1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package schema provides types and functions for manipulating and building parquet
// file schemas.
//
// Some of the utilities provided include building a schema using Struct Tags
// on a struct type, getting Column Paths from a node, and dealing with the
// converted and logical types for Parquet.
//
// Logical types specify ways to interpret the primitive types allowing the
// number of primitive types to be smaller and reuse efficient encodings.
// For instance a "string" is just a ByteArray column with a UTF-8 annotation
// or "String Logical Type".
//
// For more information about Logical and Converted Types, check:
// https://github.com/apache/parquet-format/blob/master/LogicalTypes.md
package schema
import (
"fmt"
"io"
"iter"
"slices"
"strings"
"github.com/apache/arrow-go/v18/parquet"
format "github.com/apache/arrow-go/v18/parquet/internal/gen-go/parquet"
"golang.org/x/xerrors"
)
// Schema is the container for the converted Parquet schema with a computed
// information from the schema analysis needed for file reading
//
// * Column index to Node
//
// * Max repetition / definition levels for each primitive node
//
// The ColumnDescriptor objects produced by this class can be used to assist in
// the reconstruction of fully materialized data structures from the
// repetition-definition level encoding of nested data
type Schema struct {
root Node
leaves []*Column
nodeToLeaf map[*PrimitiveNode]int
leafToBase map[int]Node
leafToIndex strIntMultimap
}
// FromParquet converts a slice of thrift Schema Elements to the correct node type
func FromParquet(elems []*format.SchemaElement) (Node, error) {
if len(elems) == 0 {
return nil, xerrors.New("parquet: empty schema (no root)")
}
if elems[0].GetNumChildren() == 0 {
if len(elems) > 1 {
return nil, xerrors.New("parquet: schema had multiple nodes but root had no children")
}
// parquet file with no columns
return GroupNodeFromThrift(elems[0], []Node{})
}
// We don't check that the root node is repeated since this is not
// consistently set by implementations
var (
pos = 0
nextNode func() (Node, error)
)
nextNode = func() (Node, error) {
if pos == len(elems) {
return nil, xerrors.New("parquet: malformed schema: not enough elements")
}
elem := elems[pos]
pos++
if elem.GetNumChildren() == 0 {
return PrimitiveNodeFromThrift(elem)
}
fields := make([]Node, 0, elem.GetNumChildren())
for i := 0; i < int(elem.GetNumChildren()); i++ {
n, err := nextNode()
if err != nil {
return nil, err
}
fields = append(fields, n)
}
return GroupNodeFromThrift(elem, fields)
}
return nextNode()
}
// Root returns the group node that is the root of this schema
func (s *Schema) Root() *GroupNode {
return s.root.(*GroupNode)
}
// NumColumns returns the number of leaf nodes that are the actual primitive
// columns in this schema.
func (s *Schema) NumColumns() int {
return len(s.leaves)
}
// Equals returns true as long as the leaf columns are equal, doesn't take
// into account the groups and only checks whether the schemas are compatible
// at the physical storage level.
func (s *Schema) Equals(rhs *Schema) bool {
if s.NumColumns() != rhs.NumColumns() {
return false
}
for idx, c := range s.leaves {
if !c.Equals(rhs.Column(idx)) {
return false
}
}
return true
}
func (s *Schema) buildTree(n Node, maxDefLvl, maxRepLvl int16, base Node) {
switch n.RepetitionType() {
case parquet.Repetitions.Repeated:
maxRepLvl++
fallthrough
case parquet.Repetitions.Optional:
maxDefLvl++
}
switch n := n.(type) {
case *GroupNode:
for _, f := range n.fields {
s.buildTree(f, maxDefLvl, maxRepLvl, base)
}
case *PrimitiveNode:
s.nodeToLeaf[n] = len(s.leaves)
s.leaves = append(s.leaves, NewColumn(n, maxDefLvl, maxRepLvl))
s.leafToBase[len(s.leaves)-1] = base
s.leafToIndex.Add(n.Path(), len(s.leaves)-1)
}
}
// Column returns the (0-indexed) column of the provided index.
func (s *Schema) Column(i int) *Column {
return s.leaves[i]
}
// Columns returns an iterator over the leaf columns of the schema
func (s *Schema) Columns() iter.Seq2[int, *Column] {
return slices.All(s.leaves)
}
// ColumnIndexByName looks up the column by it's full dot separated
// node path. If there are multiple columns that match, it returns the first one.
//
// Returns -1 if not found.
func (s *Schema) ColumnIndexByName(nodePath string) int {
if search, ok := s.leafToIndex[nodePath]; ok {
return search[0]
}
return -1
}
// ColumnIndexByNode returns the index of the column represented by this node.
//
// Returns -1 if not found.
func (s *Schema) ColumnIndexByNode(n Node) int {
if search, ok := s.leafToIndex[n.Path()]; ok {
for _, idx := range search {
if n == s.Column(idx).SchemaNode() {
return idx
}
}
}
return -1
}
// ColumnRoot returns the root node of a given column if it is under a
// nested group node, providing that root group node.
func (s *Schema) ColumnRoot(i int) Node {
return s.leafToBase[i]
}
// HasRepeatedFields returns true if any node in the schema has a repeated field type.
func (s *Schema) HasRepeatedFields() bool {
return s.root.(*GroupNode).HasRepeatedFields()
}
// UpdateColumnOrders must get a slice that is the same length as the number of leaf columns
// and is used to update the schema metadata Column Orders. len(orders) must equal s.NumColumns()
func (s *Schema) UpdateColumnOrders(orders []parquet.ColumnOrder) error {
if len(orders) != s.NumColumns() {
return xerrors.New("parquet: malformed schema: not enough ColumnOrder values")
}
visitor := schemaColumnOrderUpdater{orders, 0}
s.root.Visit(&visitor)
return nil
}
func (s *Schema) String() string {
var b strings.Builder
PrintSchema(s.root, &b, 2)
return b.String()
}
// NewSchema constructs a new Schema object from a root group node.
//
// Any fields with a field-id of -1 will be given an appropriate field number based on their order.
func NewSchema(root *GroupNode) *Schema {
s := &Schema{
root,
make([]*Column, 0),
make(map[*PrimitiveNode]int),
make(map[int]Node),
make(strIntMultimap),
}
for _, f := range root.fields {
s.buildTree(f, 0, 0, f)
}
return s
}
type schemaColumnOrderUpdater struct {
colOrders []parquet.ColumnOrder
leafCount int
}
func (s *schemaColumnOrderUpdater) VisitPre(n Node) bool {
if n.Type() == Primitive {
leaf := n.(*PrimitiveNode)
leaf.ColumnOrder = s.colOrders[s.leafCount]
s.leafCount++
}
return true
}
func (s *schemaColumnOrderUpdater) VisitPost(Node) {}
type toThriftVisitor struct {
elements []*format.SchemaElement
}
func (t *toThriftVisitor) VisitPre(n Node) bool {
t.elements = append(t.elements, n.toThrift())
return true
}
func (t *toThriftVisitor) VisitPost(Node) {}
// ToThrift converts a GroupNode to a slice of SchemaElements which is used
// for thrift serialization.
func ToThrift(schema *GroupNode) []*format.SchemaElement {
t := &toThriftVisitor{make([]*format.SchemaElement, 0)}
schema.Visit(t)
return t.elements
}
type schemaPrinter struct {
w io.Writer
indent int
indentWidth int
}
func (s *schemaPrinter) VisitPre(n Node) bool {
fmt.Fprint(s.w, strings.Repeat(" ", s.indent))
if n.Type() == Group {
g := n.(*GroupNode)
fmt.Fprintf(s.w, "%s group field_id=%d %s", g.RepetitionType(), g.FieldID(), g.Name())
_, invalid := g.logicalType.(UnknownLogicalType)
_, none := g.logicalType.(NoLogicalType)
if g.logicalType != nil && !invalid && !none {
fmt.Fprintf(s.w, " (%s)", g.logicalType)
} else if g.convertedType != ConvertedTypes.None {
fmt.Fprintf(s.w, " (%s)", g.convertedType)
}
fmt.Fprintln(s.w, " {")
s.indent += s.indentWidth
} else {
p := n.(*PrimitiveNode)
fmt.Fprintf(s.w, "%s %s field_id=%d %s", p.RepetitionType(), strings.ToLower(p.PhysicalType().String()), p.FieldID(), p.Name())
_, invalid := p.logicalType.(UnknownLogicalType)
_, none := p.logicalType.(NoLogicalType)
if p.logicalType != nil && !invalid && !none {
fmt.Fprintf(s.w, " (%s)", p.logicalType)
} else if p.convertedType == ConvertedTypes.Decimal {
fmt.Fprintf(s.w, " (%s(%d,%d))", p.convertedType, p.DecimalMetadata().Precision, p.DecimalMetadata().Scale)
} else if p.convertedType != ConvertedTypes.None {
fmt.Fprintf(s.w, " (%s)", p.convertedType)
}
fmt.Fprintln(s.w, ";")
}
return true
}
func (s *schemaPrinter) VisitPost(n Node) {
if n.Type() == Group {
s.indent -= s.indentWidth
fmt.Fprint(s.w, strings.Repeat(" ", s.indent))
fmt.Fprintln(s.w, "}")
}
}
// PrintSchema writes a string representation of the tree to w using the indent
// width provided.
func PrintSchema(n Node, w io.Writer, indentWidth int) {
n.Visit(&schemaPrinter{w, 0, indentWidth})
}
type strIntMultimap map[string][]int
func (f strIntMultimap) Add(key string, val int) bool {
if _, ok := f[key]; !ok {
f[key] = []int{val}
return false
}
f[key] = append(f[key], val)
return true
}
|