File: schema.go

package info (click to toggle)
golang-github-apache-arrow-go 18.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,200 kB
  • sloc: asm: 477,547; ansic: 5,369; cpp: 759; sh: 585; makefile: 319; python: 190; sed: 5
file content (1179 lines) | stat: -rw-r--r-- 39,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package pqarrow

import (
	"encoding/base64"
	"fmt"
	"math"
	"strconv"

	"github.com/apache/arrow-go/v18/arrow"
	"github.com/apache/arrow-go/v18/arrow/decimal128"
	"github.com/apache/arrow-go/v18/arrow/flight"
	"github.com/apache/arrow-go/v18/arrow/memory"
	"github.com/apache/arrow-go/v18/parquet"
	"github.com/apache/arrow-go/v18/parquet/file"
	"github.com/apache/arrow-go/v18/parquet/metadata"
	"github.com/apache/arrow-go/v18/parquet/schema"
	"golang.org/x/xerrors"
)

// SchemaField is a holder that defines a specific logical field in the schema
// which could potentially refer to multiple physical columns in the underlying
// parquet file if it is a nested type.
//
// ColIndex is only populated (not -1) when it is a leaf column.
type SchemaField struct {
	Field     *arrow.Field
	Children  []SchemaField
	ColIndex  int
	LevelInfo file.LevelInfo
}

// IsLeaf returns true if the SchemaField is a leaf column, ie: ColIndex != -1
func (s *SchemaField) IsLeaf() bool { return s.ColIndex != -1 }

// SchemaManifest represents a full manifest for mapping a Parquet schema
// to an arrow Schema.
type SchemaManifest struct {
	descr        *schema.Schema
	OriginSchema *arrow.Schema
	SchemaMeta   *arrow.Metadata

	ColIndexToField map[int]*SchemaField
	ChildToParent   map[*SchemaField]*SchemaField
	Fields          []SchemaField
}

// GetColumnField returns the corresponding Field for a given column index.
func (sm *SchemaManifest) GetColumnField(index int) (*SchemaField, error) {
	if field, ok := sm.ColIndexToField[index]; ok {
		return field, nil
	}
	return nil, fmt.Errorf("Column Index %d not found in schema manifest", index)
}

// GetParent gets the parent field for a given field if it is a nested column, otherwise
// returns nil if there is no parent field.
func (sm *SchemaManifest) GetParent(field *SchemaField) *SchemaField {
	if p, ok := sm.ChildToParent[field]; ok {
		return p
	}
	return nil
}

// GetFieldIndices coalesces a list of field indices (relative to the equivalent arrow::Schema) which
// correspond to the column root (first node below the parquet schema's root group) of
// each leaf referenced in column_indices.
//
// For example, for leaves `a.b.c`, `a.b.d.e`, and `i.j.k` (column_indices=[0,1,3])
// the roots are `a` and `i` (return=[0,2]).
//
// root
// -- a  <------
// -- -- b  |  |
// -- -- -- c  |
// -- -- -- d  |
// -- -- -- -- e
// -- f
// -- -- g
// -- -- -- h
// -- i  <---
// -- -- j  |
// -- -- -- k
func (sm *SchemaManifest) GetFieldIndices(indices []int) ([]int, error) {
	added := make(map[int]bool)
	ret := make([]int, 0)

	for _, idx := range indices {
		if idx < 0 || idx >= sm.descr.NumColumns() {
			return nil, fmt.Errorf("column index %d is not valid", idx)
		}

		fieldNode := sm.descr.ColumnRoot(idx)
		fieldIdx := sm.descr.Root().FieldIndexByField(fieldNode)
		if fieldIdx == -1 {
			return nil, fmt.Errorf("column index %d is not valid", idx)
		}

		if _, ok := added[fieldIdx]; !ok {
			ret = append(ret, fieldIdx)
			added[fieldIdx] = true
		}
	}
	return ret, nil
}

// ExtensionCustomParquetType is an interface that Arrow ExtensionTypes may implement
// to specify the target LogicalType to use when converting to Parquet.
//
// The PrimitiveType is not configurable, and is determined by a fixed mapping from
// the extension's StorageType to a Parquet type (see getParquetType in pqarrow source).
type ExtensionCustomParquetType interface {
	ParquetLogicalType() schema.LogicalType
}

func isDictionaryReadSupported(dt arrow.DataType) bool {
	return arrow.IsBinaryLike(dt.ID())
}

func arrowTimestampToLogical(typ *arrow.TimestampType, unit arrow.TimeUnit) schema.LogicalType {
	isAdjustedToUTC := typ.TimeZone != ""

	// for forward compatibility reasons, and because there's no other way
	// to signal to old readers that values are timestamps, we force
	// the convertedtype field to be set to the corresponding TIMESTAMP_* value.
	// this does cause some ambiguity as parquet readers have not been consistent
	// about the interpretation of TIMESTAMP_* values as being utc-normalized
	// see ARROW-5878
	var scunit schema.TimeUnitType
	switch unit {
	case arrow.Millisecond:
		scunit = schema.TimeUnitMillis
	case arrow.Microsecond:
		scunit = schema.TimeUnitMicros
	case arrow.Nanosecond:
		scunit = schema.TimeUnitNanos
	case arrow.Second:
		// no equivalent in parquet
		return schema.NoLogicalType{}
	}

	return schema.NewTimestampLogicalTypeForce(isAdjustedToUTC, scunit)
}

func getTimestampMeta(typ *arrow.TimestampType, props *parquet.WriterProperties, arrprops ArrowWriterProperties) (parquet.Type, schema.LogicalType, error) {
	coerce := arrprops.coerceTimestamps
	target := typ.Unit
	if coerce {
		target = arrprops.coerceTimestampUnit
	}

	// user is explicitly asking for int96, no logical type
	if arrprops.timestampAsInt96 && target == arrow.Nanosecond {
		return parquet.Types.Int96, schema.NoLogicalType{}, nil
	}

	physical := parquet.Types.Int64
	logicalType := arrowTimestampToLogical(typ, target)

	// user is explicitly asking for timestamp data to be converted to the specified
	// units (target) via coercion
	if coerce {
		if props.Version() == parquet.V1_0 || props.Version() == parquet.V2_4 {
			switch target {
			case arrow.Millisecond, arrow.Microsecond:
			case arrow.Nanosecond, arrow.Second:
				return physical, nil, fmt.Errorf("parquet version %s files can only coerce arrow timestamps to millis or micros", props.Version())
			}
		} else if target == arrow.Second {
			return physical, nil, fmt.Errorf("parquet version %s files can only coerce arrow timestamps to millis, micros or nanos", props.Version())
		}
		return physical, logicalType, nil
	}

	// the user implicitly wants timestamp data to retain its original time units
	// however the converted type field used to indicate logical types for parquet
	// version <=2.4 fields, does not allow for nanosecond time units and so nanos
	// must be coerced to micros
	if (props.Version() == parquet.V1_0 || props.Version() == parquet.V2_4) && typ.Unit == arrow.Nanosecond {
		logicalType = arrowTimestampToLogical(typ, arrow.Microsecond)
		return physical, logicalType, nil
	}

	// the user implicitly wants timestamp data to retain it's original time units,
	// however the arrow seconds time unit cannot be represented in parquet, so must
	// be coerced to milliseconds
	if typ.Unit == arrow.Second {
		logicalType = arrowTimestampToLogical(typ, arrow.Millisecond)
	}

	return physical, logicalType, nil
}

// DecimalSize returns the minimum number of bytes necessary to represent a decimal
// with the requested precision.
//
// Taken from the Apache Impala codebase. The comments next to the return values
// are the maximum value that can be represented in 2's complement with the returned
// number of bytes
func DecimalSize(precision int32) int32 {
	if precision < 1 {
		panic("precision must be >= 1")
	}

	// generated in python with:
	// >>> decimal_size = lambda prec: int(math.ceil((prec * math.log2(10) + 1) / 8))
	// >>> [-1] + [decimal_size(i) for i in range(1, 77)]
	var byteblock = [...]int32{
		-1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9,
		9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17,
		17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25,
		26, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 31, 31, 31, 32, 32,
	}

	if precision <= 76 {
		return byteblock[precision]
	}
	return int32(math.Ceil(float64(precision)/8.0)*math.Log2(10) + 1)
}

func repFromNullable(isnullable bool) parquet.Repetition {
	if isnullable {
		return parquet.Repetitions.Optional
	}
	return parquet.Repetitions.Required
}

func structToNode(typ *arrow.StructType, name string, nullable bool, props *parquet.WriterProperties, arrprops ArrowWriterProperties) (schema.Node, error) {
	if typ.NumFields() == 0 {
		return nil, fmt.Errorf("cannot write struct type '%s' with no children field to parquet. Consider adding a dummy child", name)
	}

	children := make(schema.FieldList, 0, typ.NumFields())
	for _, f := range typ.Fields() {
		n, err := fieldToNode(f.Name, f, props, arrprops)
		if err != nil {
			return nil, err
		}
		children = append(children, n)
	}

	return schema.NewGroupNode(name, repFromNullable(nullable), children, -1)
}

func fieldToNode(name string, field arrow.Field, props *parquet.WriterProperties, arrprops ArrowWriterProperties) (schema.Node, error) {
	repType := repFromNullable(field.Nullable)

	// Handle complex types i.e. GroupNodes
	switch field.Type.ID() {
	case arrow.NULL:
		if repType != parquet.Repetitions.Optional {
			return nil, xerrors.New("nulltype arrow field must be nullable")
		}
	case arrow.STRUCT:
		return structToNode(field.Type.(*arrow.StructType), field.Name, field.Nullable, props, arrprops)
	case arrow.FIXED_SIZE_LIST, arrow.LIST:
		elemField := field.Type.(arrow.ListLikeType).ElemField()

		child, err := fieldToNode(name, elemField, props, arrprops)
		if err != nil {
			return nil, err
		}

		return schema.ListOfWithName(name, child, repFromNullable(field.Nullable), -1)
	case arrow.DICTIONARY:
		// parquet has no dictionary type, dictionary is encoding, not schema level
		dictType := field.Type.(*arrow.DictionaryType)
		return fieldToNode(name, arrow.Field{Name: name, Type: dictType.ValueType, Nullable: field.Nullable, Metadata: field.Metadata},
			props, arrprops)
	case arrow.MAP:
		mapType := field.Type.(*arrow.MapType)
		keyNode, err := fieldToNode("key", mapType.KeyField(), props, arrprops)
		if err != nil {
			return nil, err
		}

		valueNode, err := fieldToNode("value", mapType.ItemField(), props, arrprops)
		if err != nil {
			return nil, err
		}

		if arrprops.noMapLogicalType {
			keyval := schema.FieldList{keyNode, valueNode}
			keyvalNode, err := schema.NewGroupNode("key_value", parquet.Repetitions.Repeated, keyval, -1)
			if err != nil {
				return nil, err
			}
			return schema.NewGroupNode(field.Name, repFromNullable(field.Nullable), schema.FieldList{
				keyvalNode,
			}, -1)
		}
		return schema.MapOf(field.Name, keyNode, valueNode, repFromNullable(field.Nullable), -1)
	}

	// Not a GroupNode
	typ, logicalType, length, err := getParquetType(field.Type, props, arrprops)
	if err != nil {
		return nil, err
	}

	return schema.NewPrimitiveNodeLogical(name, repType, logicalType, typ, length, fieldIDFromMeta(field.Metadata))
}

const fieldIDKey = "PARQUET:field_id"

func fieldIDFromMeta(m arrow.Metadata) int32 {
	if m.Len() == 0 {
		return -1
	}

	key := m.FindKey(fieldIDKey)
	if key < 0 {
		return -1
	}

	id, err := strconv.ParseInt(m.Values()[key], 10, 32)
	if err != nil {
		return -1
	}

	if id < 0 {
		return -1
	}

	return int32(id)
}

// ToParquet generates a Parquet Schema from an arrow Schema using the given properties to make
// decisions when determining the logical/physical types of the columns.
func ToParquet(sc *arrow.Schema, props *parquet.WriterProperties, arrprops ArrowWriterProperties) (*schema.Schema, error) {
	if props == nil {
		props = parquet.NewWriterProperties()
	}

	nodes := make(schema.FieldList, 0, sc.NumFields())
	for _, f := range sc.Fields() {
		n, err := fieldToNode(f.Name, f, props, arrprops)
		if err != nil {
			return nil, err
		}
		nodes = append(nodes, n)
	}

	root, err := schema.NewGroupNode(props.RootName(), props.RootRepetition(), nodes, -1)
	if err != nil {
		return nil, err
	}

	return schema.NewSchema(root), err
}

type schemaTree struct {
	manifest *SchemaManifest

	schema *schema.Schema
	props  *ArrowReadProperties
}

func (s schemaTree) LinkParent(child, parent *SchemaField) {
	s.manifest.ChildToParent[child] = parent
}

func (s schemaTree) RecordLeaf(leaf *SchemaField) {
	s.manifest.ColIndexToField[leaf.ColIndex] = leaf
}

func arrowInt(log schema.IntLogicalType) (arrow.DataType, error) {
	switch log.BitWidth() {
	case 8:
		if log.IsSigned() {
			return arrow.PrimitiveTypes.Int8, nil
		}
		return arrow.PrimitiveTypes.Uint8, nil
	case 16:
		if log.IsSigned() {
			return arrow.PrimitiveTypes.Int16, nil
		}
		return arrow.PrimitiveTypes.Uint16, nil
	case 32:
		if log.IsSigned() {
			return arrow.PrimitiveTypes.Int32, nil
		}
		return arrow.PrimitiveTypes.Uint32, nil
	case 64:
		if log.IsSigned() {
			return arrow.PrimitiveTypes.Int64, nil
		}
		return arrow.PrimitiveTypes.Uint64, nil
	default:
		return nil, xerrors.New("invalid logical type for int32")
	}
}

func arrowTime32(logical schema.TimeLogicalType) (arrow.DataType, error) {
	if logical.TimeUnit() == schema.TimeUnitMillis {
		return arrow.FixedWidthTypes.Time32ms, nil
	}

	return nil, xerrors.New(logical.String() + " cannot annotate a time32")
}

func arrowTime64(logical schema.TimeLogicalType) (arrow.DataType, error) {
	switch logical.TimeUnit() {
	case schema.TimeUnitMicros:
		return arrow.FixedWidthTypes.Time64us, nil
	case schema.TimeUnitNanos:
		return arrow.FixedWidthTypes.Time64ns, nil
	default:
		return nil, xerrors.New(logical.String() + " cannot annotate int64")
	}
}

func arrowTimestamp(logical schema.TimestampLogicalType) (arrow.DataType, error) {
	tz := ""

	// ConvertedTypes are adjusted to UTC per backward compatibility guidelines
	// https://github.com/apache/parquet-format/blob/eb4b31c1d64a01088d02a2f9aefc6c17c54cc6fc/LogicalTypes.md?plain=1#L480-L485
	if logical.IsAdjustedToUTC() || logical.IsFromConvertedType() {
		tz = "UTC"
	}

	switch logical.TimeUnit() {
	case schema.TimeUnitMillis:
		return &arrow.TimestampType{TimeZone: tz, Unit: arrow.Millisecond}, nil
	case schema.TimeUnitMicros:
		return &arrow.TimestampType{TimeZone: tz, Unit: arrow.Microsecond}, nil
	case schema.TimeUnitNanos:
		return &arrow.TimestampType{TimeZone: tz, Unit: arrow.Nanosecond}, nil
	default:
		return nil, xerrors.New("Unrecognized unit in timestamp logical type " + logical.String())
	}
}

func arrowDecimal(logical schema.DecimalLogicalType) arrow.DataType {
	if logical.Precision() <= decimal128.MaxPrecision {
		return &arrow.Decimal128Type{Precision: logical.Precision(), Scale: logical.Scale()}
	}
	return &arrow.Decimal256Type{Precision: logical.Precision(), Scale: logical.Scale()}
}

func arrowFromInt32(logical schema.LogicalType) (arrow.DataType, error) {
	switch logtype := logical.(type) {
	case schema.NoLogicalType:
		return arrow.PrimitiveTypes.Int32, nil
	case schema.TimeLogicalType:
		return arrowTime32(logtype)
	case schema.DecimalLogicalType:
		return arrowDecimal(logtype), nil
	case schema.IntLogicalType:
		return arrowInt(logtype)
	case schema.DateLogicalType:
		return arrow.FixedWidthTypes.Date32, nil
	default:
		return nil, xerrors.New(logical.String() + " cannot annotate int32")
	}
}

func arrowFromInt64(logical schema.LogicalType) (arrow.DataType, error) {
	if logical.IsNone() {
		return arrow.PrimitiveTypes.Int64, nil
	}

	switch logtype := logical.(type) {
	case schema.IntLogicalType:
		return arrowInt(logtype)
	case schema.DecimalLogicalType:
		return arrowDecimal(logtype), nil
	case schema.TimeLogicalType:
		return arrowTime64(logtype)
	case schema.TimestampLogicalType:
		return arrowTimestamp(logtype)
	default:
		return nil, xerrors.New(logical.String() + " cannot annotate int64")
	}
}

func arrowFromByteArray(logical schema.LogicalType) (arrow.DataType, error) {
	switch logtype := logical.(type) {
	case schema.StringLogicalType:
		return arrow.BinaryTypes.String, nil
	case schema.DecimalLogicalType:
		return arrowDecimal(logtype), nil
	case schema.NoLogicalType,
		schema.EnumLogicalType,
		schema.JSONLogicalType,
		schema.BSONLogicalType:
		return arrow.BinaryTypes.Binary, nil
	default:
		return nil, xerrors.New("unhandled logicaltype " + logical.String() + " for byte_array")
	}
}

func arrowFromFLBA(logical schema.LogicalType, length int) (arrow.DataType, error) {
	switch logtype := logical.(type) {
	case schema.DecimalLogicalType:
		return arrowDecimal(logtype), nil
	case schema.NoLogicalType, schema.IntervalLogicalType:
		return &arrow.FixedSizeBinaryType{ByteWidth: int(length)}, nil
	case schema.UUIDLogicalType:
		uuidType := arrow.GetExtensionType("arrow.uuid")
		if uuidType == nil {
			return &arrow.FixedSizeBinaryType{ByteWidth: int(length)}, nil
		}
		return uuidType, nil
	case schema.Float16LogicalType:
		return &arrow.Float16Type{}, nil
	default:
		return nil, xerrors.New("unhandled logical type " + logical.String() + " for fixed-length byte array")
	}
}

func getParquetType(typ arrow.DataType, props *parquet.WriterProperties, arrprops ArrowWriterProperties) (parquet.Type, schema.LogicalType, int, error) {
	switch typ.ID() {
	case arrow.NULL:
		return parquet.Types.Int32, schema.NullLogicalType{}, -1, nil
	case arrow.BOOL:
		return parquet.Types.Boolean, schema.NoLogicalType{}, -1, nil
	case arrow.UINT8:
		return parquet.Types.Int32, schema.NewIntLogicalType(8, false), -1, nil
	case arrow.INT8:
		return parquet.Types.Int32, schema.NewIntLogicalType(8, true), -1, nil
	case arrow.UINT16:
		return parquet.Types.Int32, schema.NewIntLogicalType(16, false), -1, nil
	case arrow.INT16:
		return parquet.Types.Int32, schema.NewIntLogicalType(16, true), -1, nil
	case arrow.UINT32:
		return parquet.Types.Int32, schema.NewIntLogicalType(32, false), -1, nil
	case arrow.INT32:
		return parquet.Types.Int32, schema.NewIntLogicalType(32, true), -1, nil
	case arrow.UINT64:
		return parquet.Types.Int64, schema.NewIntLogicalType(64, false), -1, nil
	case arrow.INT64:
		return parquet.Types.Int64, schema.NewIntLogicalType(64, true), -1, nil
	case arrow.FLOAT32:
		return parquet.Types.Float, schema.NoLogicalType{}, -1, nil
	case arrow.FLOAT64:
		return parquet.Types.Double, schema.NoLogicalType{}, -1, nil
	case arrow.STRING, arrow.LARGE_STRING:
		return parquet.Types.ByteArray, schema.StringLogicalType{}, -1, nil
	case arrow.BINARY, arrow.LARGE_BINARY:
		return parquet.Types.ByteArray, schema.NoLogicalType{}, -1, nil
	case arrow.FIXED_SIZE_BINARY:
		return parquet.Types.FixedLenByteArray, schema.NoLogicalType{}, typ.(*arrow.FixedSizeBinaryType).ByteWidth, nil
	case arrow.DECIMAL, arrow.DECIMAL256:
		dectype := typ.(arrow.DecimalType)
		precision := int(dectype.GetPrecision())
		scale := int(dectype.GetScale())

		if !props.StoreDecimalAsInteger() || precision > 18 {
			return parquet.Types.FixedLenByteArray, schema.NewDecimalLogicalType(int32(precision), int32(scale)), int(DecimalSize(int32(precision))), nil
		}

		pqType := parquet.Types.Int32
		if precision > 9 {
			pqType = parquet.Types.Int64
		}

		return pqType, schema.NoLogicalType{}, -1, nil
	case arrow.DATE32:
		return parquet.Types.Int32, schema.DateLogicalType{}, -1, nil
	case arrow.DATE64:
		return parquet.Types.Int32, schema.DateLogicalType{}, -1, nil
	case arrow.TIMESTAMP:
		pqType, logicalType, err := getTimestampMeta(typ.(*arrow.TimestampType), props, arrprops)
		return pqType, logicalType, -1, err
	case arrow.TIME32:
		return parquet.Types.Int32, schema.NewTimeLogicalType(true, schema.TimeUnitMillis), -1, nil
	case arrow.TIME64:
		pqTimeUnit := schema.TimeUnitMicros
		if typ.(*arrow.Time64Type).Unit == arrow.Nanosecond {
			pqTimeUnit = schema.TimeUnitNanos
		}

		return parquet.Types.Int64, schema.NewTimeLogicalType(true, pqTimeUnit), -1, nil
	case arrow.FLOAT16:
		return parquet.Types.FixedLenByteArray, schema.Float16LogicalType{}, arrow.Float16SizeBytes, nil
	case arrow.EXTENSION:
		storageType := typ.(arrow.ExtensionType).StorageType()
		pqType, logicalType, length, err := getParquetType(storageType, props, arrprops)
		if withCustomType, ok := typ.(ExtensionCustomParquetType); ok {
			logicalType = withCustomType.ParquetLogicalType()
		}

		return pqType, logicalType, length, err
	default:
		return parquet.Type(0), nil, 0, fmt.Errorf("%w: support for %s", arrow.ErrNotImplemented, typ.ID())
	}
}

func getArrowType(physical parquet.Type, logical schema.LogicalType, typeLen int) (arrow.DataType, error) {
	if !logical.IsValid() || logical.Equals(schema.NullLogicalType{}) {
		return arrow.Null, nil
	}

	switch physical {
	case parquet.Types.Boolean:
		return arrow.FixedWidthTypes.Boolean, nil
	case parquet.Types.Int32:
		return arrowFromInt32(logical)
	case parquet.Types.Int64:
		return arrowFromInt64(logical)
	case parquet.Types.Int96:
		return arrow.FixedWidthTypes.Timestamp_ns, nil
	case parquet.Types.Float:
		return arrow.PrimitiveTypes.Float32, nil
	case parquet.Types.Double:
		return arrow.PrimitiveTypes.Float64, nil
	case parquet.Types.ByteArray:
		return arrowFromByteArray(logical)
	case parquet.Types.FixedLenByteArray:
		return arrowFromFLBA(logical, typeLen)
	default:
		return nil, xerrors.New("invalid physical column type")
	}
}

func populateLeaf(colIndex int, field *arrow.Field, currentLevels file.LevelInfo, ctx *schemaTree, parent *SchemaField, out *SchemaField) {
	out.Field = field
	out.ColIndex = colIndex
	out.LevelInfo = currentLevels
	ctx.RecordLeaf(out)
	ctx.LinkParent(out, parent)
}

func listToSchemaField(n *schema.GroupNode, currentLevels file.LevelInfo, ctx *schemaTree, parent, out *SchemaField) error {
	if n.NumFields() != 1 {
		return xerrors.New("LIST groups must have only 1 child")
	}

	if n.RepetitionType() == parquet.Repetitions.Repeated {
		return xerrors.New("LIST groups must not be repeated")
	}

	currentLevels.Increment(n)

	out.Children = make([]SchemaField, n.NumFields())
	ctx.LinkParent(out, parent)
	ctx.LinkParent(&out.Children[0], out)

	listNode := n.Field(0)
	if listNode.RepetitionType() != parquet.Repetitions.Repeated {
		return xerrors.New("non-repeated nodes in a list group are not supported")
	}

	repeatedAncestorDef := currentLevels.IncrementRepeated()
	if listNode.Type() == schema.Group {
		// Resolve 3-level encoding
		//
		// required/optional group name=whatever {
		//   repeated group name=list {
		//     required/optional TYPE item;
		//   }
		// }
		//
		// yields list<item: TYPE ?nullable> ?nullable
		//
		// We distinguish the special case that we have
		//
		// required/optional group name=whatever {
		//   repeated group name=array or $SOMETHING_tuple {
		//     required/optional TYPE item;
		//   }
		// }
		//
		// In this latter case, the inner type of the list should be a struct
		// rather than a primitive value
		//
		// yields list<item: struct<item: TYPE ?nullable> not null> ?nullable
		// Special case mentioned in the format spec:
		//   If the name is array or ends in _tuple, this should be a list of struct
		//   even for single child elements.
		listGroup := listNode.(*schema.GroupNode)
		if listGroup.NumFields() == 1 && !(listGroup.Name() == "array" || listGroup.Name() == (n.Name()+"_tuple")) {
			// list of primitive type
			if err := nodeToSchemaField(listGroup.Field(0), currentLevels, ctx, out, &out.Children[0]); err != nil {
				return err
			}
		} else {
			if err := groupToStructField(listGroup, currentLevels, ctx, &out.Children[0]); err != nil {
				return err
			}
		}
	} else {
		// Two-level list encoding
		//
		// required/optional group LIST {
		//   repeated TYPE;
		// }
		primitiveNode := listNode.(*schema.PrimitiveNode)
		colIndex := ctx.schema.ColumnIndexByNode(primitiveNode)
		arrowType, err := getArrowType(primitiveNode.PhysicalType(), primitiveNode.LogicalType(), primitiveNode.TypeLength())
		if err != nil {
			return err
		}

		if ctx.props.ReadDict(colIndex) && isDictionaryReadSupported(arrowType) {
			arrowType = &arrow.DictionaryType{IndexType: arrow.PrimitiveTypes.Int32, ValueType: arrowType}
		}

		if arrow.IsBinaryLike(arrowType.ID()) && ctx.props.ForceLarge(colIndex) {
			switch arrowType.ID() {
			case arrow.STRING:
				arrowType = arrow.BinaryTypes.LargeString
			case arrow.BINARY:
				arrowType = arrow.BinaryTypes.LargeBinary
			}
		}

		itemField := arrow.Field{Name: listNode.Name(), Type: arrowType, Nullable: false, Metadata: createFieldMeta(int(listNode.FieldID()))}
		populateLeaf(colIndex, &itemField, currentLevels, ctx, out, &out.Children[0])
	}

	out.Field = &arrow.Field{Name: n.Name(), Type: arrow.ListOfField(*out.Children[0].Field),
		Nullable: n.RepetitionType() == parquet.Repetitions.Optional, Metadata: createFieldMeta(int(n.FieldID()))}

	out.LevelInfo = currentLevels
	// At this point current levels contains the def level for this list,
	// we need to reset to the prior parent.
	out.LevelInfo.RepeatedAncestorDefLevel = repeatedAncestorDef
	return nil
}

func groupToStructField(n *schema.GroupNode, currentLevels file.LevelInfo, ctx *schemaTree, out *SchemaField) error {
	arrowFields := make([]arrow.Field, 0, n.NumFields())
	out.Children = make([]SchemaField, n.NumFields())

	for i := 0; i < n.NumFields(); i++ {
		if err := nodeToSchemaField(n.Field(i), currentLevels, ctx, out, &out.Children[i]); err != nil {
			return err
		}
		arrowFields = append(arrowFields, *out.Children[i].Field)
	}

	out.Field = &arrow.Field{Name: n.Name(), Type: arrow.StructOf(arrowFields...),
		Nullable: n.RepetitionType() != parquet.Repetitions.Required, Metadata: createFieldMeta(int(n.FieldID()))}
	out.LevelInfo = currentLevels
	return nil
}

func mapToSchemaField(n *schema.GroupNode, currentLevels file.LevelInfo, ctx *schemaTree, parent, out *SchemaField) error {
	if n.NumFields() != 1 {
		return xerrors.New("MAP group must have exactly 1 child")
	}
	if n.RepetitionType() == parquet.Repetitions.Repeated {
		return xerrors.New("MAP groups must not be repeated")
	}

	keyvalueNode := n.Field(0)
	if keyvalueNode.RepetitionType() != parquet.Repetitions.Repeated {
		return xerrors.New("Non-repeated keyvalue group in MAP group is not supported")
	}

	if keyvalueNode.Type() != schema.Group {
		return xerrors.New("keyvalue node must be a group")
	}

	kvgroup := keyvalueNode.(*schema.GroupNode)
	if kvgroup.NumFields() != 1 && kvgroup.NumFields() != 2 {
		return fmt.Errorf("keyvalue node group must have exactly 1 or 2 child elements, Found %d", kvgroup.NumFields())
	}

	keyNode := kvgroup.Field(0)
	if keyNode.RepetitionType() != parquet.Repetitions.Required {
		return xerrors.New("MAP keys must be required")
	}

	// Arrow doesn't support 1 column maps (i.e. Sets).  The options are to either
	// make the values column nullable, or process the map as a list.  We choose the latter
	// as it is simpler.
	if kvgroup.NumFields() == 1 {
		return listToSchemaField(n, currentLevels, ctx, parent, out)
	}

	currentLevels.Increment(n)
	repeatedAncestorDef := currentLevels.IncrementRepeated()
	out.Children = make([]SchemaField, 1)

	kvfield := &out.Children[0]
	kvfield.Children = make([]SchemaField, 2)

	keyField := &kvfield.Children[0]
	valueField := &kvfield.Children[1]

	ctx.LinkParent(out, parent)
	ctx.LinkParent(kvfield, out)
	ctx.LinkParent(keyField, kvfield)
	ctx.LinkParent(valueField, kvfield)

	// required/optional group name=whatever {
	//   repeated group name=key_values{
	//     required TYPE key;
	// required/optional TYPE value;
	//   }
	// }
	//

	if err := nodeToSchemaField(keyNode, currentLevels, ctx, kvfield, keyField); err != nil {
		return err
	}
	if err := nodeToSchemaField(kvgroup.Field(1), currentLevels, ctx, kvfield, valueField); err != nil {
		return err
	}

	kvfield.Field = &arrow.Field{Name: n.Name(), Type: arrow.StructOf(*keyField.Field, *valueField.Field),
		Nullable: false, Metadata: createFieldMeta(int(kvgroup.FieldID()))}

	kvfield.LevelInfo = currentLevels
	out.Field = &arrow.Field{Name: n.Name(), Type: arrow.MapOfFields(*keyField.Field, *valueField.Field),
		Nullable: n.RepetitionType() == parquet.Repetitions.Optional,
		Metadata: createFieldMeta(int(n.FieldID()))}
	out.LevelInfo = currentLevels
	// At this point current levels contains the def level for this map,
	// we need to reset to the prior parent.
	out.LevelInfo.RepeatedAncestorDefLevel = repeatedAncestorDef
	return nil
}

func groupToSchemaField(n *schema.GroupNode, currentLevels file.LevelInfo, ctx *schemaTree, parent, out *SchemaField) error {
	if n.LogicalType().Equals(schema.NewListLogicalType()) {
		return listToSchemaField(n, currentLevels, ctx, parent, out)
	} else if n.LogicalType().Equals(schema.MapLogicalType{}) {
		return mapToSchemaField(n, currentLevels, ctx, parent, out)
	}

	if n.RepetitionType() == parquet.Repetitions.Repeated {
		// Simple repeated struct
		//
		// repeated group $NAME {
		//   r/o TYPE[0] f0
		//   r/o TYPE[1] f1
		// }
		out.Children = make([]SchemaField, 1)
		repeatedAncestorDef := currentLevels.IncrementRepeated()
		if err := groupToStructField(n, currentLevels, ctx, &out.Children[0]); err != nil {
			return err
		}

		out.Field = &arrow.Field{Name: n.Name(), Type: arrow.ListOf(out.Children[0].Field.Type), Nullable: false,
			Metadata: createFieldMeta(int(n.FieldID()))}
		ctx.LinkParent(&out.Children[0], out)
		out.LevelInfo = currentLevels
		out.LevelInfo.RepeatedAncestorDefLevel = repeatedAncestorDef
		return nil
	}

	currentLevels.Increment(n)
	return groupToStructField(n, currentLevels, ctx, out)
}

func createFieldMeta(fieldID int) arrow.Metadata {
	return arrow.NewMetadata([]string{"PARQUET:field_id"}, []string{strconv.Itoa(fieldID)})
}

func nodeToSchemaField(n schema.Node, currentLevels file.LevelInfo, ctx *schemaTree, parent, out *SchemaField) error {
	ctx.LinkParent(out, parent)

	if n.Type() == schema.Group {
		return groupToSchemaField(n.(*schema.GroupNode), currentLevels, ctx, parent, out)
	}

	// Either a normal flat primitive type, or a list type encoded with 1-level
	// list encoding. Note that the 3-level encoding is the form recommended by
	// the parquet specification, but technically we can have either
	//
	// required/optional $TYPE $FIELD_NAME
	//
	// or
	//
	// repeated $TYPE $FIELD_NAME

	primitive := n.(*schema.PrimitiveNode)
	colIndex := ctx.schema.ColumnIndexByNode(primitive)
	arrowType, err := getArrowType(primitive.PhysicalType(), primitive.LogicalType(), primitive.TypeLength())
	if err != nil {
		return err
	}

	if ctx.props.ReadDict(colIndex) && isDictionaryReadSupported(arrowType) {
		arrowType = &arrow.DictionaryType{IndexType: arrow.PrimitiveTypes.Int32, ValueType: arrowType}
	}

	if arrow.IsBinaryLike(arrowType.ID()) && ctx.props.ForceLarge(colIndex) {
		switch arrowType.ID() {
		case arrow.STRING:
			arrowType = arrow.BinaryTypes.LargeString
		case arrow.BINARY:
			arrowType = arrow.BinaryTypes.LargeBinary
		}
	}

	if primitive.RepetitionType() == parquet.Repetitions.Repeated {
		// one-level list encoding e.g. a: repeated int32;
		repeatedAncestorDefLevel := currentLevels.IncrementRepeated()
		out.Children = make([]SchemaField, 1)
		child := arrow.Field{Name: primitive.Name(), Type: arrowType, Nullable: false}
		populateLeaf(colIndex, &child, currentLevels, ctx, out, &out.Children[0])
		out.Field = &arrow.Field{Name: primitive.Name(), Type: arrow.ListOf(child.Type), Nullable: false,
			Metadata: createFieldMeta(int(primitive.FieldID()))}
		out.LevelInfo = currentLevels
		out.LevelInfo.RepeatedAncestorDefLevel = repeatedAncestorDefLevel
		return nil
	}

	currentLevels.Increment(n)
	populateLeaf(colIndex, &arrow.Field{Name: n.Name(), Type: arrowType,
		Nullable: n.RepetitionType() == parquet.Repetitions.Optional,
		Metadata: createFieldMeta(int(n.FieldID()))},
		currentLevels, ctx, parent, out)
	return nil
}

func getOriginSchema(meta metadata.KeyValueMetadata, mem memory.Allocator) (*arrow.Schema, error) {
	if meta == nil {
		return nil, nil
	}

	const arrowSchemaKey = "ARROW:schema"
	serialized := meta.FindValue(arrowSchemaKey)
	if serialized == nil {
		return nil, nil
	}

	var (
		decoded []byte
		err     error
	)

	// if the length of serialized is not a multiple of 4, it cannot be
	// padded with std encoding.
	if len(*serialized)%4 == 0 {
		decoded, err = base64.StdEncoding.DecodeString(*serialized)
	}
	// if we failed to decode it with stdencoding or the length wasn't
	// a multiple of 4, try using the Raw unpadded encoding
	if len(decoded) == 0 || err != nil {
		decoded, err = base64.RawStdEncoding.DecodeString(*serialized)
	}

	if err != nil {
		return nil, err
	}

	return flight.DeserializeSchema(decoded, mem)
}

func getNestedFactory(origin, inferred arrow.DataType) func(fieldList []arrow.Field) arrow.DataType {
	switch inferred.ID() {
	case arrow.STRUCT:
		if origin.ID() == arrow.STRUCT {
			return func(list []arrow.Field) arrow.DataType {
				return arrow.StructOf(list...)
			}
		}
	case arrow.LIST:
		switch origin.ID() {
		case arrow.LIST:
			return func(list []arrow.Field) arrow.DataType {
				return arrow.ListOf(list[0].Type)
			}
		case arrow.FIXED_SIZE_LIST:
			sz := origin.(*arrow.FixedSizeListType).Len()
			return func(list []arrow.Field) arrow.DataType {
				return arrow.FixedSizeListOf(sz, list[0].Type)
			}
		}
	case arrow.MAP:
		if origin.ID() == arrow.MAP {
			return func(list []arrow.Field) arrow.DataType {
				valType := list[0].Type.(*arrow.StructType)
				return arrow.MapOf(valType.Field(0).Type, valType.Field(1).Type)
			}
		}
	}
	return nil
}

func applyOriginalStorageMetadata(origin arrow.Field, inferred *SchemaField) (modified bool, err error) {
	nchildren := len(inferred.Children)
	switch origin.Type.ID() {
	case arrow.EXTENSION:
		extType := origin.Type.(arrow.ExtensionType)
		modified, err = applyOriginalStorageMetadata(arrow.Field{
			Type:     extType.StorageType(),
			Metadata: origin.Metadata,
		}, inferred)
		if err != nil {
			return
		}

		if modified && !arrow.TypeEqual(extType, inferred.Field.Type) {
			if !arrow.TypeEqual(extType.StorageType(), inferred.Field.Type) {
				return modified, fmt.Errorf("%w: mismatch storage type '%s' for extension type '%s'",
					arrow.ErrInvalid, inferred.Field.Type, extType)
			}

			inferred.Field.Type = extType
		}
	case arrow.SPARSE_UNION, arrow.DENSE_UNION:
		err = xerrors.New("unimplemented type")
	case arrow.STRUCT:
		typ := origin.Type.(*arrow.StructType)
		if nchildren != typ.NumFields() {
			return
		}

		factory := getNestedFactory(typ, inferred.Field.Type)
		if factory == nil {
			return
		}

		modified = typ.ID() != inferred.Field.Type.ID()
		for idx := range inferred.Children {
			childMod, err := applyOriginalMetadata(typ.Field(idx), &inferred.Children[idx])
			if err != nil {
				return false, err
			}
			modified = modified || childMod
		}
		if modified {
			modifiedChildren := make([]arrow.Field, len(inferred.Children))
			for idx, child := range inferred.Children {
				modifiedChildren[idx] = *child.Field
			}
			inferred.Field.Type = factory(modifiedChildren)
		}
	case arrow.FIXED_SIZE_LIST, arrow.LIST, arrow.LARGE_LIST, arrow.MAP: // arrow.ListLike
		if nchildren != 1 {
			return
		}
		factory := getNestedFactory(origin.Type, inferred.Field.Type)
		if factory == nil {
			return
		}

		modified = origin.Type.ID() != inferred.Field.Type.ID()
		childModified, err := applyOriginalMetadata(arrow.Field{Type: origin.Type.(arrow.ListLikeType).Elem()}, &inferred.Children[0])
		if err != nil {
			return modified, err
		}
		modified = modified || childModified
		if modified {
			inferred.Field.Type = factory([]arrow.Field{*inferred.Children[0].Field})
		}
	case arrow.TIMESTAMP:
		if inferred.Field.Type.ID() != arrow.TIMESTAMP {
			return
		}

		tsOtype := origin.Type.(*arrow.TimestampType)
		tsInfType := inferred.Field.Type.(*arrow.TimestampType)

		// if the unit is the same and the data is tz-aware, then set the original time zone
		// since parquet has no native storage of timezones
		if tsOtype.Unit == tsInfType.Unit && tsInfType.TimeZone == "UTC" && tsOtype.TimeZone != "" {
			inferred.Field.Type = origin.Type
		}
		modified = true
	case arrow.LARGE_STRING, arrow.LARGE_BINARY:
		inferred.Field.Type = origin.Type
		modified = true
	case arrow.DICTIONARY:
		if origin.Type.ID() != arrow.DICTIONARY || (inferred.Field.Type.ID() == arrow.DICTIONARY || !isDictionaryReadSupported(inferred.Field.Type)) {
			return
		}

		// direct dictionary reads are only supported for a few primitive types
		// so no need to recurse on value types
		dictOriginType := origin.Type.(*arrow.DictionaryType)
		inferred.Field.Type = &arrow.DictionaryType{IndexType: arrow.PrimitiveTypes.Int32,
			ValueType: inferred.Field.Type, Ordered: dictOriginType.Ordered}
		modified = true
	case arrow.DECIMAL256:
		if inferred.Field.Type.ID() == arrow.DECIMAL128 {
			inferred.Field.Type = origin.Type
			modified = true
		}
	}

	if origin.HasMetadata() {
		meta := origin.Metadata
		if inferred.Field.HasMetadata() {
			final := make(map[string]string)
			for idx, k := range meta.Keys() {
				final[k] = meta.Values()[idx]
			}
			for idx, k := range inferred.Field.Metadata.Keys() {
				final[k] = inferred.Field.Metadata.Values()[idx]
			}
			inferred.Field.Metadata = arrow.MetadataFrom(final)
		} else {
			inferred.Field.Metadata = meta
		}
		modified = true
	}

	return
}

func applyOriginalMetadata(origin arrow.Field, inferred *SchemaField) (bool, error) {
	return applyOriginalStorageMetadata(origin, inferred)
}

// NewSchemaManifest creates a manifest for mapping a parquet schema to a given arrow schema.
//
// The metadata passed in should be the file level key value metadata from the parquet file or nil.
// If the ARROW:schema was in the metadata, then it is utilized to determine types.
func NewSchemaManifest(sc *schema.Schema, meta metadata.KeyValueMetadata, props *ArrowReadProperties) (*SchemaManifest, error) {
	var ctx schemaTree
	ctx.manifest = &SchemaManifest{
		ColIndexToField: make(map[int]*SchemaField),
		ChildToParent:   make(map[*SchemaField]*SchemaField),
		descr:           sc,
		Fields:          make([]SchemaField, sc.Root().NumFields()),
	}
	ctx.props = props
	if ctx.props == nil {
		ctx.props = &ArrowReadProperties{}
	}
	ctx.schema = sc

	var err error
	ctx.manifest.OriginSchema, err = getOriginSchema(meta, memory.DefaultAllocator)
	if err != nil {
		return nil, err
	}

	// if original schema is not compatible with the parquet schema, ignore it
	if ctx.manifest.OriginSchema != nil && len(ctx.manifest.OriginSchema.Fields()) != sc.Root().NumFields() {
		ctx.manifest.OriginSchema = nil
	}

	for idx := range ctx.manifest.Fields {
		field := &ctx.manifest.Fields[idx]
		if err := nodeToSchemaField(sc.Root().Field(idx), file.LevelInfo{NullSlotUsage: 1}, &ctx, nil, field); err != nil {
			return nil, err
		}

		if ctx.manifest.OriginSchema != nil {
			if _, err := applyOriginalMetadata(ctx.manifest.OriginSchema.Field(idx), field); err != nil {
				return nil, err
			}
		}
	}
	return ctx.manifest, nil
}

// FromParquet generates an arrow Schema from a provided Parquet Schema
func FromParquet(sc *schema.Schema, props *ArrowReadProperties, kv metadata.KeyValueMetadata) (*arrow.Schema, error) {
	manifest, err := NewSchemaManifest(sc, kv, props)
	if err != nil {
		return nil, err
	}

	fields := make([]arrow.Field, len(manifest.Fields))
	for idx, field := range manifest.Fields {
		fields[idx] = *field.Field
	}

	if manifest.OriginSchema != nil {
		meta := manifest.OriginSchema.Metadata()
		return arrow.NewSchema(fields, &meta), nil
	}
	return arrow.NewSchema(fields, manifest.SchemaMeta), nil
}