1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pqarrow
import (
"context"
"encoding/binary"
"errors"
"fmt"
"math"
"time"
"unsafe"
"github.com/apache/arrow-go/v18/arrow"
"github.com/apache/arrow-go/v18/arrow/array"
"github.com/apache/arrow-go/v18/arrow/bitutil"
"github.com/apache/arrow-go/v18/arrow/decimal128"
"github.com/apache/arrow-go/v18/arrow/decimal256"
"github.com/apache/arrow-go/v18/arrow/memory"
"github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/parquet"
"github.com/apache/arrow-go/v18/parquet/file"
"github.com/apache/arrow-go/v18/parquet/internal/debug"
)
// get the count of the number of leaf arrays for the type
func calcLeafCount(dt arrow.DataType) int {
switch dt := dt.(type) {
case arrow.ExtensionType:
return calcLeafCount(dt.StorageType())
case arrow.NestedType:
nleaves := 0
for _, f := range dt.Fields() {
nleaves += calcLeafCount(f.Type)
}
return nleaves
case *arrow.DictionaryType:
return calcLeafCount(dt.ValueType)
default:
return 1
}
}
func nullableRoot(manifest *SchemaManifest, field *SchemaField) bool {
curField := field
nullable := field.Field.Nullable
for curField != nil {
nullable = curField.Field.Nullable
curField = manifest.GetParent(curField)
}
return nullable
}
// arrowColumnWriter is a convenience object for easily writing arrow data to a specific
// set of columns in a parquet file. Since a single arrow array can itself be a nested type
// consisting of multiple columns of data, this will write to all of the appropriate leaves in
// the parquet file, allowing easy writing of nested columns.
type arrowColumnWriter struct {
builders []*multipathLevelBuilder
leafCount int
colIdx int
rgw file.RowGroupWriter
}
// newArrowColumnWriter returns a new writer using the chunked array to determine the number of leaf columns,
// and the provided schema manifest to determine the paths for writing the columns.
//
// Using an arrow column writer is a convenience to avoid having to process the arrow array yourself
// and determine the correct definition and repetition levels manually.
func newArrowColumnWriter(data *arrow.Chunked, offset, size int64, manifest *SchemaManifest, rgw file.RowGroupWriter, leafColIdx int) (arrowColumnWriter, error) {
if data.Len() == 0 {
return arrowColumnWriter{leafCount: calcLeafCount(data.DataType()), rgw: rgw}, nil
}
var (
absPos int64
chunkOffset int64
chunkIdx int
values int64
)
for idx, chnk := range data.Chunks() {
chunkIdx = idx
if absPos >= offset {
break
}
chunkLen := int64(chnk.Len())
if absPos+chunkLen > offset {
chunkOffset = offset - absPos
break
}
absPos += chunkLen
}
if absPos >= int64(data.Len()) {
return arrowColumnWriter{}, errors.New("cannot write data at offset past end of chunked array")
}
leafCount := calcLeafCount(data.DataType())
isNullable := false
// row group writer hasn't been advanced yet so add 1 to the current
// which is the one this instance will start writing for
// colIdx := rgw.CurrentColumn() + 1
schemaField, err := manifest.GetColumnField(leafColIdx)
if err != nil {
return arrowColumnWriter{}, err
}
isNullable = nullableRoot(manifest, schemaField)
builders := make([]*multipathLevelBuilder, 0)
for values < size {
chunk := data.Chunk(chunkIdx)
available := int64(chunk.Len() - int(chunkOffset))
chunkWriteSize := utils.Min(size-values, available)
// the chunk offset will be 0 here except for possibly the first chunk
// because of the above advancing logic
arrToWrite := array.NewSlice(chunk, chunkOffset, chunkOffset+chunkWriteSize)
defer arrToWrite.Release()
if arrToWrite.Len() > 0 {
bldr, err := newMultipathLevelBuilder(arrToWrite, isNullable)
if err != nil {
return arrowColumnWriter{}, nil
}
if leafCount != bldr.leafCount() {
return arrowColumnWriter{}, fmt.Errorf("data type leaf_count != builder leaf_count: %d - %d", leafCount, bldr.leafCount())
}
builders = append(builders, bldr)
}
if chunkWriteSize == available {
chunkOffset = 0
chunkIdx++
}
values += chunkWriteSize
}
return arrowColumnWriter{builders: builders, leafCount: leafCount, rgw: rgw, colIdx: leafColIdx}, nil
}
func (acw *arrowColumnWriter) Write(ctx context.Context) error {
arrCtx := arrowCtxFromContext(ctx)
for leafIdx := 0; leafIdx < acw.leafCount; leafIdx++ {
var (
cw file.ColumnChunkWriter
err error
)
if acw.rgw.Buffered() {
cw, err = acw.rgw.(file.BufferedRowGroupWriter).Column(acw.colIdx + leafIdx)
} else {
cw, err = acw.rgw.(file.SerialRowGroupWriter).NextColumn()
}
if err != nil {
return err
}
for _, bldr := range acw.builders {
if leafIdx == 0 {
defer bldr.Release()
}
res, err := bldr.write(leafIdx, arrCtx)
if err != nil {
return err
}
defer res.Release()
if len(res.postListVisitedElems) != 1 {
return errors.New("lists with non-zero length null components are not supported")
}
rng := res.postListVisitedElems[0]
values := array.NewSlice(res.leafArr, rng.start, rng.end)
defer values.Release()
if err = WriteArrowToColumn(ctx, cw, values, res.defLevels, res.repLevels, res.leafIsNullable); err != nil {
return err
}
}
}
return nil
}
// WriteArrowToColumn writes apache arrow columnar data directly to a ColumnWriter.
// Returns non-nil error if the array data type is not compatible with the concrete
// writer type.
//
// leafArr is always a primitive (possibly dictionary encoded type).
// Leaf_field_nullable indicates whether the leaf array is considered nullable
// according to its schema in a Table or its parent array.
func WriteArrowToColumn(ctx context.Context, cw file.ColumnChunkWriter, leafArr arrow.Array, defLevels, repLevels []int16, leafFieldNullable bool) error {
// Leaf nulls are canonical when there is only a single null element after a list
// and it is at the leaf.
colLevelInfo := cw.LevelInfo()
singleNullable := (colLevelInfo.DefLevel == colLevelInfo.RepeatedAncestorDefLevel+1) && leafFieldNullable
maybeParentNulls := colLevelInfo.HasNullableValues() && !singleNullable
if maybeParentNulls && !cw.HasBitsBuffer() {
buf := memory.NewResizableBuffer(cw.Properties().Allocator())
buf.Resize(int(bitutil.BytesForBits(cw.Properties().WriteBatchSize())))
cw.SetBitsBuffer(buf)
}
arrCtx := arrowCtxFromContext(ctx)
defer func() {
if arrCtx.dataBuffer != nil {
arrCtx.dataBuffer.Release()
arrCtx.dataBuffer = nil
}
}()
if leafArr.DataType().ID() == arrow.DICTIONARY {
return writeDictionaryArrow(arrCtx, cw, leafArr, defLevels, repLevels, maybeParentNulls)
}
return writeDenseArrow(arrCtx, cw, leafArr, defLevels, repLevels, maybeParentNulls)
}
type binaryarr interface {
ValueOffsets() []int32
}
type binary64arr interface {
ValueOffsets() []int64
}
func writeDenseArrow(ctx *arrowWriteContext, cw file.ColumnChunkWriter, leafArr arrow.Array, defLevels, repLevels []int16, maybeParentNulls bool) (err error) {
if leafArr.DataType().ID() == arrow.EXTENSION {
extensionArray := leafArr.(array.ExtensionArray)
// Replace leafArr with its underlying storage array
leafArr = extensionArray.Storage()
}
noNulls := cw.Descr().SchemaNode().RepetitionType() == parquet.Repetitions.Required || leafArr.NullN() == 0
if ctx.dataBuffer == nil {
ctx.dataBuffer = memory.NewResizableBuffer(cw.Properties().Allocator())
}
switch wr := cw.(type) {
case *file.BooleanColumnChunkWriter:
if leafArr.DataType().ID() != arrow.BOOL {
return fmt.Errorf("type mismatch, column is %s, array is %s", cw.Type(), leafArr.DataType().ID())
}
// TODO(mtopol): optimize this so that we aren't converting from
// the bitmap -> []bool -> bitmap anymore
if leafArr.Len() == 0 {
_, err = wr.WriteBatch(nil, defLevels, repLevels)
break
}
ctx.dataBuffer.ResizeNoShrink(leafArr.Len())
buf := ctx.dataBuffer.Bytes()
data := *(*[]bool)(unsafe.Pointer(&buf))
for idx := range data {
data[idx] = leafArr.(*array.Boolean).Value(idx)
}
if !maybeParentNulls && noNulls {
wr.WriteBatch(data, defLevels, repLevels)
} else {
wr.WriteBatchSpaced(data, defLevels, repLevels, leafArr.NullBitmapBytes(), int64(leafArr.Data().Offset()))
}
case *file.Int32ColumnChunkWriter:
var data []int32
switch leafArr.DataType().ID() {
case arrow.INT32:
data = leafArr.(*array.Int32).Int32Values()
case arrow.DATE32, arrow.UINT32:
if leafArr.Data().Buffers()[1] != nil {
data = arrow.Int32Traits.CastFromBytes(leafArr.Data().Buffers()[1].Bytes())
data = data[leafArr.Data().Offset() : leafArr.Data().Offset()+leafArr.Len()]
}
case arrow.TIME32:
if leafArr.DataType().(*arrow.Time32Type).Unit != arrow.Second {
if leafArr.Data().Buffers()[1] != nil {
data = arrow.Int32Traits.CastFromBytes(leafArr.Data().Buffers()[1].Bytes())
data = data[leafArr.Data().Offset() : leafArr.Data().Offset()+leafArr.Len()]
}
} else { // coerce time32 if necessary by multiplying by 1000
ctx.dataBuffer.ResizeNoShrink(arrow.Int32Traits.BytesRequired(leafArr.Len()))
data = arrow.Int32Traits.CastFromBytes(ctx.dataBuffer.Bytes())
for idx, val := range leafArr.(*array.Time32).Time32Values() {
data[idx] = int32(val) * 1000
}
}
case arrow.NULL:
wr.WriteBatchSpaced(nil, defLevels, repLevels, leafArr.NullBitmapBytes(), 0)
return
default:
// simple integral cases, parquet physical storage is int32 or int64
// so we have to create a new array of int32's for anything smaller than
// 32-bits
ctx.dataBuffer.ResizeNoShrink(arrow.Int32Traits.BytesRequired(leafArr.Len()))
data = arrow.Int32Traits.CastFromBytes(ctx.dataBuffer.Bytes())
switch leafArr.DataType().ID() {
case arrow.UINT8:
for idx, val := range leafArr.(*array.Uint8).Uint8Values() {
data[idx] = int32(val)
}
case arrow.INT8:
for idx, val := range leafArr.(*array.Int8).Int8Values() {
data[idx] = int32(val)
}
case arrow.UINT16:
for idx, val := range leafArr.(*array.Uint16).Uint16Values() {
data[idx] = int32(val)
}
case arrow.INT16:
for idx, val := range leafArr.(*array.Int16).Int16Values() {
data[idx] = int32(val)
}
case arrow.DATE64:
for idx, val := range leafArr.(*array.Date64).Date64Values() {
data[idx] = int32(val / 86400000) // coerce date64 values
}
case arrow.DECIMAL128:
for idx, val := range leafArr.(*array.Decimal128).Values() {
debug.Assert(val.HighBits() == 0 || val.HighBits() == -1, "casting Decimal128 greater than the value range; high bits must be 0 or -1")
debug.Assert(val.LowBits() <= math.MaxUint32, "casting Decimal128 to int32 when value > MaxUint32")
data[idx] = int32(val.LowBits())
}
case arrow.DECIMAL256:
for idx, val := range leafArr.(*array.Decimal256).Values() {
debug.Assert(val.Array()[3] == 0 || val.Array()[3] == 0xFFFFFFFF, "casting Decimal128 greater than the value range; high bits must be 0 or -1")
debug.Assert(val.LowBits() <= math.MaxUint32, "casting Decimal128 to int32 when value > MaxUint32")
data[idx] = int32(val.LowBits())
}
default:
return fmt.Errorf("type mismatch, column is int32 writer, arrow array is %s, and not a compatible type", leafArr.DataType().Name())
}
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
nulls := leafArr.NullBitmapBytes()
wr.WriteBatchSpaced(data, defLevels, repLevels, nulls, int64(leafArr.Data().Offset()))
}
case *file.Int64ColumnChunkWriter:
var data []int64
switch leafArr.DataType().ID() {
case arrow.TIMESTAMP:
tstype := leafArr.DataType().(*arrow.TimestampType)
if ctx.props.coerceTimestamps {
// user explicitly requested coercion to specific unit
if tstype.Unit == ctx.props.coerceTimestampUnit {
// no conversion necessary
if leafArr.Data().Buffers()[1] != nil {
data = arrow.Int64Traits.CastFromBytes(leafArr.Data().Buffers()[1].Bytes())
data = data[leafArr.Data().Offset() : leafArr.Data().Offset()+leafArr.Len()]
}
} else {
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
if err := writeCoerceTimestamps(leafArr.(*array.Timestamp), &ctx.props, data); err != nil {
return err
}
}
} else if (cw.Properties().Version() == parquet.V1_0 || cw.Properties().Version() == parquet.V2_4) && tstype.Unit == arrow.Nanosecond {
// absent superceding user instructions, when writing a Parquet Version <=2.4 File,
// timestamps in nanoseconds are coerced to microseconds
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
p := NewArrowWriterProperties(WithCoerceTimestamps(arrow.Microsecond), WithTruncatedTimestamps(true))
if err := writeCoerceTimestamps(leafArr.(*array.Timestamp), &p, data); err != nil {
return err
}
} else if tstype.Unit == arrow.Second {
// absent superceding user instructions, timestamps in seconds are coerced
// to milliseconds
p := NewArrowWriterProperties(WithCoerceTimestamps(arrow.Millisecond))
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
if err := writeCoerceTimestamps(leafArr.(*array.Timestamp), &p, data); err != nil {
return err
}
} else {
// no data conversion necessary
if leafArr.Data().Buffers()[1] != nil {
data = arrow.Int64Traits.CastFromBytes(leafArr.Data().Buffers()[1].Bytes())
data = data[leafArr.Data().Offset() : leafArr.Data().Offset()+leafArr.Len()]
}
}
case arrow.UINT32:
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
for idx, val := range leafArr.(*array.Uint32).Uint32Values() {
data[idx] = int64(val)
}
case arrow.INT64:
data = leafArr.(*array.Int64).Int64Values()
case arrow.UINT64, arrow.TIME64, arrow.DATE64:
if leafArr.Data().Buffers()[1] != nil {
data = arrow.Int64Traits.CastFromBytes(leafArr.Data().Buffers()[1].Bytes())
data = data[leafArr.Data().Offset() : leafArr.Data().Offset()+leafArr.Len()]
}
case arrow.DECIMAL128:
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
for idx, val := range leafArr.(*array.Decimal128).Values() {
debug.Assert(val.HighBits() == 0 || val.HighBits() == -1, "trying to cast Decimal128 to int64 greater than range, high bits must be 0 or -1")
data[idx] = int64(val.LowBits())
}
case arrow.DECIMAL256:
ctx.dataBuffer.ResizeNoShrink(arrow.Int64Traits.BytesRequired(leafArr.Len()))
data = arrow.Int64Traits.CastFromBytes(ctx.dataBuffer.Bytes())
for idx, val := range leafArr.(*array.Decimal256).Values() {
debug.Assert(val.Array()[3] == 0 || val.Array()[3] == 0xFFFFFFFF, "trying to cast Decimal128 to int64 greater than range, high bits must be 0 or -1")
data[idx] = int64(val.LowBits())
}
default:
return fmt.Errorf("unimplemented arrow type to write to int64 column: %s", leafArr.DataType().Name())
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
nulls := leafArr.NullBitmapBytes()
wr.WriteBatchSpaced(data, defLevels, repLevels, nulls, int64(leafArr.Data().Offset()))
}
case *file.Int96ColumnChunkWriter:
if leafArr.DataType().ID() != arrow.TIMESTAMP {
return errors.New("unsupported arrow type to write to Int96 column")
}
ctx.dataBuffer.ResizeNoShrink(parquet.Int96Traits.BytesRequired(leafArr.Len()))
data := parquet.Int96Traits.CastFromBytes(ctx.dataBuffer.Bytes())
input := leafArr.(*array.Timestamp).TimestampValues()
unit := leafArr.DataType().(*arrow.TimestampType).Unit
for idx, val := range input {
arrowTimestampToImpalaTimestamp(unit, int64(val), &data[idx])
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
nulls := leafArr.NullBitmapBytes()
wr.WriteBatchSpaced(data, defLevels, repLevels, nulls, int64(leafArr.Data().Offset()))
}
case *file.Float32ColumnChunkWriter:
if leafArr.DataType().ID() != arrow.FLOAT32 {
return errors.New("invalid column type to write to Float")
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(leafArr.(*array.Float32).Float32Values(), defLevels, repLevels)
} else {
wr.WriteBatchSpaced(leafArr.(*array.Float32).Float32Values(), defLevels, repLevels, leafArr.NullBitmapBytes(), int64(leafArr.Data().Offset()))
}
case *file.Float64ColumnChunkWriter:
if leafArr.DataType().ID() != arrow.FLOAT64 {
return errors.New("invalid column type to write to Float")
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(leafArr.(*array.Float64).Float64Values(), defLevels, repLevels)
} else {
wr.WriteBatchSpaced(leafArr.(*array.Float64).Float64Values(), defLevels, repLevels, leafArr.NullBitmapBytes(), int64(leafArr.Data().Offset()))
}
case *file.ByteArrayColumnChunkWriter:
var (
buffer = leafArr.Data().Buffers()[2]
valueBuf []byte
)
if buffer == nil {
valueBuf = []byte{}
} else {
valueBuf = buffer.Bytes()
}
data := make([]parquet.ByteArray, leafArr.Len())
switch leafArr.DataType().ID() {
case arrow.BINARY, arrow.STRING:
offsets := leafArr.(binaryarr).ValueOffsets()
for i := range data {
data[i] = parquet.ByteArray(valueBuf[offsets[i]:offsets[i+1]])
}
case arrow.LARGE_BINARY, arrow.LARGE_STRING:
offsets := leafArr.(binary64arr).ValueOffsets()
for i := range data {
data[i] = parquet.ByteArray(valueBuf[offsets[i]:offsets[i+1]])
}
default:
return fmt.Errorf("%w: invalid column type to write to ByteArray: %s", arrow.ErrInvalid, leafArr.DataType().Name())
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
wr.WriteBatchSpaced(data, defLevels, repLevels, leafArr.NullBitmapBytes(), int64(leafArr.Data().Offset()))
}
case *file.FixedLenByteArrayColumnChunkWriter:
switch dt := leafArr.DataType().(type) {
case *arrow.FixedSizeBinaryType:
data := make([]parquet.FixedLenByteArray, leafArr.Len())
for idx := range data {
data[idx] = leafArr.(*array.FixedSizeBinary).Value(idx)
}
if !maybeParentNulls && noNulls {
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
wr.WriteBatchSpaced(data, defLevels, repLevels, leafArr.NullBitmapBytes(), int64(leafArr.Data().Offset()))
}
case *arrow.Decimal128Type:
// parquet decimal are stored with FixedLength values where the length is
// proportional to the precision. Arrow's Decimal are always stored with 16/32
// bytes. thus the internal FLBA must be adjusted by the offset calculation
offset := int(bitutil.BytesForBits(int64(dt.BitWidth()))) - int(DecimalSize(dt.Precision))
ctx.dataBuffer.ResizeNoShrink((leafArr.Len() - leafArr.NullN()) * dt.BitWidth())
scratch := ctx.dataBuffer.Bytes()
typeLen := wr.Descr().TypeLength()
fixDecimalEndianness := func(in decimal128.Num) parquet.FixedLenByteArray {
out := scratch[offset : offset+typeLen]
binary.BigEndian.PutUint64(scratch, uint64(in.HighBits()))
binary.BigEndian.PutUint64(scratch[arrow.Uint64SizeBytes:], in.LowBits())
scratch = scratch[2*arrow.Uint64SizeBytes:]
return out
}
data := make([]parquet.FixedLenByteArray, leafArr.Len())
arr := leafArr.(*array.Decimal128)
if leafArr.NullN() == 0 {
for idx := range data {
data[idx] = fixDecimalEndianness(arr.Value(idx))
}
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
for idx := range data {
if arr.IsValid(idx) {
data[idx] = fixDecimalEndianness(arr.Value(idx))
}
}
wr.WriteBatchSpaced(data, defLevels, repLevels, arr.NullBitmapBytes(), int64(arr.Data().Offset()))
}
case *arrow.Decimal256Type:
// parquet decimal are stored with FixedLength values where the length is
// proportional to the precision. Arrow's Decimal are always stored with 16/32
// bytes. thus the internal FLBA must be adjusted by the offset calculation
offset := int(bitutil.BytesForBits(int64(dt.BitWidth()))) - int(DecimalSize(dt.Precision))
ctx.dataBuffer.ResizeNoShrink((leafArr.Len() - leafArr.NullN()) * dt.BitWidth())
scratch := ctx.dataBuffer.Bytes()
typeLen := wr.Descr().TypeLength()
fixDecimalEndianness := func(in decimal256.Num) parquet.FixedLenByteArray {
out := scratch[offset : offset+typeLen]
vals := in.Array()
binary.BigEndian.PutUint64(scratch, vals[3])
binary.BigEndian.PutUint64(scratch[arrow.Uint64SizeBytes:], vals[2])
binary.BigEndian.PutUint64(scratch[2*arrow.Uint64SizeBytes:], vals[1])
binary.BigEndian.PutUint64(scratch[3*arrow.Uint64SizeBytes:], vals[0])
scratch = scratch[4*arrow.Uint64SizeBytes:]
return out
}
data := make([]parquet.FixedLenByteArray, leafArr.Len())
arr := leafArr.(*array.Decimal256)
if leafArr.NullN() == 0 {
for idx := range data {
data[idx] = fixDecimalEndianness(arr.Value(idx))
}
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
for idx := range data {
if arr.IsValid(idx) {
data[idx] = fixDecimalEndianness(arr.Value(idx))
}
}
wr.WriteBatchSpaced(data, defLevels, repLevels, arr.NullBitmapBytes(), int64(arr.Data().Offset()))
}
case *arrow.Float16Type:
typeLen := wr.Descr().TypeLength()
if typeLen != arrow.Float16SizeBytes {
return fmt.Errorf("%w: invalid FixedLenByteArray length to write from float16 column: %d", arrow.ErrInvalid, typeLen)
}
arr := leafArr.(*array.Float16)
rawValues := arrow.Float16Traits.CastToBytes(arr.Values())
data := make([]parquet.FixedLenByteArray, arr.Len())
if arr.NullN() == 0 {
for idx := range data {
offset := idx * typeLen
data[idx] = rawValues[offset : offset+typeLen]
}
_, err = wr.WriteBatch(data, defLevels, repLevels)
} else {
for idx := range data {
if arr.IsValid(idx) {
offset := idx * typeLen
data[idx] = rawValues[offset : offset+typeLen]
}
}
wr.WriteBatchSpaced(data, defLevels, repLevels, arr.NullBitmapBytes(), int64(arr.Data().Offset()))
}
default:
return fmt.Errorf("%w: invalid column type to write to FixedLenByteArray: %s", arrow.ErrInvalid, leafArr.DataType().Name())
}
default:
return errors.New("unknown column writer physical type")
}
return
}
type coerceType int8
const (
coerceInvalid coerceType = iota
coerceDivide
coerceMultiply
)
type coercePair struct {
typ coerceType
factor int64
}
var factors = map[arrow.TimeUnit]map[arrow.TimeUnit]coercePair{
arrow.Second: {
arrow.Second: {coerceInvalid, 0},
arrow.Millisecond: {coerceMultiply, 1000},
arrow.Microsecond: {coerceMultiply, 1000000},
arrow.Nanosecond: {coerceMultiply, 1000000000},
},
arrow.Millisecond: {
arrow.Second: {coerceInvalid, 0},
arrow.Millisecond: {coerceMultiply, 1},
arrow.Microsecond: {coerceMultiply, 1000},
arrow.Nanosecond: {coerceMultiply, 1000000},
},
arrow.Microsecond: {
arrow.Second: {coerceInvalid, 0},
arrow.Millisecond: {coerceDivide, 1000},
arrow.Microsecond: {coerceMultiply, 1},
arrow.Nanosecond: {coerceMultiply, 1000},
},
arrow.Nanosecond: {
arrow.Second: {coerceInvalid, 0},
arrow.Millisecond: {coerceDivide, 1000000},
arrow.Microsecond: {coerceDivide, 1000},
arrow.Nanosecond: {coerceMultiply, 1},
},
}
func writeCoerceTimestamps(arr *array.Timestamp, props *ArrowWriterProperties, out []int64) error {
source := arr.DataType().(*arrow.TimestampType).Unit
target := props.coerceTimestampUnit
truncation := props.allowTruncatedTimestamps
vals := arr.TimestampValues()
multiply := func(factor int64) error {
for idx, val := range vals {
out[idx] = int64(val) * factor
}
return nil
}
divide := func(factor int64) error {
for idx, val := range vals {
if !truncation && arr.IsValid(idx) && (int64(val)%factor != 0) {
return fmt.Errorf("casting from %s to %s would lose data", source, target)
}
out[idx] = int64(val) / factor
}
return nil
}
coerce := factors[source][target]
switch coerce.typ {
case coerceMultiply:
return multiply(coerce.factor)
case coerceDivide:
return divide(coerce.factor)
default:
panic("invalid coercion")
}
}
const (
julianEpochOffsetDays int64 = 2440588
nanoSecondsPerDay = 24 * 60 * 60 * 1000 * 1000 * 1000
)
func arrowTimestampToImpalaTimestamp(unit arrow.TimeUnit, t int64, out *parquet.Int96) {
var d time.Duration
switch unit {
case arrow.Second:
d = time.Duration(t) * time.Second
case arrow.Microsecond:
d = time.Duration(t) * time.Microsecond
case arrow.Millisecond:
d = time.Duration(t) * time.Millisecond
case arrow.Nanosecond:
d = time.Duration(t) * time.Nanosecond
}
julianDays := (int64(d.Hours()) / 24) + julianEpochOffsetDays
lastDayNanos := t % (nanoSecondsPerDay)
binary.LittleEndian.PutUint64((*out)[:8], uint64(lastDayNanos))
binary.LittleEndian.PutUint32((*out)[8:], uint32(julianDays))
}
|