1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package testutils contains utilities for generating random data and other
// helpers that are used for testing the various aspects of the parquet library.
package testutils
import (
"encoding/binary"
"math"
"time"
"unsafe"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/endian"
"github.com/apache/arrow-go/v18/arrow/float16"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/parquet"
"github.com/apache/arrow-go/v18/parquet/pqarrow"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/stat/distuv"
)
// RandomArrayGenerator is a struct used for constructing Random Arrow arrays
// for use with testing.
type RandomArrayGenerator struct {
seed uint64
extra uint64
src rand.Source
seedRand *rand.Rand
}
// NewRandomArrayGenerator constructs a new generator with the requested Seed
func NewRandomArrayGenerator(seed uint64) RandomArrayGenerator {
src := rand.NewSource(seed)
return RandomArrayGenerator{seed, 0, src, rand.New(src)}
}
// GenerateBitmap generates a bitmap of n bits and stores it into buffer. Prob is the probability
// that a given bit will be zero, with 1-prob being the probability it will be 1. The return value
// is the number of bits that were left unset. The assumption being that buffer is currently
// zero initialized as this function does not clear any bits, it only sets 1s.
func (r *RandomArrayGenerator) GenerateBitmap(buffer []byte, n int64, prob float64) int64 {
count := int64(0)
r.extra++
// bernoulli distribution uses P to determine the probability of a 0 or a 1,
// which we'll use to generate the bitmap.
dist := distuv.Bernoulli{P: prob, Src: rand.NewSource(r.seed + r.extra)}
for i := 0; int64(i) < n; i++ {
if dist.Rand() != float64(0.0) {
bitutil.SetBit(buffer, i)
} else {
count++
}
}
return count
}
// ByteArray creates an array.String for use of creating random ByteArray values for testing parquet
// writing/reading. minLen/maxLen are the min and max length for a given value in the resulting array,
// with nullProb being the probability of a given index being null.
//
// For this generation we only generate ascii values with a min of 'A' and max of 'z'.
func (r *RandomArrayGenerator) ByteArray(size int64, minLen, maxLen int32, nullProb float64) arrow.Array {
if nullProb < 0 || nullProb > 1 {
panic("null prob must be between 0 and 1")
}
lengths := r.Int32(size, minLen, maxLen, nullProb)
defer lengths.Release()
r.extra++
dist := rand.New(rand.NewSource(r.seed + r.extra))
bldr := array.NewStringBuilder(memory.DefaultAllocator)
defer bldr.Release()
strbuf := make([]byte, maxLen)
for i := 0; int64(i) < size; i++ {
if lengths.IsValid(i) {
l := lengths.Value(i)
for j := int32(0); j < l; j++ {
strbuf[j] = byte(dist.Int31n(int32('z')-int32('A')+1) + int32('A'))
}
val := strbuf[:l]
bldr.Append(*(*string)(unsafe.Pointer(&val)))
} else {
bldr.AppendNull()
}
}
return bldr.NewArray()
}
// Uint8 generates a random array.Uint8 of the requested size whose values are between min and max
// with prob as the probability that a given index will be null.
func (r *RandomArrayGenerator) Uint8(size int64, min, max uint8, prob float64) arrow.Array {
buffers := make([]*memory.Buffer, 2)
nullCount := int64(0)
buffers[0] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[0].Resize(int(bitutil.BytesForBits(size)))
nullCount = r.GenerateBitmap(buffers[0].Bytes(), size, prob)
buffers[1] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[1].Resize(int(size * int64(arrow.Uint8SizeBytes)))
r.extra++
dist := rand.New(rand.NewSource(r.seed + r.extra))
out := arrow.Uint8Traits.CastFromBytes(buffers[1].Bytes())
for i := int64(0); i < size; i++ {
out[i] = uint8(dist.Intn(int(max-min+1))) + min
}
return array.NewUint8Data(array.NewData(arrow.PrimitiveTypes.Uint8, int(size), buffers, nil, int(nullCount), 0))
}
// Int32 generates a random array.Int32 of the given size with each value between min and max,
// and pctNull as the probability that a given index will be null.
func (r *RandomArrayGenerator) Int32(size int64, min, max int32, pctNull float64) *array.Int32 {
buffers := make([]*memory.Buffer, 2)
nullCount := int64(0)
buffers[0] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[0].Resize(int(bitutil.BytesForBits(size)))
nullCount = r.GenerateBitmap(buffers[0].Bytes(), size, 1-pctNull)
buffers[1] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[1].Resize(arrow.Int32Traits.BytesRequired(int(size)))
r.extra++
dist := rand.New(rand.NewSource(r.seed + r.extra))
out := arrow.Int32Traits.CastFromBytes(buffers[1].Bytes())
for i := int64(0); i < size; i++ {
out[i] = dist.Int31n(max-min+1) + min
}
return array.NewInt32Data(array.NewData(arrow.PrimitiveTypes.Int32, int(size), buffers, nil, int(nullCount), 0))
}
// Int64 generates a random array.Int64 of the given size with each value between min and max,
// and pctNull as the probability that a given index will be null.
func (r *RandomArrayGenerator) Int64(size int64, min, max int64, pctNull float64) *array.Int64 {
buffers := make([]*memory.Buffer, 2)
nullCount := int64(0)
buffers[0] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[0].Resize(int(bitutil.BytesForBits(size)))
nullCount = r.GenerateBitmap(buffers[0].Bytes(), size, 1-pctNull)
buffers[1] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[1].Resize(arrow.Int64Traits.BytesRequired(int(size)))
r.extra++
dist := rand.New(rand.NewSource(r.seed + r.extra))
out := arrow.Int64Traits.CastFromBytes(buffers[1].Bytes())
for i := int64(0); i < size; i++ {
out[i] = dist.Int63n(max-min+1) + min
}
return array.NewInt64Data(array.NewData(arrow.PrimitiveTypes.Int64, int(size), buffers, nil, int(nullCount), 0))
}
// Float64 generates a random array.Float64 of the requested size with pctNull as the probability
// that a given index will be null.
func (r *RandomArrayGenerator) Float64(size int64, pctNull float64) *array.Float64 {
buffers := make([]*memory.Buffer, 2)
nullCount := int64(0)
buffers[0] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[0].Resize(int(bitutil.BytesForBits(size)))
nullCount = r.GenerateBitmap(buffers[0].Bytes(), size, 1-pctNull)
buffers[1] = memory.NewResizableBuffer(memory.DefaultAllocator)
buffers[1].Resize(arrow.Float64Traits.BytesRequired(int(size)))
r.extra++
dist := rand.New(rand.NewSource(r.seed + r.extra))
out := arrow.Float64Traits.CastFromBytes(buffers[1].Bytes())
for i := int64(0); i < size; i++ {
out[i] = dist.NormFloat64()
}
return array.NewFloat64Data(array.NewData(arrow.PrimitiveTypes.Float64, int(size), buffers, nil, int(nullCount), 0))
}
func (r *RandomArrayGenerator) StringWithRepeats(mem memory.Allocator, sz, unique int64, minLen, maxLen int32, nullProb float64) *array.String {
if unique > sz {
panic("invalid config for random StringWithRepeats")
}
// generate a random string dictionary without any nulls
arr := r.ByteArray(unique, minLen, maxLen, 0)
defer arr.Release()
dict := arr.(*array.String)
// generate random indices to sample dictionary with
idArray := r.Int64(sz, 0, unique-1, nullProb)
defer idArray.Release()
bldr := array.NewStringBuilder(mem)
defer bldr.Release()
for i := int64(0); i < sz; i++ {
if idArray.IsValid(int(i)) {
idx := idArray.Value(int(i))
bldr.Append(dict.Value(int(idx)))
} else {
bldr.AppendNull()
}
}
return bldr.NewStringArray()
}
// FillRandomInt8 populates the slice out with random int8 values between min and max using
// seed as the random see for generation to allow consistency for testing.
func FillRandomInt8(seed uint64, min, max int8, out []int8) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = int8(r.Intn(int(max-min+1))) + min
}
}
// FillRandomUint8 populates the slice out with random uint8 values between min and max using
// seed as the random see for generation to allow consistency for testing.
func FillRandomUint8(seed uint64, min, max uint8, out []uint8) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = uint8(r.Intn(int(max-min+1))) + min
}
}
// FillRandomInt16 populates the slice out with random int16 values between min and max using
// seed as the random see for generation to allow consistency for testing.
func FillRandomInt16(seed uint64, min, max int16, out []int16) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = int16(r.Intn(int(max-min+1))) + min
}
}
// FillRandomUint16 populates the slice out with random uint16 values between min and max using
// seed as the random see for generation to allow consistency for testing.
func FillRandomUint16(seed uint64, min, max uint16, out []uint16) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = uint16(r.Intn(int(max-min+1))) + min
}
}
// FillRandomInt32 populates out with random int32 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomInt32(seed uint64, out []int32) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = int32(r.Uint32())
}
}
// FillRandomInt32Max populates out with random int32 values between 0 and max using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomInt32Max(seed uint64, max int32, out []int32) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Int31n(max)
}
}
// FillRandomUint32Max populates out with random uint32 values between 0 and max using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomUint32Max(seed uint64, max uint32, out []uint32) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = uint32(r.Uint64n(uint64(max)))
}
}
// FillRandomInt64Max populates out with random int64 values between 0 and max using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomInt64Max(seed uint64, max int64, out []int64) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Int63n(max)
}
}
// FillRandomUint32 populates out with random uint32 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomUint32(seed uint64, out []uint32) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Uint32()
}
}
// FillRandomUint64 populates out with random uint64 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomUint64(seed uint64, out []uint64) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Uint64()
}
}
// FillRandomUint64Max populates out with random uint64 values between 0 and max using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomUint64Max(seed uint64, max uint64, out []uint64) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Uint64n(max)
}
}
// FillRandomInt64 populates out with random int64 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomInt64(seed uint64, out []int64) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = int64(r.Uint64())
}
}
// FillRandomInt96 populates out with random Int96 values using seed as the random
// seed for the generator to allow consistency for testing. It does this by generating
// three random uint32 values for each int96 value.
func FillRandomInt96(seed uint64, out []parquet.Int96) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
*(*int32)(unsafe.Pointer(&out[idx][0])) = int32(r.Uint32())
*(*int32)(unsafe.Pointer(&out[idx][4])) = int32(r.Uint32())
*(*int32)(unsafe.Pointer(&out[idx][8])) = int32(r.Uint32())
}
}
// randFloat32 creates a random float value with a normal distribution
// to better spread the values out and ensure we do not return any NaN values.
func randFloat32(r *rand.Rand) float32 {
for {
f := math.Float32frombits(r.Uint32())
if !math.IsNaN(float64(f)) {
return f
}
}
}
// randFloat64 creates a random float value with a normal distribution
// to better spread the values out and ensure we do not return any NaN values.
func randFloat64(r *rand.Rand) float64 {
for {
f := math.Float64frombits(r.Uint64())
if !math.IsNaN(f) {
return f
}
}
}
// randFloat16 creates a random float value with a normal distribution
// to better spread the values out and ensure we do not return any NaN or Inf values.
func randFloat16(r *rand.Rand) float16.Num {
for {
f := float16.FromBits(uint16(r.Uint64n(math.MaxUint16 + 1)))
if !f.IsNaN() {
return f
}
}
}
// FillRandomFloat32 populates out with random float32 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomFloat32(seed uint64, out []float32) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = randFloat32(r)
}
}
// FillRandomFloat64 populates out with random float64 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomFloat64(seed uint64, out []float64) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = randFloat64(r)
}
}
// FillRandomFloat16 populates out with random float64 values using seed as the random
// seed for the generator to allow consistency for testing.
func FillRandomFloat16(seed uint64, out []float16.Num) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = randFloat16(r)
}
}
// FillRandomByteArray populates out with random ByteArray values with lengths between 2 and 12
// using heap as the actual memory storage used for the bytes generated. Each element of
// out will be some slice of the bytes in heap, and as such heap must outlive the byte array slices.
func FillRandomByteArray(seed uint64, out []parquet.ByteArray, heap *memory.Buffer) {
const (
maxByteArrayLen = 12
minByteArrayLen = 2
)
RandomByteArray(seed, out, heap, minByteArrayLen, maxByteArrayLen)
}
// FillRandomFixedByteArray populates out with random FixedLenByteArray values with of a length equal to size
// using heap as the actual memory storage used for the bytes generated. Each element of
// out will be a slice of size bytes in heap, and as such heap must outlive the byte array slices.
func FillRandomFixedByteArray(seed uint64, out []parquet.FixedLenByteArray, heap *memory.Buffer, size int) {
heap.Resize(len(out) * size)
buf := heap.Bytes()
r := rand.New(rand.NewSource(seed))
for idx := range out {
r.Read(buf[:size])
out[idx] = buf[:size]
buf = buf[size:]
}
}
// FillRandomBooleans populates out with random bools with the probability p of being false using
// seed as the random seed to the generator in order to allow consistency for testing. This uses
// a Bernoulli distribution of values.
func FillRandomBooleans(p float64, seed uint64, out []bool) {
dist := distuv.Bernoulli{P: p, Src: rand.NewSource(seed)}
for idx := range out {
out[idx] = dist.Rand() != float64(0.0)
}
}
// fillRandomIsValid populates out with random bools with the probability pctNull of being false using
// seed as the random seed to the generator in order to allow consistency for testing. This uses
// the default Golang random generator distribution of float64 values between 0 and 1 comparing against
// pctNull. If the random value is > pctNull, it is true.
func fillRandomIsValid(seed uint64, pctNull float64, out []bool) {
r := rand.New(rand.NewSource(seed))
for idx := range out {
out[idx] = r.Float64() > pctNull
}
}
// InitValues is a convenience function for generating a slice of random values based on the type.
// If the type is parquet.ByteArray or parquet.FixedLenByteArray, heap must not be null.
//
// The default values are:
//
// []bool uses the current time as the seed with only values of 1 being false, for use
// of creating validity boolean slices.
// all other types use 0 as the seed
// a []parquet.ByteArray is populated with lengths between 2 and 12
// a []parquet.FixedLenByteArray is populated with fixed size random byte arrays of length 12.
func InitValues(values interface{}, heap *memory.Buffer) {
switch arr := values.(type) {
case []bool:
fillRandomIsValid(uint64(time.Now().Unix()), 0.5, arr)
case []int32:
FillRandomInt32(0, arr)
case []int64:
FillRandomInt64(0, arr)
case []float32:
FillRandomFloat32(0, arr)
case []float64:
FillRandomFloat64(0, arr)
case []float16.Num:
FillRandomFloat16(0, arr)
case []parquet.Int96:
FillRandomInt96(0, arr)
case []parquet.ByteArray:
FillRandomByteArray(0, arr, heap)
case []parquet.FixedLenByteArray:
FillRandomFixedByteArray(0, arr, heap, 12)
}
}
// RandomByteArray populates out with random ByteArray values with lengths between minlen and maxlen
// using heap as the actual memory storage used for the bytes generated. Each element of
// out will be some slice of the bytes in heap, and as such heap must outlive the byte array slices.
func RandomByteArray(seed uint64, out []parquet.ByteArray, heap *memory.Buffer, minlen, maxlen int) {
heap.Resize(len(out) * (maxlen + arrow.Uint32SizeBytes))
buf := heap.Bytes()
r := rand.New(rand.NewSource(seed))
for idx := range out {
length := r.Intn(maxlen-minlen+1) + minlen
r.Read(buf[:length])
out[idx] = buf[:length]
buf = buf[length:]
}
}
// RandomDecimals generates n random decimal values with precision determining the byte width
// for the values and seed as the random generator seed to allow consistency for testing. The
// resulting values will be either 32 bytes or 16 bytes each depending on the precision.
func RandomDecimals(n int64, seed uint64, precision int32) []byte {
r := rand.New(rand.NewSource(seed))
nreqBytes := pqarrow.DecimalSize(precision)
byteWidth := 32
if precision <= 38 {
byteWidth = 16
}
out := make([]byte, int(int64(byteWidth)*n))
for i := int64(0); i < n; i++ {
start := int(i) * byteWidth
r.Read(out[start : start+int(nreqBytes)])
// sign extend if the sign bit is set for the last generated byte
// 0b10000000 == 0x80 == 128
if out[start+int(nreqBytes)-1]&byte(0x80) != 0 {
memory.Set(out[start+int(nreqBytes):start+byteWidth], 0xFF)
}
// byte swap for big endian
if endian.IsBigEndian {
for j := 0; j+8 <= byteWidth; j += 8 {
v := binary.LittleEndian.Uint64(out[start+j : start+j+8])
binary.BigEndian.PutUint64(out[start+j:start+j+8], v)
}
}
}
return out
}
|