1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package encoding
import (
"fmt"
"math/bits"
"reflect"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/internal/bitutils"
"github.com/apache/arrow-go/v18/parquet"
format "github.com/apache/arrow-go/v18/parquet/internal/gen-go/parquet"
"github.com/apache/arrow-go/v18/parquet/internal/utils"
"github.com/apache/arrow-go/v18/parquet/schema"
)
//go:generate go run ../../../arrow/_tools/tmpl/main.go -i -data=physical_types.tmpldata plain_encoder_types.gen.go.tmpl typed_encoder.gen.go.tmpl
// EncoderTraits is an interface for the different types to make it more
// convenient to construct encoders for specific types.
type EncoderTraits interface {
Encoder(format.Encoding, bool, *schema.Column, memory.Allocator) TypedEncoder
}
// NewEncoder will return the appropriately typed encoder for the requested physical type
// and encoding.
//
// If mem is nil, memory.DefaultAllocator will be used.
func NewEncoder(t parquet.Type, e parquet.Encoding, useDict bool, descr *schema.Column, mem memory.Allocator) TypedEncoder {
traits := getEncodingTraits(t)
if traits == nil {
return nil
}
if mem == nil {
mem = memory.DefaultAllocator
}
return traits.Encoder(format.Encoding(e), useDict, descr, mem)
}
type encoder struct {
descr *schema.Column
encoding format.Encoding
typeLen int
mem memory.Allocator
sink *PooledBufferWriter
}
// newEncoderBase constructs a new base encoder for embedding on the typed encoders
// encapsulating the common functionality.
func newEncoderBase(e format.Encoding, descr *schema.Column, mem memory.Allocator) encoder {
typelen := -1
if descr != nil && descr.PhysicalType() == parquet.Types.FixedLenByteArray {
typelen = int(descr.TypeLength())
}
return encoder{
descr: descr,
encoding: e,
mem: mem,
typeLen: typelen,
sink: NewPooledBufferWriter(1024),
}
}
func (e *encoder) Release() {
poolbuf := e.sink.buf
memory.Set(poolbuf.Buf(), 0)
poolbuf.ResizeNoShrink(0)
bufferPool.Put(poolbuf)
e.sink = nil
}
// ReserveForWrite allocates n bytes so that the next n bytes written do not require new allocations.
func (e *encoder) ReserveForWrite(n int) { e.sink.Reserve(n) }
func (e *encoder) EstimatedDataEncodedSize() int64 { return int64(e.sink.Len()) }
func (e *encoder) Encoding() parquet.Encoding { return parquet.Encoding(e.encoding) }
func (e *encoder) Allocator() memory.Allocator { return e.mem }
func (e *encoder) append(data []byte) { e.sink.Write(data) }
// FlushValues flushes any unwritten data to the buffer and returns the finished encoded buffer of data.
// This also clears the encoder, ownership of the data belongs to whomever called FlushValues, Release
// should be called on the resulting Buffer when done.
func (e *encoder) FlushValues() (Buffer, error) { return e.sink.Finish(), nil }
// Bytes returns the current bytes that have been written to the encoder's buffer but doesn't transfer ownership.
func (e *encoder) Bytes() []byte { return e.sink.Bytes() }
// Reset drops the data currently in the encoder and resets for new use.
func (e *encoder) Reset() { e.sink.Reset(0) }
type dictEncoder struct {
encoder
dictEncodedSize int
idxBuffer *memory.Buffer
idxValues []int32
memo MemoTable
preservedDict arrow.Array
}
// newDictEncoderBase constructs and returns a dictionary encoder for the appropriate type using the passed
// in memo table for constructing the index.
func newDictEncoderBase(descr *schema.Column, memo MemoTable, mem memory.Allocator) dictEncoder {
return dictEncoder{
encoder: newEncoderBase(format.Encoding_PLAIN_DICTIONARY, descr, mem),
idxBuffer: memory.NewResizableBuffer(mem),
memo: memo,
}
}
// Reset drops all the currently encoded values from the index and indexes from the data to allow
// restarting the encoding process.
func (d *dictEncoder) Reset() {
d.encoder.Reset()
d.dictEncodedSize = 0
d.idxValues = d.idxValues[:0]
d.idxBuffer.ResizeNoShrink(0)
d.memo.Reset()
if d.preservedDict != nil {
d.preservedDict.Release()
d.preservedDict = nil
}
}
func (d *dictEncoder) Release() {
d.encoder.Release()
d.idxBuffer.Release()
if m, ok := d.memo.(BinaryMemoTable); ok {
m.Release()
} else {
d.memo.Reset()
}
if d.preservedDict != nil {
d.preservedDict.Release()
d.preservedDict = nil
}
}
func (d *dictEncoder) expandBuffer(newCap int) {
if cap(d.idxValues) >= newCap {
return
}
curLen := len(d.idxValues)
d.idxBuffer.ResizeNoShrink(arrow.Int32Traits.BytesRequired(bitutil.NextPowerOf2(newCap)))
d.idxValues = arrow.Int32Traits.CastFromBytes(d.idxBuffer.Buf())[: curLen : d.idxBuffer.Len()/arrow.Int32SizeBytes]
}
func (d *dictEncoder) PutIndices(data arrow.Array) error {
newValues := data.Len() - data.NullN()
curPos := len(d.idxValues)
newLen := newValues + curPos
d.expandBuffer(newLen)
d.idxValues = d.idxValues[:newLen:cap(d.idxValues)]
switch data.DataType().ID() {
case arrow.UINT8, arrow.INT8:
values := arrow.Uint8Traits.CastFromBytes(data.Data().Buffers()[1].Bytes())[data.Data().Offset():]
bitutils.VisitSetBitRunsNoErr(data.NullBitmapBytes(),
int64(data.Data().Offset()), int64(data.Len()),
func(pos, length int64) {
for i := int64(0); i < length; i++ {
d.idxValues[curPos] = int32(values[i+pos])
curPos++
}
})
case arrow.UINT16, arrow.INT16:
values := arrow.Uint16Traits.CastFromBytes(data.Data().Buffers()[1].Bytes())[data.Data().Offset():]
bitutils.VisitSetBitRunsNoErr(data.NullBitmapBytes(),
int64(data.Data().Offset()), int64(data.Len()),
func(pos, length int64) {
for i := int64(0); i < length; i++ {
d.idxValues[curPos] = int32(values[i+pos])
curPos++
}
})
case arrow.UINT32, arrow.INT32:
values := arrow.Uint32Traits.CastFromBytes(data.Data().Buffers()[1].Bytes())[data.Data().Offset():]
bitutils.VisitSetBitRunsNoErr(data.NullBitmapBytes(),
int64(data.Data().Offset()), int64(data.Len()),
func(pos, length int64) {
for i := int64(0); i < length; i++ {
d.idxValues[curPos] = int32(values[i+pos])
curPos++
}
})
case arrow.UINT64, arrow.INT64:
values := arrow.Uint64Traits.CastFromBytes(data.Data().Buffers()[1].Bytes())[data.Data().Offset():]
bitutils.VisitSetBitRunsNoErr(data.NullBitmapBytes(),
int64(data.Data().Offset()), int64(data.Len()),
func(pos, length int64) {
for i := int64(0); i < length; i++ {
d.idxValues[curPos] = int32(values[i+pos])
curPos++
}
})
default:
return fmt.Errorf("%w: passed non-integer array to PutIndices", arrow.ErrInvalid)
}
return nil
}
// append the passed index to the indexbuffer
func (d *dictEncoder) addIndex(idx int) {
curLen := len(d.idxValues)
d.expandBuffer(curLen + 1)
d.idxValues = append(d.idxValues, int32(idx))
}
// FlushValues dumps all the currently buffered indexes that would become the data page to a buffer and
// returns it or returns nil and any error encountered.
func (d *dictEncoder) FlushValues() (Buffer, error) {
buf := bufferPool.Get().(*memory.Buffer)
buf.Reserve(int(d.EstimatedDataEncodedSize()))
size, err := d.WriteIndices(buf.Buf())
if err != nil {
poolBuffer{buf}.Release()
return nil, err
}
buf.ResizeNoShrink(size)
return poolBuffer{buf}, nil
}
// EstimatedDataEncodedSize returns the maximum number of bytes needed to store the RLE encoded indexes, not including the
// dictionary index in the computation.
func (d *dictEncoder) EstimatedDataEncodedSize() int64 {
return 1 + int64(utils.MaxRLEBufferSize(d.BitWidth(), len(d.idxValues))+utils.MinRLEBufferSize(d.BitWidth()))
}
// NumEntries returns the number of entires in the dictionary index for this encoder.
func (d *dictEncoder) NumEntries() int {
return d.memo.Size()
}
// BitWidth returns the max bitwidth that would be necessary for encoding the index values currently
// in the dictionary based on the size of the dictionary index.
func (d *dictEncoder) BitWidth() int {
switch d.NumEntries() {
case 0:
return 0
case 1:
return 1
default:
return bits.Len32(uint32(d.NumEntries() - 1))
}
}
// WriteDict writes the dictionary index to the given byte slice.
func (d *dictEncoder) WriteDict(out []byte) {
d.memo.WriteOut(out)
}
// WriteIndices performs Run Length encoding on the indexes and the writes the encoded
// index value data to the provided byte slice, returning the number of bytes actually written.
// If any error is encountered, it will return -1 and the error.
func (d *dictEncoder) WriteIndices(out []byte) (int, error) {
out[0] = byte(d.BitWidth())
enc := utils.NewRleEncoder(utils.NewWriterAtBuffer(out[1:]), d.BitWidth())
for _, idx := range d.idxValues {
if err := enc.Put(uint64(idx)); err != nil {
return -1, err
}
}
nbytes := enc.Flush()
d.idxValues = d.idxValues[:0]
return nbytes + 1, nil
}
// Put adds a value to the dictionary data column, inserting the value if it
// didn't already exist in the dictionary.
func (d *dictEncoder) Put(v interface{}) {
memoIdx, found, err := d.memo.GetOrInsert(v)
if err != nil {
panic(err)
}
if !found {
d.dictEncodedSize += int(reflect.TypeOf(v).Size())
}
d.addIndex(memoIdx)
}
// DictEncodedSize returns the current size of the encoded dictionary
func (d *dictEncoder) DictEncodedSize() int {
return d.dictEncodedSize
}
func (d *dictEncoder) canPutDictionary(values arrow.Array) error {
switch {
case values.NullN() > 0:
return fmt.Errorf("%w: inserted dictionary cannot contain nulls",
arrow.ErrInvalid)
case d.NumEntries() > 0:
return fmt.Errorf("%w: can only call PutDictionary on an empty DictEncoder",
arrow.ErrInvalid)
}
return nil
}
func (d *dictEncoder) PreservedDictionary() arrow.Array { return d.preservedDict }
// spacedCompress is a helper function for encoders to remove the slots in the slices passed in according
// to the bitmap which are null into an output slice that is no longer spaced out with slots for nulls.
func spacedCompress(src, out interface{}, validBits []byte, validBitsOffset int64) int {
nvalid := 0
// for efficiency we use a type switch because the copy runs significantly faster when typed
// than calling reflect.Copy
switch s := src.(type) {
case []int32:
o := out.([]int32)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []int64:
o := out.([]int64)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []float32:
o := out.([]float32)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []float64:
o := out.([]float64)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []parquet.ByteArray:
o := out.([]parquet.ByteArray)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []parquet.FixedLenByteArray:
o := out.([]parquet.FixedLenByteArray)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
case []bool:
o := out.([]bool)
reader := bitutils.NewSetBitRunReader(validBits, validBitsOffset, int64(len(s)))
for {
run := reader.NextRun()
if run.Length == 0 {
break
}
copy(o[nvalid:], s[int(run.Pos):int(run.Pos+run.Length)])
nvalid += int(run.Length)
}
}
return nvalid
}
|