1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package schema
import (
"fmt"
"reflect"
"strconv"
"strings"
"github.com/apache/arrow-go/v18/arrow/float16"
"github.com/apache/arrow-go/v18/internal/utils"
"github.com/apache/arrow-go/v18/parquet"
format "github.com/apache/arrow-go/v18/parquet/internal/gen-go/parquet"
)
type taggedInfo struct {
Name string
Type parquet.Type
KeyType parquet.Type
ValueType parquet.Type
Length int32
KeyLength int32
ValueLength int32
Scale int32
KeyScale int32
ValueScale int32
Precision int32
KeyPrecision int32
ValuePrecision int32
FieldID int32
KeyFieldID int32
ValueFieldID int32
RepetitionType parquet.Repetition
ValueRepetition parquet.Repetition
Converted ConvertedType
KeyConverted ConvertedType
ValueConverted ConvertedType
LogicalFields map[string]string
KeyLogicalFields map[string]string
ValueLogicalFields map[string]string
LogicalType LogicalType
KeyLogicalType LogicalType
ValueLogicalType LogicalType
Exclude bool
}
func (t *taggedInfo) CopyForKey() (ret taggedInfo) {
ret = *t
ret.Type = t.KeyType
ret.Length = t.KeyLength
ret.Scale = t.KeyScale
ret.Precision = t.KeyPrecision
ret.FieldID = t.KeyFieldID
ret.RepetitionType = parquet.Repetitions.Required
ret.Converted = t.KeyConverted
ret.LogicalType = t.KeyLogicalType
return
}
func (t *taggedInfo) CopyForValue() (ret taggedInfo) {
ret = *t
ret.Type = t.ValueType
ret.Length = t.ValueLength
ret.Scale = t.ValueScale
ret.Precision = t.ValuePrecision
ret.FieldID = t.ValueFieldID
ret.RepetitionType = t.ValueRepetition
ret.Converted = t.ValueConverted
ret.LogicalType = t.ValueLogicalType
return
}
func (t *taggedInfo) UpdateLogicalTypes() {
processLogicalType := func(fields map[string]string, precision, scale int32) LogicalType {
t, ok := fields["type"]
if !ok {
return NoLogicalType{}
}
switch strings.ToLower(t) {
case "string":
return StringLogicalType{}
case "map":
return MapLogicalType{}
case "list":
return ListLogicalType{}
case "enum":
return EnumLogicalType{}
case "decimal":
if v, ok := fields["precision"]; ok {
precision = int32FromType(v)
}
if v, ok := fields["scale"]; ok {
scale = int32FromType(v)
}
return NewDecimalLogicalType(precision, scale)
case "date":
return DateLogicalType{}
case "time":
unit, ok := fields["unit"]
if !ok {
panic("must specify unit for time logical type")
}
adjustedToUtc, ok := fields["isadjustedutc"]
if !ok {
adjustedToUtc = "true"
}
return NewTimeLogicalType(boolFromStr(adjustedToUtc), timeUnitFromString(strings.ToLower(unit)))
case "timestamp":
unit, ok := fields["unit"]
if !ok {
panic("must specify unit for time logical type")
}
adjustedToUtc, ok := fields["isadjustedutc"]
if !ok {
adjustedToUtc = "true"
}
return NewTimestampLogicalType(boolFromStr(adjustedToUtc), timeUnitFromString(unit))
case "integer":
width, ok := fields["bitwidth"]
if !ok {
panic("must specify bitwidth if explicitly setting integer logical type")
}
signed, ok := fields["signed"]
if !ok {
signed = "true"
}
return NewIntLogicalType(int8(int32FromType(width)), boolFromStr(signed))
case "null":
return NullLogicalType{}
case "json":
return JSONLogicalType{}
case "bson":
return BSONLogicalType{}
case "uuid":
return UUIDLogicalType{}
case "float16":
return Float16LogicalType{}
default:
panic(fmt.Errorf("invalid logical type specified: %s", t))
}
}
t.LogicalType = processLogicalType(t.LogicalFields, t.Precision, t.Scale)
t.KeyLogicalType = processLogicalType(t.KeyLogicalFields, t.KeyPrecision, t.KeyScale)
t.ValueLogicalType = processLogicalType(t.ValueLogicalFields, t.ValuePrecision, t.ValueScale)
}
func newTaggedInfo() taggedInfo {
return taggedInfo{
Type: parquet.Types.Undefined,
KeyType: parquet.Types.Undefined,
ValueType: parquet.Types.Undefined,
RepetitionType: parquet.Repetitions.Undefined,
ValueRepetition: parquet.Repetitions.Undefined,
Converted: ConvertedTypes.NA,
KeyConverted: ConvertedTypes.NA,
ValueConverted: ConvertedTypes.NA,
FieldID: -1,
KeyFieldID: -1,
ValueFieldID: -1,
LogicalFields: make(map[string]string),
KeyLogicalFields: make(map[string]string),
ValueLogicalFields: make(map[string]string),
LogicalType: NoLogicalType{},
KeyLogicalType: NoLogicalType{},
ValueLogicalType: NoLogicalType{},
Exclude: false,
}
}
var int32FromType = func(v string) int32 {
val, err := strconv.Atoi(v)
if err != nil {
panic(err)
}
return int32(val)
}
var boolFromStr = func(v string) bool {
val, err := strconv.ParseBool(v)
if err != nil {
panic(err)
}
return val
}
func infoFromTags(f reflect.StructTag) *taggedInfo {
typeFromStr := func(v string) parquet.Type {
t, err := format.TypeFromString(strings.ToUpper(v))
if err != nil {
panic(fmt.Errorf("invalid type specified: %s", v))
}
return parquet.Type(t)
}
repFromStr := func(v string) parquet.Repetition {
r, err := format.FieldRepetitionTypeFromString(strings.ToUpper(v))
if err != nil {
panic(err)
}
return parquet.Repetition(r)
}
convertedFromStr := func(v string) ConvertedType {
c, err := format.ConvertedTypeFromString(strings.ToUpper(v))
if err != nil {
panic(err)
}
return ConvertedType(c)
}
if ptags, ok := f.Lookup("parquet"); ok {
info := newTaggedInfo()
if ptags == "-" {
info.Exclude = true
return &info
}
for _, tag := range strings.Split(strings.Replace(ptags, "\t", "", -1), ",") {
tag = strings.TrimSpace(tag)
kv := strings.SplitN(tag, "=", 2)
key := strings.TrimSpace(strings.ToLower(kv[0]))
value := strings.TrimSpace(kv[1])
switch key {
case "name":
info.Name = value
case "type":
info.Type = typeFromStr(value)
case "keytype":
info.KeyType = typeFromStr(value)
case "valuetype":
info.ValueType = typeFromStr(value)
case "length":
info.Length = int32FromType(value)
case "keylength":
info.KeyLength = int32FromType(value)
case "valuelength":
info.ValueLength = int32FromType(value)
case "scale":
info.Scale = int32FromType(value)
case "keyscale":
info.KeyScale = int32FromType(value)
case "valuescale":
info.ValueScale = int32FromType(value)
case "precision":
info.Precision = int32FromType(value)
case "keyprecision":
info.KeyPrecision = int32FromType(value)
case "valueprecision":
info.ValuePrecision = int32FromType(value)
case "fieldid":
info.FieldID = int32FromType(value)
case "keyfieldid":
info.KeyFieldID = int32FromType(value)
case "valuefieldid":
info.ValueFieldID = int32FromType(value)
case "repetition":
info.RepetitionType = repFromStr(value)
case "valuerepetition":
info.ValueRepetition = repFromStr(value)
case "converted":
info.Converted = convertedFromStr(value)
case "keyconverted":
info.KeyConverted = convertedFromStr(value)
case "valueconverted":
info.ValueConverted = convertedFromStr(value)
case "logical":
info.LogicalFields["type"] = value
case "keylogical":
info.KeyLogicalFields["type"] = value
case "valuelogical":
info.ValueLogicalFields["type"] = value
default:
switch {
case strings.HasPrefix(key, "logical."):
info.LogicalFields[strings.TrimPrefix(key, "logical.")] = value
case strings.HasPrefix(key, "keylogical."):
info.KeyLogicalFields[strings.TrimPrefix(key, "keylogical.")] = value
case strings.HasPrefix(key, "valuelogical."):
info.ValueLogicalFields[strings.TrimPrefix(key, "valuelogical.")] = value
}
}
}
info.UpdateLogicalTypes()
return &info
}
return nil
}
// typeToNode recursively converts a physical type and the tag info into parquet Nodes
//
// to avoid having to propagate errors up potentially high numbers of recursive calls
// we use panics and then recover in the public function NewSchemaFromStruct so that a
// failure very far down the stack quickly unwinds.
func typeToNode(name string, typ reflect.Type, repType parquet.Repetition, info *taggedInfo) Node {
// set up our default values for everything
var (
converted = ConvertedTypes.None
logical LogicalType = NoLogicalType{}
fieldID = int32(-1)
physical = parquet.Types.Undefined
typeLen = 0
precision = 0
scale = 0
)
if info != nil { // we have struct tag info to process
fieldID = info.FieldID
if info.Converted != ConvertedTypes.NA {
converted = info.Converted
}
logical = info.LogicalType
physical = info.Type
typeLen = int(info.Length)
precision = int(info.Precision)
scale = int(info.Scale)
if info.Name != "" {
name = info.Name
}
if info.RepetitionType != parquet.Repetitions.Undefined {
repType = info.RepetitionType
}
}
// simplify the logic by switching based on the reflection Kind
switch typ.Kind() {
case reflect.Map:
// a map must have a logical type of MAP or have no tag for logical type in which case
// we assume MAP logical type.
if !logical.IsNone() && !logical.Equals(MapLogicalType{}) {
panic("cannot set logical type to something other than map for a map")
}
infoCopy := newTaggedInfo()
if info != nil { // populate any value specific tags to propagate for the value type
infoCopy = info.CopyForValue()
}
// create the node for the value type of the map
value := typeToNode("value", typ.Elem(), parquet.Repetitions.Required, &infoCopy)
if info != nil { // change our copy to now use the key specific tags if they exist
infoCopy = info.CopyForKey()
}
// create the node for the key type of the map
key := typeToNode("key", typ.Key(), parquet.Repetitions.Required, &infoCopy)
if key.RepetitionType() != parquet.Repetitions.Required { // key cannot be optional
panic("key type of map must be Required")
}
return Must(MapOf(name, key, value, repType, fieldID))
case reflect.Struct:
if typ == reflect.TypeOf(float16.Num{}) {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, Float16LogicalType{}, parquet.Types.FixedLenByteArray, 2, fieldID))
}
// structs are Group nodes
fields := make(FieldList, 0)
for i := 0; i < typ.NumField(); i++ {
f := typ.Field(i)
tags := infoFromTags(f.Tag)
if tags == nil || !tags.Exclude {
fields = append(fields, typeToNode(f.Name, f.Type, parquet.Repetitions.Required, tags))
}
}
// group nodes don't have a physical type
if physical != parquet.Types.Undefined {
panic("cannot specify custom type on struct")
}
// group nodes don't have converted or logical types
if converted != ConvertedTypes.None {
panic("cannot specify converted types for a struct")
}
if !logical.IsNone() {
panic("cannot specify logicaltype for a struct")
}
return Must(NewGroupNode(name, repType, fields, fieldID))
case reflect.Ptr: // if we encounter a pointer create a node for the type it points to, but mark it as optional
return typeToNode(name, typ.Elem(), parquet.Repetitions.Optional, info)
case reflect.Array:
// arrays are repeated or fixed size
if typ == reflect.TypeOf(parquet.Int96{}) {
return NewInt96Node(name, repType, fieldID)
}
if typ.Elem() == reflect.TypeOf(byte(0)) { // something like [12]byte translates to FixedLenByteArray with length 12
if physical == parquet.Types.Undefined {
physical = parquet.Types.FixedLenByteArray
}
if typeLen == 0 { // if there was no type length specified in the tag, use the length of the type.
typeLen = typ.Len()
}
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, physical, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, physical, converted, typeLen, precision, scale, fieldID))
}
fallthrough // if it's not a fixed len byte array type, then just treat it like a slice
case reflect.Slice:
// for slices, we default to treating them as lists unless the repetition type is set to REPEATED or they are
// a bytearray/fixedlenbytearray
switch {
case repType == parquet.Repetitions.Repeated:
return typeToNode(name, typ.Elem(), parquet.Repetitions.Repeated, info)
case physical == parquet.Types.FixedLenByteArray || physical == parquet.Types.ByteArray:
if typ.Elem() != reflect.TypeOf(byte(0)) {
panic("slice with physical type ByteArray or FixedLenByteArray must be []byte")
}
fallthrough
case typ.Elem() == reflect.TypeOf(byte(0)):
if physical == parquet.Types.Undefined {
physical = parquet.Types.ByteArray
}
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, physical, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, physical, converted, typeLen, precision, scale, fieldID))
default:
var elemInfo *taggedInfo
if info != nil {
elemInfo = &taggedInfo{}
*elemInfo = info.CopyForValue()
}
if !logical.IsNone() && !logical.Equals(ListLogicalType{}) {
panic("slice must either be repeated or a List type")
}
if converted != ConvertedTypes.None && converted != ConvertedTypes.List {
panic("slice must either be repeated or a List type")
}
return Must(ListOf(typeToNode(name, typ.Elem(), parquet.Repetitions.Required, elemInfo), repType, fieldID))
}
case reflect.String:
// strings are byte arrays or fixedlen byte array
t := parquet.Types.ByteArray
switch physical {
case parquet.Types.Undefined, parquet.Types.ByteArray:
case parquet.Types.FixedLenByteArray:
t = parquet.Types.FixedLenByteArray
default:
panic("string fields should be of type bytearray or fixedlenbytearray only")
}
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, t, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, t, converted, typeLen, precision, scale, fieldID))
case reflect.Int, reflect.Int32, reflect.Int8, reflect.Int16, reflect.Int64:
// handle integer types, default to setting the corresponding logical type
ptyp := parquet.Types.Int32
if typ.Bits() == 64 {
ptyp = parquet.Types.Int64
}
if physical != parquet.Types.Undefined {
ptyp = physical
}
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, ptyp, typeLen, fieldID))
}
bitwidth := int8(typ.Bits())
if physical != parquet.Types.Undefined {
if ptyp == parquet.Types.Int32 {
bitwidth = 32
} else if ptyp == parquet.Types.Int64 {
bitwidth = 64
}
}
if converted != ConvertedTypes.None {
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, ptyp, converted, 0, precision, scale, fieldID))
}
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, NewIntLogicalType(bitwidth, true), ptyp, 0, fieldID))
case reflect.Uint, reflect.Uint32, reflect.Uint8, reflect.Uint16, reflect.Uint64:
// handle unsigned integer types and default to the corresponding logical type for it.
ptyp := parquet.Types.Int32
if typ.Bits() == 64 {
ptyp = parquet.Types.Int64
}
if physical != parquet.Types.Undefined {
ptyp = physical
}
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, ptyp, typeLen, fieldID))
}
bitwidth := int8(typ.Bits())
if physical != parquet.Types.Undefined {
if ptyp == parquet.Types.Int32 {
bitwidth = 32
} else if ptyp == parquet.Types.Int64 {
bitwidth = 64
}
}
if converted != ConvertedTypes.None {
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, ptyp, converted, 0, precision, scale, fieldID))
}
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, NewIntLogicalType(bitwidth, false), ptyp, 0, fieldID))
case reflect.Bool:
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, parquet.Types.Boolean, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, parquet.Types.Boolean, converted, typeLen, precision, scale, fieldID))
case reflect.Float32:
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, parquet.Types.Float, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, parquet.Types.Float, converted, typeLen, precision, scale, fieldID))
case reflect.Float64:
if !logical.IsNone() {
return MustPrimitive(NewPrimitiveNodeLogical(name, repType, logical, parquet.Types.Double, typeLen, fieldID))
}
return MustPrimitive(NewPrimitiveNodeConverted(name, repType, parquet.Types.Double, converted, typeLen, precision, scale, fieldID))
}
return nil
}
// NewSchemaFromStruct generates a schema from an object type via reflection of
// the type and reading struct tags for "parquet".
//
// # Rules
//
// Everything defaults to Required repetition, unless otherwise specified.
// Pointer types become Optional repetition.
// Arrays and Slices become logical List types unless using the tag `repetition=repeated`.
//
// A length specified byte field (like [5]byte) becomes a fixed_len_byte_array of that length
// unless otherwise specified by tags.
//
// string and []byte both become ByteArray unless otherwise specified.
//
// Integer types will default to having a logical type of the appropriate bit width
// and signedness rather than having no logical type, ie: an int8 will become an int32
// node with logical type Int(bitWidth=8, signed=true).
//
// Structs will become group nodes with the fields of the struct as the fields of the group,
// recursively creating the nodes.
//
// maps will become appropriate Map structures in the schema of the defined key and values.
//
// # Available Tags
//
// name: by default the node will have the same name as the field, this tag let's you specify a name
//
// type: Specify the physical type instead of using the field type
//
// length: specify the type length of the node, only relevant for fixed_len_byte_array
//
// scale: specify the scale for a decimal field
//
// precision: specify the precision for a decimal field
//
// fieldid: specify the field ID for that node, defaults to -1 which means it is not set in the parquet file.
//
// repetition: specify the repetition as something other than what is determined by the type
//
// converted: specify the Converted Type of the field
//
// logical: specify the logical type of the field, if using decimal then the scale and precision
// will be determined by the precision and scale fields, or by the logical.precision / logical.scale fields
// with the logical. prefixed versions taking precedence. For Time or Timestamp logical types,
// use logical.unit=<millis|micros|nanos> and logical.isadjustedutc=<true|false> to set those. Unit is required
// isadjustedutc defaults to true. For Integer logical type, use logical.bitwidth and logical.signed to specify
// those values, with bitwidth being required, and signed defaulting to true.
//
// All tags other than name can use a prefix of "key<tagname>=<value>" to refer to the type of the key for a map
// and "value<tagname>=<value>" to refer to the value type of a map or the element of a list (such as the type of a slice)
func NewSchemaFromStruct(obj interface{}) (sc *Schema, err error) {
ot := reflect.TypeOf(obj)
if ot.Kind() == reflect.Ptr {
ot = ot.Elem()
}
// typeToNode uses panics to fail fast / fail early instead of propagating
// errors up recursive stacks. so we recover here and return it as an error
defer func() {
if r := recover(); r != nil {
sc = nil
err = utils.FormatRecoveredError("unknown panic", r)
}
}()
root := typeToNode(ot.Name(), ot, parquet.Repetitions.Repeated, nil)
return NewSchema(root.(*GroupNode)), nil
}
var parquetTypeToReflect = map[parquet.Type]reflect.Type{
parquet.Types.Boolean: reflect.TypeOf(true),
parquet.Types.Int32: reflect.TypeOf(int32(0)),
parquet.Types.Int64: reflect.TypeOf(int64(0)),
parquet.Types.Float: reflect.TypeOf(float32(0)),
parquet.Types.Double: reflect.TypeOf(float64(0)),
parquet.Types.Int96: reflect.TypeOf(parquet.Int96{}),
parquet.Types.ByteArray: reflect.TypeOf(parquet.ByteArray{}),
parquet.Types.FixedLenByteArray: reflect.TypeOf(parquet.FixedLenByteArray{}),
}
func typeFromNode(n Node) reflect.Type {
switch n.Type() {
case Primitive:
typ := parquetTypeToReflect[n.(*PrimitiveNode).PhysicalType()]
// if a bytearray field is annotated as a String logical type or a UTF8 converted type
// then use a string instead of parquet.ByteArray / parquet.FixedLenByteArray which are []byte
if n.LogicalType().Equals(StringLogicalType{}) || n.ConvertedType() == ConvertedTypes.UTF8 {
typ = reflect.TypeOf(string(""))
}
if n.RepetitionType() == parquet.Repetitions.Optional {
typ = reflect.PointerTo(typ)
} else if n.RepetitionType() == parquet.Repetitions.Repeated {
typ = reflect.SliceOf(typ)
}
return typ
case Group:
gnode := n.(*GroupNode)
switch gnode.ConvertedType() {
case ConvertedTypes.List:
// According to the Parquet Spec, a list should always be a 3-level structure
//
// <list-repetition> group <name> (LIST) {
// repeated group list {
// <element-repetition> <element-type> element;
// }
// }
//
// Outer-most level must be a group annotated with LIST containing a single field named "list".
// this level must be only optional (if the list is nullable) or required
// Middle level, named list, must be repeated group with a single field named "element"
// "element" field is the lists element type and repetition, which should be only required or optional
if gnode.fields.Len() != 1 {
panic("invalid list node, should have exactly 1 child.")
}
if gnode.fields[0].RepetitionType() != parquet.Repetitions.Repeated {
panic("invalid list node, child should be repeated")
}
// it is required that the repeated group of elements is named "list" and it's element
// field is named "element", however existing data may not use this so readers shouldn't
// enforce them as errors
//
// Rules for backward compatibility from the parquet spec:
//
// 1) if the repeated field is not a group, then it's type is the element type and elements
// must be required.
// 2) if the repeated field is a group with multiple fields, then its type is the element type
// and elements must be required.
// 3) if the repeated field is a group with one field AND is named either "array" or uses the
// LIST-annotated group's name with "_tuple" suffix, then the repeated type is the element
// type and the elements must be required.
// 4) otherwise, the repeated field's type is the element type with the repeated field's repetition
elemMustBeRequired := false
addSlice := false
var elemType reflect.Type
elemNode := gnode.fields[0]
switch {
case elemNode.Type() == Primitive,
elemNode.(*GroupNode).fields.Len() > 1,
elemNode.(*GroupNode).fields.Len() == 1 && (elemNode.Name() == "array" || elemNode.Name() == gnode.Name()+"_tuple"):
elemMustBeRequired = true
elemType = typeFromNode(elemNode)
default:
addSlice = true
elemType = typeFromNode(elemNode.(*GroupNode).fields[0])
}
if elemMustBeRequired && elemType.Kind() == reflect.Ptr {
elemType = elemType.Elem()
}
if addSlice {
elemType = reflect.SliceOf(elemType)
}
if gnode.RepetitionType() == parquet.Repetitions.Optional {
elemType = reflect.PointerTo(elemType)
}
return elemType
case ConvertedTypes.Map, ConvertedTypes.MapKeyValue:
// According to the Parquet Spec, the outer-most level should be
// a group containing a single field named "key_value" with repetition
// either optional or required for whether or not the map is nullable.
//
// The key_value middle level *must* be a repeated group with a "key" field
// and *optionally* a "value" field
//
// the "key" field *must* be required and must always exist
//
// the "value" field can be required or optional or omitted.
//
// <map-repetition> group <name> (MAP) {
// repeated group key_value {
// required <key-type> key;
// <value-repetition> <value-type> value;
// }
// }
if gnode.fields.Len() != 1 {
panic("invalid map node, should have exactly 1 child")
}
if gnode.fields[0].Type() != Group {
panic("invalid map node, child should be a group node")
}
// that said, this may not be used in existing data and should not be
// enforced as errors when reading.
//
// some data may also incorrectly use MAP_KEY_VALUE instead of MAP
//
// so any group with MAP_KEY_VALUE that is not contained inside of a "MAP"
// group, should be considered equivalent to being a MAP group itself.
//
// in addition, the fields may not be called "key" and "value" in existing
// data, and as such should not be enforced as errors when reading.
keyval := gnode.fields[0].(*GroupNode)
keyIndex := keyval.FieldIndexByName("key")
if keyIndex == -1 {
keyIndex = 0 // use first child if there is no child named "key"
}
keyType := typeFromNode(keyval.fields[keyIndex])
if keyType.Kind() == reflect.Ptr {
keyType = keyType.Elem()
}
// can't use a []byte as a key for a map, so use string
if keyType == reflect.TypeOf(parquet.ByteArray{}) || keyType == reflect.TypeOf(parquet.FixedLenByteArray{}) {
keyType = reflect.TypeOf(string(""))
}
// if the value node is omitted, then consider this a "set" and make it a
// map[key-type]bool
valType := reflect.TypeOf(true)
if keyval.fields.Len() > 1 {
valIndex := keyval.FieldIndexByName("value")
if valIndex == -1 {
valIndex = 1 // use second child if there is no child named "value"
}
valType = typeFromNode(keyval.fields[valIndex])
}
mapType := reflect.MapOf(keyType, valType)
if gnode.RepetitionType() == parquet.Repetitions.Optional {
mapType = reflect.PointerTo(mapType)
}
return mapType
default:
fields := []reflect.StructField{}
for _, f := range gnode.fields {
fields = append(fields, reflect.StructField{
Name: f.Name(),
Type: typeFromNode(f),
PkgPath: "parquet",
})
}
structType := reflect.StructOf(fields)
if gnode.RepetitionType() == parquet.Repetitions.Repeated {
return reflect.SliceOf(structType)
}
if gnode.RepetitionType() == parquet.Repetitions.Optional {
return reflect.PointerTo(structType)
}
return structType
}
}
panic("what happened?")
}
// NewStructFromSchema generates a struct type as a reflect.Type from the schema
// by using the appropriate physical types and making things either pointers or slices
// based on whether they are repeated/optional/required. It does not use the logical
// or converted types to change the physical storage so that it is more efficient to use
// the resulting type for reading without having to do conversions.
//
// It will use maps for map types and slices for list types, but otherwise ignores the
// converted and logical types of the nodes. Group nodes that are not List or Map will
// be nested structs.
func NewStructFromSchema(sc *Schema) (t reflect.Type, err error) {
defer func() {
if r := recover(); r != nil {
t = nil
err = utils.FormatRecoveredError("unknown panic", r)
}
}()
t = typeFromNode(sc.root)
if t.Kind() == reflect.Slice || t.Kind() == reflect.Ptr {
return t.Elem(), nil
}
return
}
|