1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package encoding
import (
"github.com/apache/arrow-go/v18/parquet"
"github.com/apache/arrow-go/v18/parquet/schema"
format "github.com/apache/arrow-go/v18/parquet/internal/gen-go/parquet"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/parquet/internal/utils"
shared_utils "github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/internal/bitutils"
)
// fully typed encoder interfaces to enable writing against encoder/decoders
// without having to care about what encoding type is actually being used.
var (
{{range .In}}
{{.Name}}EncoderTraits {{.lower}}EncoderTraits
{{.Name}}DecoderTraits {{.lower}}DecoderTraits
{{- end}}
)
{{range .In}}
// {{.Name}}Encoder is the interface for all encoding types that implement encoding
// {{.name}} values.
type {{.Name}}Encoder interface {
TypedEncoder
Put([]{{.name}})
PutSpaced([]{{.name}}, []byte, int64)
}
// {{.Name}}Decoder is the interface for all encoding types that implement decoding
// {{.name}} values.
type {{.Name}}Decoder interface {
TypedDecoder
Decode([]{{.name}}) (int, error)
DecodeSpaced([]{{.name}}, int, []byte, int64) (int, error)
}
// the {{.lower}}EncoderTraits struct is used to make it easy to create encoders and decoders based on type
type {{.lower}}EncoderTraits struct{}
// Encoder returns an encoder for {{.lower}} type data, using the specified encoding type and whether or not
// it should be dictionary encoded.
{{- if or (eq .Name "Boolean") }}
// dictionary encoding does not exist for this type and Encoder will panic if useDict is true
{{- end }}
func ({{.lower}}EncoderTraits) Encoder(e format.Encoding, useDict bool, descr *schema.Column, mem memory.Allocator) TypedEncoder {
if useDict {
{{- if or (eq .Name "Boolean") }}
panic("parquet: no {{.name}} dictionary encoding")
{{- else}}
return &Dict{{.Name}}Encoder{newDictEncoderBase(descr, New{{if and (ne .Name "Int96") (ne .Name "ByteArray") (ne .Name "FixedLenByteArray")}}{{.Name}}Dictionary(){{else}}BinaryDictionary(mem){{end}}, mem)}
{{- end}}
}
switch e {
case format.Encoding_PLAIN:
return &Plain{{.Name}}Encoder{encoder: newEncoderBase(e, descr, mem)}
{{- if eq .Name "Boolean" }}
case format.Encoding_RLE:
return &RleBooleanEncoder{encoder: newEncoderBase(e, descr, mem)}
{{- end}}
{{- if or (eq .Name "Int32") (eq .Name "Int64")}}
case format.Encoding_DELTA_BINARY_PACKED:
return &DeltaBitPack{{.Name}}Encoder{
encoder: newEncoderBase(e, descr, mem),
}
{{- end}}
{{- if eq .Name "ByteArray"}}
case format.Encoding_DELTA_LENGTH_BYTE_ARRAY:
return &DeltaLengthByteArrayEncoder{
encoder: newEncoderBase(e, descr, mem),
lengthEncoder: &DeltaBitPackInt32Encoder{
encoder: newEncoderBase(e, descr, mem),
},
}
case format.Encoding_DELTA_BYTE_ARRAY:
return &DeltaByteArrayEncoder{
encoder: newEncoderBase(e, descr, mem),
}
{{- end}}
{{- if or (eq .Name "FixedLenByteArray") (eq .Name "Float32") (eq .Name "Float64") (eq .Name "Int32") (eq .Name "Int64")}}
case format.Encoding_BYTE_STREAM_SPLIT:
return &ByteStreamSplit{{.Name}}Encoder{Plain{{.Name}}Encoder: Plain{{.Name}}Encoder{encoder: newEncoderBase(e,descr,mem)}}
{{- end}}
default:
panic("unimplemented encoding type")
}
}
// {{.lower}}DecoderTraits is a helper struct for providing information regardless of the type
// and used as a generic way to create a Decoder or Dictionary Decoder for {{.lower}} values
type {{.lower}}DecoderTraits struct{}
// BytesRequired returns the number of bytes required to store n {{.lower}} values.
func ({{.lower}}DecoderTraits) BytesRequired(n int) int {
return {{.prefix}}.{{.Name}}Traits.BytesRequired(n)
}
// Decoder returns a decoder for {{.lower}} typed data of the requested encoding type if available
func ({{.lower}}DecoderTraits) Decoder(e parquet.Encoding, descr *schema.Column, useDict bool, mem memory.Allocator) TypedDecoder {
if useDict {
{{- if and (ne .Name "Boolean") }}
return &Dict{{.Name}}Decoder{dictDecoder{decoder: newDecoderBase(format.Encoding_RLE_DICTIONARY, descr), mem: mem}}
{{- else}}
panic("dictionary decoding unimplemented for {{.lower}}")
{{- end}}
}
switch e {
case parquet.Encodings.Plain:
return &Plain{{.Name}}Decoder{decoder: newDecoderBase(format.Encoding(e), descr)}
{{- if eq .Name "Boolean" }}
case parquet.Encodings.RLE:
return &RleBooleanDecoder{decoder: newDecoderBase(format.Encoding(e), descr)}
{{- end}}
{{- if or (eq .Name "Int32") (eq .Name "Int64")}}
case parquet.Encodings.DeltaBinaryPacked:
if mem == nil {
mem = memory.DefaultAllocator
}
return &DeltaBitPack{{.Name}}Decoder{
decoder: newDecoderBase(format.Encoding(e), descr),
mem: mem,
}
{{- end}}
{{- if eq .Name "ByteArray"}}
case parquet.Encodings.DeltaLengthByteArray:
if mem == nil {
mem = memory.DefaultAllocator
}
return &DeltaLengthByteArrayDecoder{
decoder: newDecoderBase(format.Encoding(e), descr),
mem: mem,
}
case parquet.Encodings.DeltaByteArray:
if mem == nil {
mem = memory.DefaultAllocator
}
return &DeltaByteArrayDecoder{
DeltaLengthByteArrayDecoder: &DeltaLengthByteArrayDecoder{
decoder: newDecoderBase(format.Encoding(e), descr),
mem: mem,
}}
{{- end}}
{{- if or (eq .Name "FixedLenByteArray") (eq .Name "Float32") (eq .Name "Float64") (eq .Name "Int32") (eq .Name "Int64")}}
case parquet.Encodings.ByteStreamSplit:
return &ByteStreamSplit{{.Name}}Decoder{decoder: newDecoderBase(format.Encoding(e), descr)}
{{- end}}
default:
panic("unimplemented encoding type")
}
}
{{if and (ne .Name "Boolean") }}
// Dict{{.Name}}Encoder is an encoder for {{.name}} data using dictionary encoding
type Dict{{.Name}}Encoder struct {
dictEncoder
}
// Type returns the underlying physical type that can be encoded with this encoder
func (enc *Dict{{.Name}}Encoder) Type() parquet.Type {
return parquet.Types.{{if .physical}}{{.physical}}{{else}}{{.Name}}{{end}}
}
{{if and (ne .Name "ByteArray") (ne .Name "FixedLenByteArray")}}
{{if (ne .Name "Int96")}}
// WriteDict populates the byte slice with the dictionary index
func (enc *Dict{{.Name}}Encoder) WriteDict(out []byte) {
enc.memo.(NumericMemoTable).WriteOutLE(out)
}
// Put encodes the values passed in, adding to the index as needed.
func (enc *Dict{{.Name}}Encoder) Put(in []{{.name}}) {
for _, val := range in {
enc.dictEncoder.Put(val)
}
}
// PutSpaced is the same as Put but for when the data being encoded has slots open for
// null values, using the bitmap provided to skip values as needed.
func (enc *Dict{{.Name}}Encoder) PutSpaced(in []{{.name}}, validBits []byte, validBitsOffset int64) {
bitutils.VisitSetBitRuns(validBits, validBitsOffset, int64(len(in)), func(pos, length int64) error {
for i := int64(0); i < length; i++ {
enc.dictEncoder.Put(in[i+pos])
}
return nil
})
}
// PutDictionary allows pre-seeding a dictionary encoder with
// a dictionary from an Arrow Array.
//
// The passed in array must not have any nulls and this can only
// be called on an empty encoder.
func (enc *Dict{{.Name}}Encoder) PutDictionary(values arrow.Array) error {
if err := enc.canPutDictionary(values); err != nil {
return err
}
enc.dictEncodedSize += values.Len() * arrow.{{.Name}}SizeBytes
data := values.(*array.{{.Name}}).{{.Name}}Values()
for _, v := range data {
if _, _, err := enc.memo.GetOrInsert(v); err != nil {
return err
}
}
values.Retain()
enc.preservedDict = values
return nil
}
{{else}}
// WriteDict populates the byte slice with the dictionary index
func (enc *DictInt96Encoder) WriteDict(out []byte) {
enc.memo.(BinaryMemoTable).CopyFixedWidthValues(0, parquet.Int96SizeBytes, out)
}
// Put encodes the values passed in, adding to the index as needed
func (enc *DictInt96Encoder) Put(in []parquet.Int96) {
for _, v := range in {
memoIdx, found, err := enc.memo.GetOrInsert(v)
if err != nil {
panic(err)
}
if !found {
enc.dictEncodedSize += parquet.Int96SizeBytes
}
enc.addIndex(memoIdx)
}
}
// PutSpaced is like Put but assumes space for nulls
func (enc *DictInt96Encoder) PutSpaced(in []parquet.Int96, validBits []byte, validBitsOffset int64) {
bitutils.VisitSetBitRuns(validBits, validBitsOffset, int64(len(in)), func(pos, length int64) error {
enc.Put(in[pos : pos+length])
return nil
})
}
// PutDictionary allows pre-seeding a dictionary encoder with
// a dictionary from an Arrow Array.
//
// The passed in array must not have any nulls and this can only
// be called on an empty encoder.
func (enc *DictInt96Encoder) PutDictionary(arrow.Array) error {
return fmt.Errorf("%w: direct PutDictionary to Int96", arrow.ErrNotImplemented)
}
{{end}}
{{end}}
// Dict{{.Name}}Decoder is a decoder for decoding dictionary encoded data for {{.name}} columns
type Dict{{.Name}}Decoder struct {
dictDecoder
}
// Type returns the underlying physical type that can be decoded with this decoder
func (Dict{{.Name}}Decoder) Type() parquet.Type {
return parquet.Types.{{if .physical}}{{.physical}}{{else}}{{.Name}}{{end}}
}
func (d *Dict{{.Name}}Decoder) Discard(n int) (int, error) {
n = min(n, d.nvals)
discarded, err := d.discard(n)
if err != nil {
return discarded, err
}
if n != discarded {
return discarded, errors.New("parquet: dict eof exception")
}
return n, nil
}
// Decode populates the passed in slice with min(len(out), remaining values) values,
// decoding using the dictionary to get the actual values. Returns the number of values
// actually decoded and any error encountered.
func (d *Dict{{.Name}}Decoder) Decode(out []{{.name}}) (int, error) {
vals := shared_utils.Min(len(out), d.nvals)
decoded, err := d.decode(out[:vals])
if err != nil {
return decoded, err
}
if vals != decoded {
return decoded, xerrors.New("parquet: dict eof exception")
}
return vals, nil
}
// Decode spaced is like Decode but will space out the data leaving slots for null values
// based on the provided bitmap.
func (d *Dict{{.Name}}Decoder) DecodeSpaced(out []{{.name}}, nullCount int, validBits []byte, validBitsOffset int64) (int, error) {
vals := shared_utils.Min(len(out), d.nvals)
decoded, err := d.decodeSpaced(out[:vals], nullCount, validBits, validBitsOffset)
if err != nil {
return decoded, err
}
if vals != decoded {
return decoded, xerrors.New("parquet: dict spaced eof exception")
}
return vals, nil
}
// {{.Name}}DictConverter is a helper for dictionary handling which is used for converting
// run length encoded indexes into the actual values that are stored in the dictionary index page.
type {{.Name}}DictConverter struct {
valueDecoder {{.Name}}Decoder
dict []{{.name}}
zeroVal {{.name}}
}
// ensure validates that we've decoded dictionary values up to the index
// provided so that we don't need to decode the entire dictionary at start.
func (dc *{{.Name}}DictConverter) ensure(idx utils.IndexType) error {
if len(dc.dict) <= int(idx) {
if cap(dc.dict) <= int(idx) {
val := make([]{{.name}}, int(idx+1)-len(dc.dict))
n, err := dc.valueDecoder.Decode(val)
if err != nil {
return err
}
dc.dict = append(dc.dict, val[:n]...)
} else {
cur := len(dc.dict)
n, err := dc.valueDecoder.Decode(dc.dict[cur : idx+1])
if err != nil {
return err
}
dc.dict = dc.dict[:cur+n]
}
}
return nil
}
// IsValid verifies that the set of indexes passed in are all valid indexes
// in the dictionary and if necessary decodes dictionary indexes up to the index
// requested.
func (dc *{{.Name}}DictConverter) IsValid(idxes ...utils.IndexType) bool {
min, max := shared_utils.GetMinMaxInt32(*(*[]int32)(unsafe.Pointer(&idxes)))
dc.ensure(utils.IndexType(max))
return min >= 0 && int(min) < len(dc.dict) && int(max) >= 0 && int(max) < len(dc.dict)
}
// Fill populates the slice passed in entirely with the value at dictionary index indicated by val
func (dc *{{.Name}}DictConverter) Fill(out interface{}, val utils.IndexType) error {
o := out.([]{{.name}})
if err := dc.ensure(val); err != nil {
return err
}
o[0] = dc.dict[val]
for i := 1; i < len(o); i *= 2 {
copy(o[i:], o[:i])
}
return nil
}
// FillZero populates the entire slice of out with the zero value for {{.name}}
func (dc *{{.Name}}DictConverter) FillZero(out interface{}) {
o := out.([]{{.name}})
o[0] = dc.zeroVal
for i := 1; i < len(o); i *= 2 {
copy(o[i:], o[:i])
}
}
// Copy populates the slice provided with the values in the dictionary at the indexes
// in the vals slice.
func (dc *{{.Name}}DictConverter) Copy(out interface{}, vals []utils.IndexType) error {
o := out.([]{{.name}})
for idx, val := range vals {
o[idx] = dc.dict[val]
}
return nil
}
{{end}}
{{end}}
// NewDictConverter creates a dict converter of the appropriate type, using the passed in
// decoder as the decoder to decode the dictionary index.
func NewDictConverter(dict TypedDecoder) utils.DictionaryConverter {
switch dict.Type() {
{{ range .In }}{{ if and (ne .Name "Boolean") -}}
case parquet.Types.{{if .physical }}{{.physical}}{{else}}{{.Name}}{{end}}:
return &{{.Name}}DictConverter{valueDecoder: dict.({{.Name}}Decoder), dict: make([]{{.name}}, 0, dict.ValuesLeft())}
{{ end }}{{ end -}}
default:
return nil
}
}
// helper function to get encoding traits object for the physical type indicated
func getEncodingTraits(t parquet.Type) EncoderTraits {
switch t {
{{ range .In -}}
case parquet.Types.{{if .physical}}{{.physical}}{{else}}{{.Name}}{{end}}:
return {{.Name}}EncoderTraits
{{ end -}}
default:
return nil
}
}
// helper function to get decoding traits object for the physical type indicated
func getDecodingTraits(t parquet.Type) DecoderTraits {
switch t {
{{ range .In -}}
case parquet.Types.{{if .physical}}{{.physical}}{{else}}{{.Name}}{{end}}:
return {{.Name}}DecoderTraits
{{ end -}}
default:
return nil
}
}
|