageSizeLimit()) {
w.FallbackToPlain()
}
}
func (w *{{.Name}}ColumnChunkWriter) FallbackToPlain() {
if w.currentEncoder.Encoding() == parquet.Encodings.PlainDict {
w.WriteDictionaryPage()
w.FlushBufferedDataPages()
w.fallbackToNonDict = true
w.currentEncoder.Release()
w.currentEncoder = encoding.{{.Name}}EncoderTraits.Encoder(format.Encoding(parquet.Encodings.Plain), false, w.descr, w.mem)
w.encoding = parquet.Encodings.Plain
}
}
{{end}}
// NewColumnChunkWriter constructs a column writer of the appropriate type by using the metadata builder
// and writer properties to determine the correct type of column writer to construct and whether
// or not to use dictionary encoding.
func NewColumnChunkWriter(meta *metadata.ColumnChunkMetaDataBuilder, pager PageWriter, props *parquet.WriterProperties) ColumnChunkWriter {
descr := meta.Descr()
useDict := props.DictionaryEnabledFor(descr.Path()) && descr.PhysicalType() != parquet.Types.Boolean && descr.PhysicalType() != parquet.Types.Int96
enc := props.EncodingFor(descr.Path())
if useDict {
enc = props.DictionaryIndexEncoding()
}
switch descr.PhysicalType() {
{{- range .In}}
case parquet.Types.{{if .physical}}{{.physical}}{{else}}{{.Name}}{{end}}:
return New{{.Name}}ColumnChunkWriter(meta, pager, useDict, enc, props)
{{- end}}
default:
panic("unimplemented")
}
}
|