1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package utils contains various internal utilities for the parquet library
// that aren't intended to be exposed to external consumers such as interfaces
// and bitmap readers/writers including the RLE encoder/decoder and so on.
package utils
import (
"bytes"
"encoding/binary"
"math"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/internal/bitutils"
"github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/parquet"
"golang.org/x/xerrors"
)
//go:generate go run ../../../arrow/_tools/tmpl/main.go -i -data=physical_types.tmpldata typed_rle_dict.gen.go.tmpl
const (
MaxValuesPerLiteralRun = (1 << 6) * 8
)
func MinRLEBufferSize(bitWidth int) int {
maxLiteralRunSize := 1 + bitutil.BytesForBits(int64(MaxValuesPerLiteralRun*bitWidth))
maxRepeatedRunSize := binary.MaxVarintLen32 + bitutil.BytesForBits(int64(bitWidth))
return int(utils.Max(maxLiteralRunSize, maxRepeatedRunSize))
}
func MaxRLEBufferSize(width, numValues int) int {
bytesPerRun := width
numRuns := int(bitutil.BytesForBits(int64(numValues)))
literalMaxSize := numRuns + (numRuns * bytesPerRun)
minRepeatedRunSize := 1 + int(bitutil.BytesForBits(int64(width)))
repeatedMaxSize := int(bitutil.BytesForBits(int64(numValues))) * minRepeatedRunSize
return utils.Max(literalMaxSize, repeatedMaxSize)
}
// Utility classes to do run length encoding (RLE) for fixed bit width values. If runs
// are sufficiently long, RLE is used, otherwise, the values are just bit-packed
// (literal encoding).
// For both types of runs, there is a byte-aligned indicator which encodes the length
// of the run and the type of the run.
// This encoding has the benefit that when there aren't any long enough runs, values
// are always decoded at fixed (can be precomputed) bit offsets OR both the value and
// the run length are byte aligned. This allows for very efficient decoding
// implementations.
// The encoding is:
// encoded-block := run*
// run := literal-run | repeated-run
// literal-run := literal-indicator < literal bytes >
// repeated-run := repeated-indicator < repeated value. padded to byte boundary >
// literal-indicator := varint_encode( number_of_groups << 1 | 1)
// repeated-indicator := varint_encode( number_of_repetitions << 1 )
//
// Each run is preceded by a varint. The varint's least significant bit is
// used to indicate whether the run is a literal run or a repeated run. The rest
// of the varint is used to determine the length of the run (eg how many times the
// value repeats).
//
// In the case of literal runs, the run length is always a multiple of 8 (i.e. encode
// in groups of 8), so that no matter the bit-width of the value, the sequence will end
// on a byte boundary without padding.
// Given that we know it is a multiple of 8, we store the number of 8-groups rather than
// the actual number of encoded ints. (This means that the total number of encoded values
// cannot be determined from the encoded data, since the number of values in the last
// group may not be a multiple of 8). For the last group of literal runs, we pad
// the group to 8 with zeros. This allows for 8 at a time decoding on the read side
// without the need for additional checks.
//
// There is a break-even point when it is more storage efficient to do run length
// encoding. For 1 bit-width values, that point is 8 values. They require 2 bytes
// for both the repeated encoding or the literal encoding. This value can always
// be computed based on the bit-width.
//
// Examples with bit-width 1 (eg encoding booleans):
// ----------------------------------------
// 100 1s followed by 100 0s:
// <varint(100 << 1)> <1, padded to 1 byte> <varint(100 << 1)> <0, padded to 1 byte>
// - (total 4 bytes)
//
// alternating 1s and 0s (200 total):
// 200 ints = 25 groups of 8
// <varint((25 << 1) | 1)> <25 bytes of values, bitpacked>
// (total 26 bytes, 1 byte overhead)
//
type RleDecoder struct {
r *BitReader
bitWidth int
curVal uint64
repCount int32
litCount int32
}
func NewRleDecoder(data *bytes.Reader, width int) *RleDecoder {
return &RleDecoder{r: NewBitReader(data), bitWidth: width}
}
func (r *RleDecoder) Reset(data *bytes.Reader, width int) {
r.bitWidth = width
r.curVal = 0
r.repCount = 0
r.litCount = 0
r.r.Reset(data)
}
func (r *RleDecoder) Next() bool {
indicator, ok := r.r.GetVlqInt()
if !ok {
return false
}
literal := (indicator & 1) != 0
count := uint32(indicator >> 1)
if literal {
if count == 0 || count > uint32(math.MaxInt32/8) {
return false
}
r.litCount = int32(count) * 8
} else {
if count == 0 || count > uint32(math.MaxInt32) {
return false
}
r.repCount = int32(count)
nbytes := int(bitutil.BytesForBits(int64(r.bitWidth)))
switch {
case nbytes > 4:
if !r.r.GetAligned(nbytes, &r.curVal) {
return false
}
case nbytes > 2:
var val uint32
if !r.r.GetAligned(nbytes, &val) {
return false
}
r.curVal = uint64(val)
case nbytes > 1:
var val uint16
if !r.r.GetAligned(nbytes, &val) {
return false
}
r.curVal = uint64(val)
default:
var val uint8
if !r.r.GetAligned(nbytes, &val) {
return false
}
r.curVal = uint64(val)
}
}
return true
}
func (r *RleDecoder) GetValue() (uint64, bool) {
vals := make([]uint64, 1)
n := r.GetBatch(vals)
return vals[0], n == 1
}
func (r *RleDecoder) Discard(n int) int {
read := 0
for read < n {
remain := n - read
if r.repCount > 0 {
repbatch := int(math.Min(float64(remain), float64(r.repCount)))
r.repCount -= int32(repbatch)
read += repbatch
} else if r.litCount > 0 {
litbatch := int(math.Min(float64(remain), float64(r.litCount)))
n, _ := r.r.Discard(uint(r.bitWidth), litbatch)
if n != litbatch {
return read
}
r.litCount -= int32(litbatch)
read += litbatch
} else {
if !r.Next() {
return read
}
}
}
return read
}
func (r *RleDecoder) GetBatch(values []uint64) int {
read := 0
size := len(values)
out := values
for read < size {
remain := size - read
if r.repCount > 0 {
repbatch := int(math.Min(float64(remain), float64(r.repCount)))
for i := 0; i < repbatch; i++ {
out[i] = r.curVal
}
r.repCount -= int32(repbatch)
read += repbatch
out = out[repbatch:]
} else if r.litCount > 0 {
litbatch := int(math.Min(float64(remain), float64(r.litCount)))
n, _ := r.r.GetBatch(uint(r.bitWidth), out[:litbatch])
if n != litbatch {
return read
}
r.litCount -= int32(litbatch)
read += litbatch
out = out[litbatch:]
} else {
if !r.Next() {
return read
}
}
}
return read
}
func (r *RleDecoder) GetBatchSpaced(vals []uint64, nullcount int, validBits []byte, validBitsOffset int64) (int, error) {
if nullcount == 0 {
return r.GetBatch(vals), nil
}
converter := plainConverter{}
blockCounter := bitutils.NewBitBlockCounter(validBits, validBitsOffset, int64(len(vals)))
var (
totalProcessed int
processed int
block bitutils.BitBlockCount
err error
)
for {
block = blockCounter.NextFourWords()
if block.Len == 0 {
break
}
if block.AllSet() {
processed = r.GetBatch(vals[:block.Len])
} else if block.NoneSet() {
converter.FillZero(vals[:block.Len])
processed = int(block.Len)
} else {
processed, err = r.getspaced(converter, vals, int(block.Len), int(block.Len-block.Popcnt), validBits, validBitsOffset)
if err != nil {
return totalProcessed, err
}
}
totalProcessed += processed
vals = vals[int(block.Len):]
validBitsOffset += int64(block.Len)
if processed != int(block.Len) {
break
}
}
return totalProcessed, nil
}
func (r *RleDecoder) getspaced(dc DictionaryConverter, vals interface{}, batchSize, nullCount int, validBits []byte, validBitsOffset int64) (int, error) {
switch vals := vals.(type) {
case []int32:
return r.getspacedInt32(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []int64:
return r.getspacedInt64(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []float32:
return r.getspacedFloat32(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []float64:
return r.getspacedFloat64(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []parquet.ByteArray:
return r.getspacedByteArray(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []parquet.FixedLenByteArray:
return r.getspacedFixedLenByteArray(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []parquet.Int96:
return r.getspacedInt96(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
case []uint64:
return r.getspacedUint64(dc, vals, batchSize, nullCount, validBits, validBitsOffset)
default:
return 0, xerrors.New("parquet/rle: getspaced invalid type")
}
}
func (r *RleDecoder) getspacedUint64(dc DictionaryConverter, vals []uint64, batchSize, nullCount int, validBits []byte, validBitsOffset int64) (int, error) {
if nullCount == batchSize {
dc.FillZero(vals[:batchSize])
return batchSize, nil
}
read := 0
remain := batchSize - nullCount
const bufferSize = 1024
var indexbuffer [bufferSize]IndexType
// assume no bits to start
bitReader := bitutils.NewBitRunReader(validBits, validBitsOffset, int64(batchSize))
validRun := bitReader.NextRun()
for read < batchSize {
if validRun.Len == 0 {
validRun = bitReader.NextRun()
}
if !validRun.Set {
dc.FillZero(vals[:int(validRun.Len)])
vals = vals[int(validRun.Len):]
read += int(validRun.Len)
validRun.Len = 0
continue
}
if r.repCount == 0 && r.litCount == 0 {
if !r.Next() {
return read, nil
}
}
var batch int
switch {
case r.repCount > 0:
batch, remain, validRun = r.consumeRepeatCounts(read, batchSize, remain, validRun, bitReader)
current := IndexType(r.curVal)
if !dc.IsValid(current) {
return read, nil
}
dc.Fill(vals[:batch], current)
case r.litCount > 0:
var (
litread int
skipped int
err error
)
litread, skipped, validRun, err = r.consumeLiteralsUint64(dc, vals, remain, indexbuffer[:], validRun, bitReader)
if err != nil {
return read, err
}
batch = litread + skipped
remain -= litread
}
vals = vals[batch:]
read += batch
}
return read, nil
}
func (r *RleDecoder) consumeRepeatCounts(read, batchSize, remain int, run bitutils.BitRun, bitRdr bitutils.BitRunReader) (int, int, bitutils.BitRun) {
// Consume the entire repeat counts incrementing repeat_batch to
// be the total of nulls + values consumed, we only need to
// get the total count because we can fill in the same value for
// nulls and non-nulls. This proves to be a big efficiency win.
repeatBatch := 0
for r.repCount > 0 && (read+repeatBatch) < batchSize {
if run.Set {
updateSize := int(utils.Min(run.Len, int64(r.repCount)))
r.repCount -= int32(updateSize)
repeatBatch += updateSize
run.Len -= int64(updateSize)
remain -= updateSize
} else {
repeatBatch += int(run.Len)
run.Len = 0
}
if run.Len == 0 {
run = bitRdr.NextRun()
}
}
return repeatBatch, remain, run
}
func (r *RleDecoder) consumeLiteralsUint64(dc DictionaryConverter, vals []uint64, remain int, buf []IndexType, run bitutils.BitRun, bitRdr bitutils.BitRunReader) (int, int, bitutils.BitRun, error) {
batch := utils.Min(utils.Min(remain, int(r.litCount)), len(buf))
buf = buf[:batch]
n, _ := r.r.GetBatchIndex(uint(r.bitWidth), buf)
if n != batch {
return 0, 0, run, xerrors.New("was not able to retrieve correct number of indexes")
}
if !dc.IsValid(buf...) {
return 0, 0, run, xerrors.New("invalid index values found for dictionary converter")
}
var (
read int
skipped int
)
for read < batch {
if run.Set {
updateSize := utils.Min(batch-read, int(run.Len))
if err := dc.Copy(vals, buf[read:read+updateSize]); err != nil {
return 0, 0, run, err
}
read += updateSize
vals = vals[updateSize:]
run.Len -= int64(updateSize)
} else {
dc.FillZero(vals[:int(run.Len)])
vals = vals[int(run.Len):]
skipped += int(run.Len)
run.Len = 0
}
if run.Len == 0 {
run = bitRdr.NextRun()
}
}
r.litCount -= int32(batch)
return read, skipped, run, nil
}
func (r *RleDecoder) GetBatchWithDict(dc DictionaryConverter, vals interface{}) (int, error) {
switch vals := vals.(type) {
case []int32:
return r.GetBatchWithDictInt32(dc, vals)
case []int64:
return r.GetBatchWithDictInt64(dc, vals)
case []float32:
return r.GetBatchWithDictFloat32(dc, vals)
case []float64:
return r.GetBatchWithDictFloat64(dc, vals)
case []parquet.ByteArray:
return r.GetBatchWithDictByteArray(dc, vals)
case []parquet.FixedLenByteArray:
return r.GetBatchWithDictFixedLenByteArray(dc, vals)
case []parquet.Int96:
return r.GetBatchWithDictInt96(dc, vals)
default:
return 0, xerrors.New("parquet/rle: GetBatchWithDict invalid type")
}
}
func (r *RleDecoder) GetBatchWithDictSpaced(dc DictionaryConverter, vals interface{}, nullCount int, validBits []byte, validBitsOffset int64) (int, error) {
switch vals := vals.(type) {
case []int32:
return r.GetBatchWithDictSpacedInt32(dc, vals, nullCount, validBits, validBitsOffset)
case []int64:
return r.GetBatchWithDictSpacedInt64(dc, vals, nullCount, validBits, validBitsOffset)
case []float32:
return r.GetBatchWithDictSpacedFloat32(dc, vals, nullCount, validBits, validBitsOffset)
case []float64:
return r.GetBatchWithDictSpacedFloat64(dc, vals, nullCount, validBits, validBitsOffset)
case []parquet.ByteArray:
return r.GetBatchWithDictSpacedByteArray(dc, vals, nullCount, validBits, validBitsOffset)
case []parquet.FixedLenByteArray:
return r.GetBatchWithDictSpacedFixedLenByteArray(dc, vals, nullCount, validBits, validBitsOffset)
case []parquet.Int96:
return r.GetBatchWithDictSpacedInt96(dc, vals, nullCount, validBits, validBitsOffset)
default:
return 0, xerrors.New("parquet/rle: GetBatchWithDictSpaced invalid type")
}
}
type RleEncoder struct {
w *BitWriter
buffer []uint64
BitWidth int
curVal uint64
repCount int32
litCount int32
literalIndicatorOffset int
indicatorBuffer [1]byte
}
func NewRleEncoder(w WriterAtWithLen, width int) *RleEncoder {
return &RleEncoder{
w: NewBitWriter(w),
buffer: make([]uint64, 0, 8),
BitWidth: width,
literalIndicatorOffset: -1,
}
}
func (r *RleEncoder) Flush() int {
if r.litCount > 0 || r.repCount > 0 || len(r.buffer) > 0 {
allRep := r.litCount == 0 && (r.repCount == int32(len(r.buffer)) || len(r.buffer) == 0)
if r.repCount > 0 && allRep {
r.flushRepeated()
} else {
// buffer the last group of literals to 8 by padding with 0s
for len(r.buffer) != 0 && len(r.buffer) < 8 {
r.buffer = append(r.buffer, 0)
}
r.litCount += int32(len(r.buffer))
r.flushLiteral(true)
r.repCount = 0
}
}
r.w.Flush(false)
return r.w.Written()
}
func (r *RleEncoder) flushBuffered(done bool) (err error) {
if r.repCount >= 8 {
// clear buffered values. they are part of the repeated run now and we
// don't want to flush them as literals
r.buffer = r.buffer[:0]
if r.litCount != 0 {
// there was current literal run. all values flushed but need to update the indicator
err = r.flushLiteral(true)
}
return
}
r.litCount += int32(len(r.buffer))
ngroups := r.litCount / 8
if ngroups+1 >= (1 << 6) {
// we need to start a new literal run because the indicator byte we've reserved
// cannot store any more values
err = r.flushLiteral(true)
} else {
err = r.flushLiteral(done)
}
r.repCount = 0
return
}
func (r *RleEncoder) flushLiteral(updateIndicator bool) (err error) {
if r.literalIndicatorOffset == -1 {
r.literalIndicatorOffset, err = r.w.SkipBytes(1)
if err != nil {
return
}
}
for _, val := range r.buffer {
if err = r.w.WriteValue(val, uint(r.BitWidth)); err != nil {
return
}
}
r.buffer = r.buffer[:0]
if updateIndicator {
// at this point we need to write the indicator byte for the literal run.
// we only reserve one byte, to allow for streaming writes of literal values.
// the logic makes sure we flush literal runs often enough to not overrun the 1 byte.
ngroups := r.litCount / 8
r.indicatorBuffer[0] = byte((ngroups << 1) | 1)
_, err = r.w.WriteAt(r.indicatorBuffer[:], int64(r.literalIndicatorOffset))
r.literalIndicatorOffset = -1
r.litCount = 0
}
return
}
func (r *RleEncoder) flushRepeated() (ret bool) {
indicator := r.repCount << 1
ret = r.w.WriteVlqInt(uint64(indicator))
ret = ret && r.w.WriteAligned(r.curVal, int(bitutil.BytesForBits(int64(r.BitWidth))))
r.repCount = 0
r.buffer = r.buffer[:0]
return
}
// Put buffers input values 8 at a time. after seeing all 8 values,
// it decides whether they should be encoded as a literal or repeated run.
func (r *RleEncoder) Put(value uint64) error {
if r.curVal == value {
r.repCount++
if r.repCount > 8 {
// this is just a continuation of the current run, no need to buffer the values
// NOTE this is the fast path for long repeated runs
return nil
}
} else {
if r.repCount >= 8 {
if !r.flushRepeated() {
return xerrors.New("failed to flush repeated value")
}
}
r.repCount = 1
r.curVal = value
}
r.buffer = append(r.buffer, value)
if len(r.buffer) == 8 {
return r.flushBuffered(false)
}
return nil
}
func (r *RleEncoder) Clear() {
r.curVal = 0
r.repCount = 0
r.buffer = r.buffer[:0]
r.litCount = 0
r.literalIndicatorOffset = -1
r.w.Clear()
}
|