File: api_op_CreateDataSourceFromRedshift.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.17.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 384,244 kB
  • sloc: java: 13,538; makefile: 400; sh: 137
file content (209 lines) | stat: -rw-r--r-- 8,060 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Code generated by smithy-go-codegen DO NOT EDIT.

package machinelearning

import (
	"context"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
	"github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Creates a DataSource from a database hosted on an Amazon Redshift cluster. A
// DataSource references data that can be used to perform either CreateMLModel,
// CreateEvaluation, or CreateBatchPrediction operations.
// CreateDataSourceFromRedshift is an asynchronous operation. In response to
// CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately
// returns and sets the DataSource status to PENDING. After the DataSource is
// created and ready for use, Amazon ML sets the Status parameter to COMPLETED.
// DataSource in COMPLETED or PENDING states can be used to perform only
// CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations. If Amazon
// ML can't accept the input source, it sets the Status parameter to FAILED and
// includes an error message in the Message attribute of the GetDataSource
// operation response. The observations should be contained in the database hosted
// on an Amazon Redshift cluster and should be specified by a SelectSqlQuery query.
// Amazon ML executes an Unload command in Amazon Redshift to transfer the result
// set of the SelectSqlQuery query to S3StagingLocation. After the DataSource has
// been created, it's ready for use in evaluations and batch predictions. If you
// plan to use the DataSource to train an MLModel, the DataSource also requires a
// recipe. A recipe describes how each input variable will be used in training an
// MLModel. Will the variable be included or excluded from training? Will the
// variable be manipulated; for example, will it be combined with another variable
// or will it be split apart into word combinations? The recipe provides answers to
// these questions. You can't change an existing datasource, but you can copy and
// modify the settings from an existing Amazon Redshift datasource to create a new
// datasource. To do so, call GetDataSource for an existing datasource and copy the
// values to a CreateDataSource call. Change the settings that you want to change
// and make sure that all required fields have the appropriate values.
func (c *Client) CreateDataSourceFromRedshift(ctx context.Context, params *CreateDataSourceFromRedshiftInput, optFns ...func(*Options)) (*CreateDataSourceFromRedshiftOutput, error) {
	if params == nil {
		params = &CreateDataSourceFromRedshiftInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "CreateDataSourceFromRedshift", params, optFns, c.addOperationCreateDataSourceFromRedshiftMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*CreateDataSourceFromRedshiftOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type CreateDataSourceFromRedshiftInput struct {

	// A user-supplied ID that uniquely identifies the DataSource.
	//
	// This member is required.
	DataSourceId *string

	// The data specification of an Amazon Redshift DataSource:
	//
	// * DatabaseInformation
	// -
	//
	// * DatabaseName - The name of the Amazon Redshift database.
	//
	// *
	// ClusterIdentifier - The unique ID for the Amazon Redshift cluster.
	//
	// *
	// DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials
	// that are used to connect to the Amazon Redshift database.
	//
	// * SelectSqlQuery -
	// The query that is used to retrieve the observation data for the Datasource.
	//
	// *
	// S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for
	// staging Amazon Redshift data. The data retrieved from Amazon Redshift using the
	// SelectSqlQuery query is stored in this location.
	//
	// * DataSchemaUri - The Amazon
	// S3 location of the DataSchema.
	//
	// * DataSchema - A JSON string representing the
	// schema. This is not required if DataSchemaUri is specified.
	//
	// * DataRearrangement
	// - A JSON string that represents the splitting and rearrangement requirements for
	// the DataSource. Sample -
	// "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
	//
	// This member is required.
	DataSpec *types.RedshiftDataSpec

	// A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on
	// behalf of the user to create the following:
	//
	// * A security group to allow Amazon
	// ML to execute the SelectSqlQuery query on an Amazon Redshift cluster
	//
	// * An
	// Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
	// S3StagingLocation
	//
	// This member is required.
	RoleARN *string

	// The compute statistics for a DataSource. The statistics are generated from the
	// observation data referenced by a DataSource. Amazon ML uses the statistics
	// internally during MLModel training. This parameter must be set to true if the
	// DataSource needs to be used for MLModel training.
	ComputeStatistics bool

	// A user-supplied name or description of the DataSource.
	DataSourceName *string

	noSmithyDocumentSerde
}

// Represents the output of a CreateDataSourceFromRedshift operation, and is an
// acknowledgement that Amazon ML received the request. The
// CreateDataSourceFromRedshift operation is asynchronous. You can poll for updates
// by using the GetBatchPrediction operation and checking the Status parameter.
type CreateDataSourceFromRedshiftOutput struct {

	// A user-supplied ID that uniquely identifies the datasource. This value should be
	// identical to the value of the DataSourceID in the request.
	DataSourceId *string

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationCreateDataSourceFromRedshiftMiddlewares(stack *middleware.Stack, options Options) (err error) {
	err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateDataSourceFromRedshift{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateDataSourceFromRedshift{}, middleware.After)
	if err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
		return err
	}
	if err = addRetryMiddlewares(stack, options); err != nil {
		return err
	}
	if err = addHTTPSignerV4Middleware(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addOpCreateDataSourceFromRedshiftValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateDataSourceFromRedshift(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opCreateDataSourceFromRedshift(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		SigningName:   "machinelearning",
		OperationName: "CreateDataSourceFromRedshift",
	}
}