1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package encryption contains the internal helpers for the parquet AES encryption/decryption handling.
//
// Testing for this is done via integration testing at the top level parquet package via attempting to
// read and write encrypted files with different configurations to match test files in parquet-testing
package encryption
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/binary"
"fmt"
"io"
"github.com/apache/arrow-go/v18/parquet"
)
// important constants for handling the aes encryption
const (
GcmTagLength = 16
NonceLength = 12
gcmMode = 0
ctrMode = 1
ctrIVLen = 16
bufferSizeLength = 4
)
// Module constants for constructing the AAD bytes, the order here is
// important as the constants are set via iota.
const (
FooterModule int8 = iota
ColumnMetaModule
DataPageModule
DictPageModule
DataPageHeaderModule
DictPageHeaderModule
ColumnIndexModule
OffsetIndexModule
)
type aesEncryptor struct {
mode int
ciphertextSizeDelta int
}
// NewAesEncryptor constructs an encryptor for the passed in cipher and whether
// or not it's being used to encrypt metadata.
func NewAesEncryptor(alg parquet.Cipher, metadata bool) *aesEncryptor {
ret := &aesEncryptor{}
ret.ciphertextSizeDelta = bufferSizeLength + NonceLength
if metadata || alg == parquet.AesGcm {
ret.mode = gcmMode
ret.ciphertextSizeDelta += GcmTagLength
} else {
ret.mode = ctrMode
}
return ret
}
// CiphertextSizeDelta is the number of extra bytes that are part of the encrypted data
// above and beyond the plaintext value.
func (a *aesEncryptor) CiphertextSizeDelta() int { return a.ciphertextSizeDelta }
// SignedFooterEncrypt writes the signature for the provided footer bytes using the given key, AAD and nonce.
// It returns the number of bytes that were written to w.
func (a *aesEncryptor) SignedFooterEncrypt(w io.Writer, footer, key, aad, nonce []byte) int {
if a.mode != gcmMode {
panic("must use AES GCM (metadata) encryptor")
}
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
aead, err := cipher.NewGCM(block)
if err != nil {
panic(err)
}
if aead.NonceSize() != NonceLength {
panic(fmt.Errorf("nonce size mismatch %d, %d", aead.NonceSize(), NonceLength))
}
if aead.Overhead() != GcmTagLength {
panic(fmt.Errorf("tagsize mismatch %d %d", aead.Overhead(), GcmTagLength))
}
ciphertext := aead.Seal(nil, nonce, footer, aad)
bufferSize := uint32(len(ciphertext) + len(nonce))
// data is written with a prefix of the size written as a little endian 32bit int.
if err := binary.Write(w, binary.LittleEndian, bufferSize); err != nil {
panic(err)
}
w.Write(nonce)
w.Write(ciphertext)
return bufferSizeLength + int(bufferSize)
}
// Encrypt calculates the ciphertext for src with the given key and aad, then writes it to w.
// Returns the total number of bytes written.
func (a *aesEncryptor) Encrypt(w io.Writer, src, key, aad []byte) int {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
nonce := make([]byte, NonceLength)
rand.Read(nonce)
if a.mode == gcmMode {
aead, err := cipher.NewGCM(block)
if err != nil {
panic(err)
}
if aead.NonceSize() != NonceLength {
panic(fmt.Errorf("nonce size mismatch %d, %d", aead.NonceSize(), NonceLength))
}
if aead.Overhead() != GcmTagLength {
panic(fmt.Errorf("tagsize mismatch %d %d", aead.Overhead(), GcmTagLength))
}
ciphertext := aead.Seal(nil, nonce, src, aad)
bufferSize := len(ciphertext) + len(nonce)
// data is written with a prefix of the size written as a little endian 32bit int.
if err := binary.Write(w, binary.LittleEndian, uint32(bufferSize)); err != nil {
panic(err)
}
w.Write(nonce)
w.Write(ciphertext)
return bufferSizeLength + bufferSize
}
// Parquet CTR IVs are comprised of a 12-byte nonce and a 4-byte initial
// counter field.
// The first 31 bits of the initial counter field are set to 0, the last bit
// is set to 1.
iv := make([]byte, ctrIVLen)
copy(iv, nonce)
iv[ctrIVLen-1] = 1
bufferSize := NonceLength + len(src)
// data is written with a prefix of the size written as a little endian 32bit int.
if err := binary.Write(w, binary.LittleEndian, uint32(bufferSize)); err != nil {
panic(err)
}
w.Write(nonce)
cipher.StreamWriter{S: cipher.NewCTR(block, iv), W: w}.Write(src)
return bufferSizeLength + bufferSize
}
type aesDecryptor struct {
mode int
ciphertextSizeDelta int
}
// newAesDecryptor constructs and returns a decryptor for the given cipher type and whether or
// not it is intended to be used for decrypting metadata.
func newAesDecryptor(alg parquet.Cipher, metadata bool) *aesDecryptor {
ret := &aesDecryptor{}
ret.ciphertextSizeDelta = bufferSizeLength + NonceLength
if metadata || alg == parquet.AesGcm {
ret.mode = gcmMode
ret.ciphertextSizeDelta += GcmTagLength
} else {
ret.mode = ctrMode
}
return ret
}
// CiphertextSizeDelta is the number of bytes in the ciphertext that will not exist in the
// plaintext due to be used for the decryption. The total size - the CiphertextSizeDelta is
// the length of the plaintext after decryption.
func (a *aesDecryptor) CiphertextSizeDelta() int { return a.ciphertextSizeDelta }
// DecryptFrom
func (a *aesDecryptor) DecryptFrom(r io.Reader, key, aad []byte) []byte {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
var writtenCiphertextLen uint32
if err := binary.Read(r, binary.LittleEndian, &writtenCiphertextLen); err != nil {
panic(err)
}
cipherText := make([]byte, writtenCiphertextLen)
if n, err := io.ReadFull(r, cipherText); n != int(writtenCiphertextLen) || err != nil {
panic(err)
}
nonce := cipherText[:NonceLength]
cipherText = cipherText[NonceLength:]
if a.mode == gcmMode {
aead, err := cipher.NewGCM(block)
if err != nil {
panic(err)
}
plain, err := aead.Open(cipherText[:0], nonce, cipherText, aad)
if err != nil {
panic(err)
}
return plain
}
// Parquet CTR IVs are comprised of a 12-byte nonce and a 4-byte initial
// counter field.
// The first 31 bits of the initial counter field are set to 0, the last bit
// is set to 1.
iv := make([]byte, ctrIVLen)
copy(iv, nonce)
iv[ctrIVLen-1] = 1
stream := cipher.NewCTR(block, iv)
// dst := make([]byte, len(cipherText))
stream.XORKeyStream(cipherText, cipherText)
return cipherText
}
// Decrypt returns the plaintext version of the given ciphertext when decrypted
// with the provided key and AAD security bytes.
func (a *aesDecryptor) Decrypt(cipherText, key, aad []byte) []byte {
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
writtenCiphertextLen := binary.LittleEndian.Uint32(cipherText)
cipherLen := writtenCiphertextLen + bufferSizeLength
nonce := cipherText[bufferSizeLength : bufferSizeLength+NonceLength]
if a.mode == gcmMode {
aead, err := cipher.NewGCM(block)
if err != nil {
panic(err)
}
plain, err := aead.Open(nil, nonce, cipherText[bufferSizeLength+NonceLength:cipherLen], aad)
if err != nil {
panic(err)
}
return plain
}
// Parquet CTR IVs are comprised of a 12-byte nonce and a 4-byte initial
// counter field.
// The first 31 bits of the initial counter field are set to 0, the last bit
// is set to 1.
iv := make([]byte, ctrIVLen)
copy(iv, nonce)
iv[ctrIVLen-1] = 1
stream := cipher.NewCTR(block, iv)
dst := make([]byte, len(cipherText)-bufferSizeLength-NonceLength)
stream.XORKeyStream(dst, cipherText[bufferSizeLength+NonceLength:])
return dst
}
// CreateModuleAad creates the section AAD security bytes for the file, module, row group, column and page.
//
// This should be used for being passed to the encryptor and decryptor whenever requesting AAD bytes.
func CreateModuleAad(fileAad string, moduleType int8, rowGroupOrdinal, columnOrdinal, pageOrdinal int16) string {
buf := bytes.NewBuffer([]byte(fileAad))
buf.WriteByte(byte(moduleType))
if moduleType == FooterModule {
return buf.String()
}
binary.Write(buf, binary.LittleEndian, rowGroupOrdinal)
binary.Write(buf, binary.LittleEndian, columnOrdinal)
if DataPageModule != moduleType && DataPageHeaderModule != moduleType {
return buf.String()
}
binary.Write(buf, binary.LittleEndian, pageOrdinal)
return buf.String()
}
// CreateFooterAad takes an aadPrefix and constructs the security AAD bytes for encrypting
// and decrypting the parquet footer bytes.
func CreateFooterAad(aadPrefix string) string {
return CreateModuleAad(aadPrefix, FooterModule, -1, -1, -1)
}
// QuickUpdatePageAad updates aad with the new page ordinal, modifying the
// last two bytes of aad.
func QuickUpdatePageAad(aad []byte, newPageOrdinal int16) {
binary.LittleEndian.PutUint16(aad[len(aad)-2:], uint16(newPageOrdinal))
}
|