1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package encoding
import (
"bytes"
"errors"
"fmt"
"math"
"math/bits"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/memory"
shared_utils "github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/parquet"
"github.com/apache/arrow-go/v18/parquet/internal/utils"
)
// see the deltaBitPack encoder for a description of the encoding format that is
// used for delta-bitpacking.
type deltaBitPackDecoder[T int32 | int64] struct {
decoder
mem memory.Allocator
usedFirst bool
bitdecoder *utils.BitReader
blockSize uint64
currentBlockVals uint32
miniBlocksPerBlock uint64
valsPerMini uint32
currentMiniBlockVals uint32
minDelta int64
miniBlockIdx uint64
deltaBitWidths *memory.Buffer
deltaBitWidth byte
totalValues uint64
lastVal int64
miniBlockValues []T
}
// returns the number of bytes read so far
func (d *deltaBitPackDecoder[T]) bytesRead() int64 {
return d.bitdecoder.CurOffset()
}
func (d *deltaBitPackDecoder[T]) Allocator() memory.Allocator { return d.mem }
// SetData sets the bytes and the expected number of values to decode
// into the decoder, updating the decoder and allowing it to be reused.
func (d *deltaBitPackDecoder[T]) SetData(nvalues int, data []byte) error {
// set our data into the underlying decoder for the type
if err := d.decoder.SetData(nvalues, data); err != nil {
return err
}
// create a bit reader for our decoder's values
d.bitdecoder = utils.NewBitReader(bytes.NewReader(d.data))
d.currentBlockVals = 0
d.currentMiniBlockVals = 0
if d.deltaBitWidths == nil {
d.deltaBitWidths = memory.NewResizableBuffer(d.mem)
}
var ok bool
d.blockSize, ok = d.bitdecoder.GetVlqInt()
if !ok {
return errors.New("parquet: eof exception")
}
if d.miniBlocksPerBlock, ok = d.bitdecoder.GetVlqInt(); !ok {
return errors.New("parquet: eof exception")
}
if d.miniBlocksPerBlock == 0 {
return errors.New("parquet: cannot have zero miniblock per block")
}
if d.totalValues, ok = d.bitdecoder.GetVlqInt(); !ok {
return errors.New("parquet: eof exception")
}
if d.lastVal, ok = d.bitdecoder.GetZigZagVlqInt(); !ok {
return errors.New("parquet: eof exception")
}
d.valsPerMini = uint32(d.blockSize / d.miniBlocksPerBlock)
d.usedFirst = false
return nil
}
// initialize a block to decode
func (d *deltaBitPackDecoder[T]) initBlock() error {
// first we grab the min delta value that we'll start from
var ok bool
if d.minDelta, ok = d.bitdecoder.GetZigZagVlqInt(); !ok {
return errors.New("parquet: eof exception")
}
// ensure we have enough space for our miniblocks to decode the widths
d.deltaBitWidths.Resize(int(d.miniBlocksPerBlock))
var err error
for i := uint64(0); i < d.miniBlocksPerBlock; i++ {
if d.deltaBitWidths.Bytes()[i], err = d.bitdecoder.ReadByte(); err != nil {
return err
}
}
d.miniBlockIdx = 0
d.deltaBitWidth = d.deltaBitWidths.Bytes()[0]
d.currentBlockVals = uint32(d.blockSize)
return nil
}
func (d *deltaBitPackDecoder[T]) unpackNextMini() error {
if d.miniBlockValues == nil {
d.miniBlockValues = make([]T, 0, int(d.valsPerMini))
} else {
d.miniBlockValues = d.miniBlockValues[:0]
}
d.deltaBitWidth = d.deltaBitWidths.Bytes()[int(d.miniBlockIdx)]
d.currentMiniBlockVals = d.valsPerMini
for j := 0; j < int(d.valsPerMini); j++ {
delta, ok := d.bitdecoder.GetValue(int(d.deltaBitWidth))
if !ok {
return errors.New("parquet: eof exception")
}
d.lastVal += int64(delta) + int64(d.minDelta)
d.miniBlockValues = append(d.miniBlockValues, T(d.lastVal))
}
d.miniBlockIdx++
return nil
}
func (d *deltaBitPackDecoder[T]) Discard(n int) (int, error) {
n = min(n, int(d.nvals))
if n == 0 {
return 0, nil
}
var (
err error
remaining = n
)
if !d.usedFirst {
d.usedFirst = true
remaining--
}
for remaining > 0 {
if d.currentBlockVals == 0 {
if err = d.initBlock(); err != nil {
return n - remaining, err
}
}
if d.currentMiniBlockVals == 0 {
if err = d.unpackNextMini(); err != nil {
return n - remaining, err
}
}
start := d.valsPerMini - d.currentMiniBlockVals
numToDiscard := len(d.miniBlockValues[start:])
if numToDiscard > remaining {
numToDiscard = remaining
}
d.currentBlockVals -= uint32(numToDiscard)
d.currentMiniBlockVals -= uint32(numToDiscard)
remaining -= numToDiscard
}
d.nvals -= n
return n, nil
}
// Decode retrieves min(remaining values, len(out)) values from the data and returns the number
// of values actually decoded and any errors encountered.
func (d *deltaBitPackDecoder[T]) Decode(out []T) (int, error) {
max := shared_utils.Min(len(out), int(d.nvals))
if max == 0 {
return 0, nil
}
out = out[:max]
if !d.usedFirst { // starting value to calculate deltas against
out[0] = T(d.lastVal)
out = out[1:]
d.usedFirst = true
}
var err error
for len(out) > 0 { // unpack mini blocks until we get all the values we need
if d.currentBlockVals == 0 {
err = d.initBlock()
if err != nil {
return 0, err
}
}
if d.currentMiniBlockVals == 0 {
err = d.unpackNextMini()
}
if err != nil {
return 0, err
}
// copy as many values from our mini block as we can into out
start := int(d.valsPerMini - d.currentMiniBlockVals)
numCopied := copy(out, d.miniBlockValues[start:])
out = out[numCopied:]
d.currentBlockVals -= uint32(numCopied)
d.currentMiniBlockVals -= uint32(numCopied)
}
d.nvals -= max
return max, nil
}
// DecodeSpaced is like Decode, but the result is spaced out appropriately based on the passed in bitmap
func (d *deltaBitPackDecoder[T]) DecodeSpaced(out []T, nullCount int, validBits []byte, validBitsOffset int64) (int, error) {
toread := len(out) - nullCount
values, err := d.Decode(out[:toread])
if err != nil {
return values, err
}
if values != toread {
return values, errors.New("parquet: number of values / definition levels read did not match")
}
return spacedExpand(out, nullCount, validBits, validBitsOffset), nil
}
// Type returns the underlying physical type this decoder works with
func (dec *deltaBitPackDecoder[T]) Type() parquet.Type {
switch v := any(dec).(type) {
case *deltaBitPackDecoder[int32]:
return parquet.Types.Int32
case *deltaBitPackDecoder[int64]:
return parquet.Types.Int64
default:
panic(fmt.Sprintf("deltaBitPackDecoder is not supported for type: %T", v))
}
}
// DeltaBitPackInt32Decoder decodes Int32 values which are packed using the Delta BitPacking algorithm.
type DeltaBitPackInt32Decoder = deltaBitPackDecoder[int32]
// DeltaBitPackInt64Decoder decodes Int64 values which are packed using the Delta BitPacking algorithm.
type DeltaBitPackInt64Decoder = deltaBitPackDecoder[int64]
const (
// block size must be a multiple of 128
defaultBlockSize = 128
defaultNumMiniBlocks = 4
// block size / number of mini blocks must result in a multiple of 32
defaultNumValuesPerMini = 32
// max size of the header for the delta blocks
maxHeaderWriterSize = 32
)
// deltaBitPackEncoder is an encoder for the DeltaBinary Packing format
// as per the parquet spec.
//
// Consists of a header followed by blocks of delta encoded values binary packed.
//
// Format
// [header] [block 1] [block 2] ... [block N]
//
// Header
// [block size] [number of mini blocks per block] [total value count] [first value]
//
// Block
// [min delta] [list of bitwidths of the miniblocks] [miniblocks...]
//
// Sets aside bytes at the start of the internal buffer where the header will be written,
// and only writes the header when FlushValues is called before returning it.
type deltaBitPackEncoder[T int32 | int64] struct {
encoder
bitWriter *utils.BitWriter
totalVals uint64
firstVal int64
currentVal int64
blockSize uint64
miniBlockSize uint64
numMiniBlocks uint64
deltas []int64
}
// flushBlock flushes out a finished block for writing to the underlying encoder
func (enc *deltaBitPackEncoder[T]) flushBlock() {
if len(enc.deltas) == 0 {
return
}
// determine the minimum delta value
minDelta := int64(math.MaxInt64)
for _, delta := range enc.deltas {
if delta < minDelta {
minDelta = delta
}
}
enc.bitWriter.WriteZigZagVlqInt(minDelta)
// reserve enough bytes to write out our miniblock deltas
offset, _ := enc.bitWriter.SkipBytes(int(enc.numMiniBlocks))
valuesToWrite := int64(len(enc.deltas))
for i := 0; i < int(enc.numMiniBlocks); i++ {
n := shared_utils.Min(int64(enc.miniBlockSize), valuesToWrite)
if n == 0 {
break
}
maxDelta := int64(math.MinInt64)
start := i * int(enc.miniBlockSize)
for _, val := range enc.deltas[start : start+int(n)] {
maxDelta = shared_utils.Max(maxDelta, val)
}
// compute bit width to store (max_delta - min_delta)
width := uint(bits.Len64(uint64(maxDelta - minDelta)))
// write out the bit width we used into the bytes we reserved earlier
enc.bitWriter.WriteAt([]byte{byte(width)}, int64(offset+i))
// write out our deltas
for _, val := range enc.deltas[start : start+int(n)] {
enc.bitWriter.WriteValue(uint64(val-minDelta), width)
}
valuesToWrite -= n
// pad the last block if n < miniBlockSize
for ; n < int64(enc.miniBlockSize); n++ {
enc.bitWriter.WriteValue(0, width)
}
}
enc.deltas = enc.deltas[:0]
}
// putInternal is the implementation for actually writing data which must be
// integral data as int, int8, int32, or int64.
func (enc *deltaBitPackEncoder[T]) Put(in []T) {
if len(in) == 0 {
return
}
idx := 0
if enc.totalVals == 0 {
enc.blockSize = defaultBlockSize
enc.numMiniBlocks = defaultNumMiniBlocks
enc.miniBlockSize = defaultNumValuesPerMini
enc.firstVal = int64(in[0])
enc.currentVal = enc.firstVal
idx = 1
enc.bitWriter = utils.NewBitWriter(enc.sink)
}
enc.totalVals += uint64(len(in))
for ; idx < len(in); idx++ {
val := int64(in[idx])
enc.deltas = append(enc.deltas, val-enc.currentVal)
enc.currentVal = val
if len(enc.deltas) == int(enc.blockSize) {
enc.flushBlock()
}
}
}
// FlushValues flushes any remaining data and returns the finished encoded buffer
// or returns nil and any error encountered during flushing.
func (enc *deltaBitPackEncoder[T]) FlushValues() (Buffer, error) {
if enc.bitWriter != nil {
// write any remaining values
enc.flushBlock()
enc.bitWriter.Flush(true)
} else {
enc.blockSize = defaultBlockSize
enc.numMiniBlocks = defaultNumMiniBlocks
enc.miniBlockSize = defaultNumValuesPerMini
}
buffer := make([]byte, maxHeaderWriterSize)
headerWriter := utils.NewBitWriter(utils.NewWriterAtBuffer(buffer))
headerWriter.WriteVlqInt(uint64(enc.blockSize))
headerWriter.WriteVlqInt(uint64(enc.numMiniBlocks))
headerWriter.WriteVlqInt(uint64(enc.totalVals))
headerWriter.WriteZigZagVlqInt(int64(enc.firstVal))
headerWriter.Flush(false)
buffer = buffer[:headerWriter.Written()]
enc.totalVals = 0
if enc.bitWriter != nil {
flushed := enc.sink.Finish()
defer flushed.Release()
buffer = append(buffer, flushed.Buf()[:enc.bitWriter.Written()]...)
}
return poolBuffer{memory.NewBufferBytes(buffer)}, nil
}
// EstimatedDataEncodedSize returns the current amount of data actually flushed out and written
func (enc *deltaBitPackEncoder[T]) EstimatedDataEncodedSize() int64 {
if enc.bitWriter == nil {
return 0
}
return int64(enc.bitWriter.Written())
}
// PutSpaced takes a slice of values along with a bitmap that describes the nulls and an offset into the bitmap
// in order to write spaced data to the encoder.
func (enc *deltaBitPackEncoder[T]) PutSpaced(in []T, validBits []byte, validBitsOffset int64) {
buffer := memory.NewResizableBuffer(enc.mem)
dt := arrow.GetDataType[T]().(arrow.FixedWidthDataType)
buffer.Reserve(dt.Bytes() * len(in))
defer buffer.Release()
data := arrow.GetData[T](buffer.Buf())
nvalid := spacedCompress(in, data, validBits, validBitsOffset)
enc.Put(data[:nvalid])
}
// Type returns the underlying physical type this encoder works with
func (dec *deltaBitPackEncoder[T]) Type() parquet.Type {
switch v := any(dec).(type) {
case *deltaBitPackEncoder[int32]:
return parquet.Types.Int32
case *deltaBitPackEncoder[int64]:
return parquet.Types.Int64
default:
panic(fmt.Sprintf("deltaBitPackEncoder is not supported for type: %T", v))
}
}
// DeltaBitPackInt32Encoder is an encoder for the delta bitpacking encoding for Int32 data.
type DeltaBitPackInt32Encoder = deltaBitPackEncoder[int32]
// DeltaBitPackInt64Encoder is an encoder for the delta bitpacking encoding for Int64 data.
type DeltaBitPackInt64Encoder = deltaBitPackEncoder[int64]
|