1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package forecast
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/forecast/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// This operation creates a legacy predictor that does not include all the
// predictor functionalities provided by Amazon Forecast. To create a predictor
// that is compatible with all aspects of Forecast, use CreateAutoPredictor .
// Creates an Amazon Forecast predictor. In the request, provide a dataset group
// and either specify an algorithm or let Amazon Forecast choose an algorithm for
// you using AutoML. If you specify an algorithm, you also can override
// algorithm-specific hyperparameters. Amazon Forecast uses the algorithm to train
// a predictor using the latest version of the datasets in the specified dataset
// group. You can then generate a forecast using the CreateForecast operation. To
// see the evaluation metrics, use the GetAccuracyMetrics operation. You can
// specify a featurization configuration to fill and aggregate the data fields in
// the TARGET_TIME_SERIES dataset to improve model training. For more information,
// see FeaturizationConfig . For RELATED_TIME_SERIES datasets, CreatePredictor
// verifies that the DataFrequency specified when the dataset was created matches
// the ForecastFrequency . TARGET_TIME_SERIES datasets don't have this restriction.
// Amazon Forecast also verifies the delimiter and timestamp format. For more
// information, see howitworks-datasets-groups . By default, predictors are trained
// and evaluated at the 0.1 (P10), 0.5 (P50), and 0.9 (P90) quantiles. You can
// choose custom forecast types to train and evaluate your predictor by setting the
// ForecastTypes . AutoML If you want Amazon Forecast to evaluate each algorithm
// and choose the one that minimizes the objective function , set PerformAutoML to
// true . The objective function is defined as the mean of the weighted losses
// over the forecast types. By default, these are the p10, p50, and p90 quantile
// losses. For more information, see EvaluationResult . When AutoML is enabled, the
// following properties are disallowed:
// - AlgorithmArn
// - HPOConfig
// - PerformHPO
// - TrainingParameters
//
// To get a list of all of your predictors, use the ListPredictors operation.
// Before you can use the predictor to create a forecast, the Status of the
// predictor must be ACTIVE , signifying that training has completed. To get the
// status, use the DescribePredictor operation.
func (c *Client) CreatePredictor(ctx context.Context, params *CreatePredictorInput, optFns ...func(*Options)) (*CreatePredictorOutput, error) {
if params == nil {
params = &CreatePredictorInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreatePredictor", params, optFns, c.addOperationCreatePredictorMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreatePredictorOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreatePredictorInput struct {
// The featurization configuration.
//
// This member is required.
FeaturizationConfig *types.FeaturizationConfig
// Specifies the number of time-steps that the model is trained to predict. The
// forecast horizon is also called the prediction length. For example, if you
// configure a dataset for daily data collection (using the DataFrequency
// parameter of the CreateDataset operation) and set the forecast horizon to 10,
// the model returns predictions for 10 days. The maximum forecast horizon is the
// lesser of 500 time-steps or 1/3 of the TARGET_TIME_SERIES dataset length.
//
// This member is required.
ForecastHorizon *int32
// Describes the dataset group that contains the data to use to train the
// predictor.
//
// This member is required.
InputDataConfig *types.InputDataConfig
// A name for the predictor.
//
// This member is required.
PredictorName *string
// The Amazon Resource Name (ARN) of the algorithm to use for model training.
// Required if PerformAutoML is not set to true . Supported algorithms:
// - arn:aws:forecast:::algorithm/ARIMA
// - arn:aws:forecast:::algorithm/CNN-QR
// - arn:aws:forecast:::algorithm/Deep_AR_Plus
// - arn:aws:forecast:::algorithm/ETS
// - arn:aws:forecast:::algorithm/NPTS
// - arn:aws:forecast:::algorithm/Prophet
AlgorithmArn *string
// The LatencyOptimized AutoML override strategy is only available in private
// beta. Contact Amazon Web Services Support or your account manager to learn more
// about access privileges. Used to overide the default AutoML strategy, which is
// to optimize predictor accuracy. To apply an AutoML strategy that minimizes
// training time, use LatencyOptimized . This parameter is only valid for
// predictors trained using AutoML.
AutoMLOverrideStrategy types.AutoMLOverrideStrategy
// An Key Management Service (KMS) key and the Identity and Access Management
// (IAM) role that Amazon Forecast can assume to access the key.
EncryptionConfig *types.EncryptionConfig
// Used to override the default evaluation parameters of the specified algorithm.
// Amazon Forecast evaluates a predictor by splitting a dataset into training data
// and testing data. The evaluation parameters define how to perform the split and
// the number of iterations.
EvaluationParameters *types.EvaluationParameters
// Specifies the forecast types used to train a predictor. You can specify up to
// five forecast types. Forecast types can be quantiles from 0.01 to 0.99, by
// increments of 0.01 or higher. You can also specify the mean forecast with mean .
// The default value is ["0.10", "0.50", "0.9"] .
ForecastTypes []string
// Provides hyperparameter override values for the algorithm. If you don't provide
// this parameter, Amazon Forecast uses default values. The individual algorithms
// specify which hyperparameters support hyperparameter optimization (HPO). For
// more information, see aws-forecast-choosing-recipes . If you included the
// HPOConfig object, you must set PerformHPO to true.
HPOConfig *types.HyperParameterTuningJobConfig
// The accuracy metric used to optimize the predictor.
OptimizationMetric types.OptimizationMetric
// Whether to perform AutoML. When Amazon Forecast performs AutoML, it evaluates
// the algorithms it provides and chooses the best algorithm and configuration for
// your training dataset. The default value is false . In this case, you are
// required to specify an algorithm. Set PerformAutoML to true to have Amazon
// Forecast perform AutoML. This is a good option if you aren't sure which
// algorithm is suitable for your training data. In this case, PerformHPO must be
// false.
PerformAutoML *bool
// Whether to perform hyperparameter optimization (HPO). HPO finds optimal
// hyperparameter values for your training data. The process of performing HPO is
// known as running a hyperparameter tuning job. The default value is false . In
// this case, Amazon Forecast uses default hyperparameter values from the chosen
// algorithm. To override the default values, set PerformHPO to true and,
// optionally, supply the HyperParameterTuningJobConfig object. The tuning job
// specifies a metric to optimize, which hyperparameters participate in tuning, and
// the valid range for each tunable hyperparameter. In this case, you are required
// to specify an algorithm and PerformAutoML must be false. The following
// algorithms support HPO:
// - DeepAR+
// - CNN-QR
PerformHPO *bool
// The optional metadata that you apply to the predictor to help you categorize
// and organize them. Each tag consists of a key and an optional value, both of
// which you define. The following basic restrictions apply to tags:
// - Maximum number of tags per resource - 50.
// - For each resource, each tag key must be unique, and each tag key can have
// only one value.
// - Maximum key length - 128 Unicode characters in UTF-8.
// - Maximum value length - 256 Unicode characters in UTF-8.
// - If your tagging schema is used across multiple services and resources,
// remember that other services may have restrictions on allowed characters.
// Generally allowed characters are: letters, numbers, and spaces representable in
// UTF-8, and the following characters: + - = . _ : / @.
// - Tag keys and values are case sensitive.
// - Do not use aws: , AWS: , or any upper or lowercase combination of such as a
// prefix for keys as it is reserved for Amazon Web Services use. You cannot edit
// or delete tag keys with this prefix. Values can have this prefix. If a tag value
// has aws as its prefix but the key does not, then Forecast considers it to be a
// user tag and will count against the limit of 50 tags. Tags with only the key
// prefix of aws do not count against your tags per resource limit.
Tags []types.Tag
// The hyperparameters to override for model training. The hyperparameters that
// you can override are listed in the individual algorithms. For the list of
// supported algorithms, see aws-forecast-choosing-recipes .
TrainingParameters map[string]string
noSmithyDocumentSerde
}
type CreatePredictorOutput struct {
// The Amazon Resource Name (ARN) of the predictor.
PredictorArn *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreatePredictorMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreatePredictor{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreatePredictor{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreatePredictor"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreatePredictorValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreatePredictor(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreatePredictor(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreatePredictor",
}
}
|