1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package lookoutequipment
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/lookoutequipment/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
"time"
)
// Creates an ML model for data inference. A machine-learning (ML) model is a
// mathematical model that finds patterns in your data. In Amazon Lookout for
// Equipment, the model learns the patterns of normal behavior and detects abnormal
// behavior that could be potential equipment failure (or maintenance events). The
// models are made by analyzing normal data and abnormalities in machine behavior
// that have already occurred. Your model is trained using a portion of the data
// from your dataset and uses that data to learn patterns of normal behavior and
// abnormal patterns that lead to equipment failure. Another portion of the data is
// used to evaluate the model's accuracy.
func (c *Client) CreateModel(ctx context.Context, params *CreateModelInput, optFns ...func(*Options)) (*CreateModelOutput, error) {
if params == nil {
params = &CreateModelInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateModel", params, optFns, c.addOperationCreateModelMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateModelOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateModelInput struct {
// A unique identifier for the request. If you do not set the client request token,
// Amazon Lookout for Equipment generates one.
//
// This member is required.
ClientToken *string
// The name of the dataset for the ML model being created.
//
// This member is required.
DatasetName *string
// The name for the ML model to be created.
//
// This member is required.
ModelName *string
// The configuration is the TargetSamplingRate, which is the sampling rate of the
// data after post processing by Amazon Lookout for Equipment. For example, if you
// provide data that has been collected at a 1 second level and you want the system
// to resample the data at a 1 minute rate before training, the TargetSamplingRate
// is 1 minute. When providing a value for the TargetSamplingRate, you must attach
// the prefix "PT" to the rate you want. The value for a 1 second rate is therefore
// PT1S, the value for a 15 minute rate is PT15M, and the value for a 1 hour rate
// is PT1H
DataPreProcessingConfiguration *types.DataPreProcessingConfiguration
// The data schema for the ML model being created.
DatasetSchema *types.DatasetSchema
// Indicates the time reference in the dataset that should be used to end the
// subset of evaluation data for the ML model.
EvaluationDataEndTime *time.Time
// Indicates the time reference in the dataset that should be used to begin the
// subset of evaluation data for the ML model.
EvaluationDataStartTime *time.Time
// The input configuration for the labels being used for the ML model that's being
// created.
LabelsInputConfiguration *types.LabelsInputConfiguration
// Indicates that the asset associated with this sensor has been shut off. As long
// as this condition is met, Lookout for Equipment will not use data from this
// asset for training, evaluation, or inference.
OffCondition *string
// The Amazon Resource Name (ARN) of a role with permission to access the data
// source being used to create the ML model.
RoleArn *string
// Provides the identifier of the KMS key used to encrypt model data by Amazon
// Lookout for Equipment.
ServerSideKmsKeyId *string
// Any tags associated with the ML model being created.
Tags []types.Tag
// Indicates the time reference in the dataset that should be used to end the
// subset of training data for the ML model.
TrainingDataEndTime *time.Time
// Indicates the time reference in the dataset that should be used to begin the
// subset of training data for the ML model.
TrainingDataStartTime *time.Time
noSmithyDocumentSerde
}
type CreateModelOutput struct {
// The Amazon Resource Name (ARN) of the model being created.
ModelArn *string
// Indicates the status of the CreateModel operation.
Status types.ModelStatus
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
err = stack.Serialize.Add(&awsAwsjson10_serializeOpCreateModel{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson10_deserializeOpCreateModel{}, middleware.After)
if err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = addHTTPSignerV4Middleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addIdempotencyToken_opCreateModelMiddleware(stack, options); err != nil {
return err
}
if err = addOpCreateModelValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateModel(options.Region), middleware.Before); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
return nil
}
type idempotencyToken_initializeOpCreateModel struct {
tokenProvider IdempotencyTokenProvider
}
func (*idempotencyToken_initializeOpCreateModel) ID() string {
return "OperationIdempotencyTokenAutoFill"
}
func (m *idempotencyToken_initializeOpCreateModel) HandleInitialize(ctx context.Context, in middleware.InitializeInput, next middleware.InitializeHandler) (
out middleware.InitializeOutput, metadata middleware.Metadata, err error,
) {
if m.tokenProvider == nil {
return next.HandleInitialize(ctx, in)
}
input, ok := in.Parameters.(*CreateModelInput)
if !ok {
return out, metadata, fmt.Errorf("expected middleware input to be of type *CreateModelInput ")
}
if input.ClientToken == nil {
t, err := m.tokenProvider.GetIdempotencyToken()
if err != nil {
return out, metadata, err
}
input.ClientToken = &t
}
return next.HandleInitialize(ctx, in)
}
func addIdempotencyToken_opCreateModelMiddleware(stack *middleware.Stack, cfg Options) error {
return stack.Initialize.Add(&idempotencyToken_initializeOpCreateModel{tokenProvider: cfg.IdempotencyTokenProvider}, middleware.Before)
}
func newServiceMetadataMiddleware_opCreateModel(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
SigningName: "lookoutequipment",
OperationName: "CreateModel",
}
}
|