1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package types
import (
smithydocument "github.com/aws/smithy-go/document"
)
// The log odds metric details. Account Takeover Insights (ATI) model uses event
// variables from the login data you provide to continuously calculate a set of
// variables (aggregated variables) based on historical events. For example, your
// ATI model might calculate the number of times an user has logged in using the
// same IP address. In this case, event variables used to derive the aggregated
// variables are IP address and user .
type AggregatedLogOddsMetric struct {
// The relative importance of the variables in the list to the other event
// variable.
//
// This member is required.
AggregatedVariablesImportance *float32
// The names of all the variables.
//
// This member is required.
VariableNames []string
noSmithyDocumentSerde
}
// The details of the impact of aggregated variables on the prediction score.
// Account Takeover Insights (ATI) model uses the login data you provide to
// continuously calculate a set of variables (aggregated variables) based on
// historical events. For example, the model might calculate the number of times an
// user has logged in using the same IP address. In this case, event variables used
// to derive the aggregated variables are IP address and user .
type AggregatedVariablesImpactExplanation struct {
// The names of all the event variables that were used to derive the aggregated
// variables.
EventVariableNames []string
// The raw, uninterpreted value represented as log-odds of the fraud. These values
// are usually between -10 to +10, but range from -infinity to +infinity.
// - A positive value indicates that the variables drove the risk score up.
// - A negative value indicates that the variables drove the risk score down.
LogOddsImpact *float32
// The relative impact of the aggregated variables in terms of magnitude on the
// prediction scores.
RelativeImpact *string
noSmithyDocumentSerde
}
// The details of the relative importance of the aggregated variables. Account
// Takeover Insights (ATI) model uses event variables from the login data you
// provide to continuously calculate a set of variables (aggregated variables)
// based on historical events. For example, your ATI model might calculate the
// number of times an user has logged in using the same IP address. In this case,
// event variables used to derive the aggregated variables are IP address and user .
type AggregatedVariablesImportanceMetrics struct {
// List of variables' metrics.
LogOddsMetrics []AggregatedLogOddsMetric
noSmithyDocumentSerde
}
// The metadata of a list.
type AllowDenyList struct {
// The name of the list.
//
// This member is required.
Name *string
// The ARN of the list.
Arn *string
// The time the list was created.
CreatedTime *string
// The description of the list.
Description *string
// The time the list was last updated.
UpdatedTime *string
// The variable type of the list.
VariableType *string
noSmithyDocumentSerde
}
// The Account Takeover Insights (ATI) model performance metrics data points.
type ATIMetricDataPoint struct {
// The anomaly discovery rate. This metric quantifies the percentage of anomalies
// that can be detected by the model at the selected score threshold. A lower score
// threshold increases the percentage of anomalies captured by the model, but would
// also require challenging a larger percentage of login events, leading to a
// higher customer friction.
Adr *float32
// The account takeover discovery rate. This metric quantifies the percentage of
// account compromise events that can be detected by the model at the selected
// score threshold. This metric is only available if 50 or more entities with
// at-least one labeled account takeover event is present in the ingested dataset.
Atodr *float32
// The challenge rate. This indicates the percentage of login events that the
// model recommends to challenge such as one-time password, multi-factor
// authentication, and investigations.
Cr *float32
// The model's threshold that specifies an acceptable fraud capture rate. For
// example, a threshold of 500 means any model score 500 or above is labeled as
// fraud.
Threshold *float32
noSmithyDocumentSerde
}
// The Account Takeover Insights (ATI) model performance score.
type ATIModelPerformance struct {
// The anomaly separation index (ASI) score. This metric summarizes the overall
// ability of the model to separate anomalous activities from the normal behavior.
// Depending on the business, a large fraction of these anomalous activities can be
// malicious and correspond to the account takeover attacks. A model with no
// separability power will have the lowest possible ASI score of 0.5, whereas the a
// model with a high separability power will have the highest possible ASI score of
// 1.0
Asi *float32
noSmithyDocumentSerde
}
// The Account Takeover Insights (ATI) model training metric details.
type ATITrainingMetricsValue struct {
// The model's performance metrics data points.
MetricDataPoints []ATIMetricDataPoint
// The model's overall performance scores.
ModelPerformance *ATIModelPerformance
noSmithyDocumentSerde
}
// Provides the error of the batch create variable API.
type BatchCreateVariableError struct {
// The error code.
Code int32
// The error message.
Message *string
// The name.
Name *string
noSmithyDocumentSerde
}
// Provides the error of the batch get variable API.
type BatchGetVariableError struct {
// The error code.
Code int32
// The error message.
Message *string
// The error name.
Name *string
noSmithyDocumentSerde
}
// The batch import job details.
type BatchImport struct {
// The ARN of the batch import job.
Arn *string
// Timestamp of when batch import job completed.
CompletionTime *string
// The name of the event type.
EventTypeName *string
// The number of records that failed to import.
FailedRecordsCount *int32
// The reason batch import job failed.
FailureReason *string
// The ARN of the IAM role to use for this job request.
IamRoleArn *string
// The Amazon S3 location of your data file for batch import.
InputPath *string
// The ID of the batch import job.
JobId *string
// The Amazon S3 location of your output file.
OutputPath *string
// The number of records processed by batch import job.
ProcessedRecordsCount *int32
// Timestamp of when the batch import job started.
StartTime *string
// The status of the batch import job.
Status AsyncJobStatus
// The total number of records in the batch import job.
TotalRecordsCount *int32
noSmithyDocumentSerde
}
// The batch prediction details.
type BatchPrediction struct {
// The ARN of batch prediction job.
Arn *string
// Timestamp of when the batch prediction job completed.
CompletionTime *string
// The name of the detector.
DetectorName *string
// The detector version.
DetectorVersion *string
// The name of the event type.
EventTypeName *string
// The reason a batch prediction job failed.
FailureReason *string
// The ARN of the IAM role to use for this job request.
IamRoleArn *string
// The Amazon S3 location of your training file.
InputPath *string
// The job ID for the batch prediction.
JobId *string
// Timestamp of most recent heartbeat indicating the batch prediction job was
// making progress.
LastHeartbeatTime *string
// The Amazon S3 location of your output file.
OutputPath *string
// The number of records processed by the batch prediction job.
ProcessedRecordsCount *int32
// Timestamp of when the batch prediction job started.
StartTime *string
// The batch prediction status.
Status AsyncJobStatus
// The total number of records in the batch prediction job.
TotalRecordsCount *int32
noSmithyDocumentSerde
}
// The model training data validation metrics.
type DataValidationMetrics struct {
// The field-specific model training validation messages.
FieldLevelMessages []FieldValidationMessage
// The file-specific model training data validation messages.
FileLevelMessages []FileValidationMessage
noSmithyDocumentSerde
}
// The detector.
type Detector struct {
// The detector ARN.
Arn *string
// Timestamp of when the detector was created.
CreatedTime *string
// The detector description.
Description *string
// The detector ID.
DetectorId *string
// The name of the event type.
EventTypeName *string
// Timestamp of when the detector was last updated.
LastUpdatedTime *string
noSmithyDocumentSerde
}
// The summary of the detector version.
type DetectorVersionSummary struct {
// The detector version description.
Description *string
// The detector version ID.
DetectorVersionId *string
// Timestamp of when the detector version was last updated.
LastUpdatedTime *string
// The detector version status.
Status DetectorVersionStatus
noSmithyDocumentSerde
}
// The entity details.
type Entity struct {
// The entity ID. If you do not know the entityId , you can pass unknown , which is
// areserved string literal.
//
// This member is required.
EntityId *string
// The entity type.
//
// This member is required.
EntityType *string
noSmithyDocumentSerde
}
// The entity type details.
type EntityType struct {
// The entity type ARN.
Arn *string
// Timestamp of when the entity type was created.
CreatedTime *string
// The entity type description.
Description *string
// Timestamp of when the entity type was last updated.
LastUpdatedTime *string
// The entity type name.
Name *string
noSmithyDocumentSerde
}
// The details of the external (Amazon Sagemaker) model evaluated for generating
// predictions.
type EvaluatedExternalModel struct {
// Input variables use for generating predictions.
InputVariables map[string]string
// The endpoint of the external (Amazon Sagemaker) model.
ModelEndpoint *string
// Output variables.
OutputVariables map[string]string
// Indicates whether event variables were used to generate predictions.
UseEventVariables *bool
noSmithyDocumentSerde
}
// The model version evaluated for generating prediction.
type EvaluatedModelVersion struct {
// Evaluations generated for the model version.
Evaluations []ModelVersionEvaluation
// The model ID.
ModelId *string
// The model type. Valid values: ONLINE_FRAUD_INSIGHTS | TRANSACTION_FRAUD_INSIGHTS
ModelType *string
// The model version.
ModelVersion *string
noSmithyDocumentSerde
}
// The details of the rule used for evaluating variable values.
type EvaluatedRule struct {
// Indicates whether the rule was evaluated.
Evaluated *bool
// The rule expression.
Expression *string
// The rule expression value.
ExpressionWithValues *string
// Indicates whether the rule matched.
Matched *bool
// The rule outcome.
Outcomes []string
// The rule ID.
RuleId *string
// The rule version.
RuleVersion *string
noSmithyDocumentSerde
}
// The event details.
type Event struct {
// The label associated with the event.
CurrentLabel *string
// The event entities.
Entities []Entity
// The event ID.
EventId *string
// The timestamp that defines when the event under evaluation occurred. The
// timestamp must be specified using ISO 8601 standard in UTC.
EventTimestamp *string
// The event type.
EventTypeName *string
// Names of the event type's variables you defined in Amazon Fraud Detector to
// represent data elements and their corresponding values for the event you are
// sending for evaluation.
EventVariables map[string]string
// The timestamp associated with the label to update. The timestamp must be
// specified using ISO 8601 standard in UTC.
LabelTimestamp *string
noSmithyDocumentSerde
}
// The event orchestration status.
type EventOrchestration struct {
// Specifies if event orchestration is enabled through Amazon EventBridge.
//
// This member is required.
EventBridgeEnabled *bool
noSmithyDocumentSerde
}
// Information about the summary of an event prediction.
type EventPredictionSummary struct {
// The detector ID.
DetectorId *string
// The detector version ID.
DetectorVersionId *string
// The event ID.
EventId *string
// The timestamp of the event.
EventTimestamp *string
// The event type.
EventTypeName *string
// The timestamp when the prediction was generated.
PredictionTimestamp *string
noSmithyDocumentSerde
}
// The event type details.
type EventType struct {
// The entity type ARN.
Arn *string
// Timestamp of when the event type was created.
CreatedTime *string
// The event type description.
Description *string
// The event type entity types.
EntityTypes []string
// If Enabled , Amazon Fraud Detector stores event data when you generate a
// prediction and uses that data to update calculated variables in near real-time.
// Amazon Fraud Detector uses this data, known as INGESTED_EVENTS , to train your
// model and improve fraud predictions.
EventIngestion EventIngestion
// The event orchestration status.
EventOrchestration *EventOrchestration
// The event type event variables.
EventVariables []string
// Data about the stored events.
IngestedEventStatistics *IngestedEventStatistics
// The event type labels.
Labels []string
// Timestamp of when the event type was last updated.
LastUpdatedTime *string
// The event type name.
Name *string
noSmithyDocumentSerde
}
// Information about the summary of an event variable that was evaluated for
// generating prediction.
type EventVariableSummary struct {
// The event variable name.
Name *string
// The event variable source.
Source *string
// The value of the event variable.
Value *string
noSmithyDocumentSerde
}
// Details for the external events data used for model version training.
type ExternalEventsDetail struct {
// The ARN of the role that provides Amazon Fraud Detector access to the data
// location.
//
// This member is required.
DataAccessRoleArn *string
// The Amazon S3 bucket location for the data.
//
// This member is required.
DataLocation *string
noSmithyDocumentSerde
}
// The Amazon SageMaker model.
type ExternalModel struct {
// The model ARN.
Arn *string
// Timestamp of when the model was last created.
CreatedTime *string
// The input configuration.
InputConfiguration *ModelInputConfiguration
// The role used to invoke the model.
InvokeModelEndpointRoleArn *string
// Timestamp of when the model was last updated.
LastUpdatedTime *string
// The Amazon SageMaker model endpoints.
ModelEndpoint *string
// The Amazon Fraud Detector status for the external model endpoint
ModelEndpointStatus ModelEndpointStatus
// The source of the model.
ModelSource ModelSource
// The output configuration.
OutputConfiguration *ModelOutputConfiguration
noSmithyDocumentSerde
}
// The fraud prediction scores from Amazon SageMaker model.
type ExternalModelOutputs struct {
// The Amazon SageMaker model.
ExternalModel *ExternalModelSummary
// The fraud prediction scores from Amazon SageMaker model.
Outputs map[string]string
noSmithyDocumentSerde
}
// The Amazon SageMaker model.
type ExternalModelSummary struct {
// The endpoint of the Amazon SageMaker model.
ModelEndpoint *string
// The source of the model.
ModelSource ModelSource
noSmithyDocumentSerde
}
// The message details.
type FieldValidationMessage struct {
// The message content.
Content *string
// The field name.
FieldName *string
// The message ID.
Identifier *string
// The message title.
Title *string
// The message type.
Type *string
noSmithyDocumentSerde
}
// The message details.
type FileValidationMessage struct {
// The message content.
Content *string
// The message title.
Title *string
// The message type.
Type *string
noSmithyDocumentSerde
}
// A conditional statement for filtering a list of past predictions.
type FilterCondition struct {
// A statement containing a resource property and a value to specify filter
// condition.
Value *string
noSmithyDocumentSerde
}
// The details of the ingested event.
type IngestedEventsDetail struct {
// The start and stop time of the ingested events.
//
// This member is required.
IngestedEventsTimeWindow *IngestedEventsTimeWindow
noSmithyDocumentSerde
}
// Data about the stored events.
type IngestedEventStatistics struct {
// The total size of the stored events.
EventDataSizeInBytes *int64
// Timestamp of when the stored event was last updated.
LastUpdatedTime *string
// The oldest stored event.
LeastRecentEvent *string
// The newest stored event.
MostRecentEvent *string
// The number of stored events.
NumberOfEvents *int64
noSmithyDocumentSerde
}
// The start and stop time of the ingested events.
type IngestedEventsTimeWindow struct {
// Timestamp of the final ingested event.
//
// This member is required.
EndTime *string
// Timestamp of the first ingensted event.
//
// This member is required.
StartTime *string
noSmithyDocumentSerde
}
// The KMS key details.
type KMSKey struct {
// The encryption key ARN.
KmsEncryptionKeyArn *string
noSmithyDocumentSerde
}
// The label details.
type Label struct {
// The label ARN.
Arn *string
// Timestamp of when the event type was created.
CreatedTime *string
// The label description.
Description *string
// Timestamp of when the label was last updated.
LastUpdatedTime *string
// The label name.
Name *string
noSmithyDocumentSerde
}
// The label schema.
type LabelSchema struct {
// The label mapper maps the Amazon Fraud Detector supported model classification
// labels ( FRAUD , LEGIT ) to the appropriate event type labels. For example, if "
// FRAUD " and " LEGIT " are Amazon Fraud Detector supported labels, this mapper
// could be: {"FRAUD" => ["0"] , "LEGIT" => ["1"]} or {"FRAUD" => ["false"] ,
// "LEGIT" => ["true"]} or {"FRAUD" => ["fraud", "abuse"] , "LEGIT" => ["legit",
// "safe"]} . The value part of the mapper is a list, because you may have multiple
// label variants from your event type for a single Amazon Fraud Detector label.
LabelMapper map[string][]string
// The action to take for unlabeled events.
// - Use IGNORE if you want the unlabeled events to be ignored. This is
// recommended when the majority of the events in the dataset are labeled.
// - Use FRAUD if you want to categorize all unlabeled events as “Fraud”. This is
// recommended when most of the events in your dataset are fraudulent.
// - Use LEGIT if you want to categorize all unlabeled events as “Legit”. This is
// recommended when most of the events in your dataset are legitimate.
// - Use AUTO if you want Amazon Fraud Detector to decide how to use the
// unlabeled data. This is recommended when there is significant unlabeled events
// in the dataset.
// By default, Amazon Fraud Detector ignores the unlabeled data.
UnlabeledEventsTreatment UnlabeledEventsTreatment
noSmithyDocumentSerde
}
// The log odds metric details.
type LogOddsMetric struct {
// The relative importance of the variable. For more information, see Model
// variable importance (https://docs.aws.amazon.com/frauddetector/latest/ug/model-variable-importance.html)
// .
//
// This member is required.
VariableImportance *float32
// The name of the variable.
//
// This member is required.
VariableName *string
// The type of variable.
//
// This member is required.
VariableType *string
noSmithyDocumentSerde
}
// Model performance metrics data points.
type MetricDataPoint struct {
// The false positive rate. This is the percentage of total legitimate events that
// are incorrectly predicted as fraud.
Fpr *float32
// The percentage of fraud events correctly predicted as fraudulent as compared to
// all events predicted as fraudulent.
Precision *float32
// The model threshold that specifies an acceptable fraud capture rate. For
// example, a threshold of 500 means any model score 500 or above is labeled as
// fraud.
Threshold *float32
// The true positive rate. This is the percentage of total fraud the model
// detects. Also known as capture rate.
Tpr *float32
noSmithyDocumentSerde
}
// The model.
type Model struct {
// The ARN of the model.
Arn *string
// Timestamp of when the model was created.
CreatedTime *string
// The model description.
Description *string
// The name of the event type.
EventTypeName *string
// Timestamp of last time the model was updated.
LastUpdatedTime *string
// The model ID.
ModelId *string
// The model type.
ModelType ModelTypeEnum
noSmithyDocumentSerde
}
// A pre-formed Amazon SageMaker model input you can include if your detector
// version includes an imported Amazon SageMaker model endpoint with pass-through
// input configuration.
type ModelEndpointDataBlob struct {
// The byte buffer of the Amazon SageMaker model endpoint input data blob.
ByteBuffer []byte
// The content type of the Amazon SageMaker model endpoint input data blob.
ContentType *string
noSmithyDocumentSerde
}
// The Amazon SageMaker model input configuration.
type ModelInputConfiguration struct {
// The event variables.
//
// This member is required.
UseEventVariables *bool
// Template for constructing the CSV input-data sent to SageMaker. At
// event-evaluation, the placeholders for variable-names in the template will be
// replaced with the variable values before being sent to SageMaker.
CsvInputTemplate *string
// The event type name.
EventTypeName *string
// The format of the model input configuration. The format differs depending on if
// it is passed through to SageMaker or constructed by Amazon Fraud Detector.
Format ModelInputDataFormat
// Template for constructing the JSON input-data sent to SageMaker. At
// event-evaluation, the placeholders for variable names in the template will be
// replaced with the variable values before being sent to SageMaker.
JsonInputTemplate *string
noSmithyDocumentSerde
}
// Provides the Amazon Sagemaker model output configuration.
type ModelOutputConfiguration struct {
// The format of the model output configuration.
//
// This member is required.
Format ModelOutputDataFormat
// A map of CSV index values in the SageMaker response to the Amazon Fraud
// Detector variables.
CsvIndexToVariableMap map[string]string
// A map of JSON keys in response from SageMaker to the Amazon Fraud Detector
// variables.
JsonKeyToVariableMap map[string]string
noSmithyDocumentSerde
}
// The fraud prediction scores.
type ModelScores struct {
// The model version.
ModelVersion *ModelVersion
// The model's fraud prediction scores.
Scores map[string]float32
noSmithyDocumentSerde
}
// The model version.
type ModelVersion struct {
// The model ID.
//
// This member is required.
ModelId *string
// The model type.
//
// This member is required.
ModelType ModelTypeEnum
// The model version number.
//
// This member is required.
ModelVersionNumber *string
// The model version ARN.
Arn *string
noSmithyDocumentSerde
}
// The details of the model version.
type ModelVersionDetail struct {
// The model version ARN.
Arn *string
// The timestamp when the model was created.
CreatedTime *string
// The external events data details. This will be populated if the
// trainingDataSource for the model version is specified as EXTERNAL_EVENTS .
ExternalEventsDetail *ExternalEventsDetail
// The ingested events data details. This will be populated if the
// trainingDataSource for the model version is specified as INGESTED_EVENTS .
IngestedEventsDetail *IngestedEventsDetail
// The timestamp when the model was last updated.
LastUpdatedTime *string
// The model ID.
ModelId *string
// The model type.
ModelType ModelTypeEnum
// The model version number.
ModelVersionNumber *string
// The status of the model version.
Status *string
// The training data schema.
TrainingDataSchema *TrainingDataSchema
// The model version training data source.
TrainingDataSource TrainingDataSourceEnum
// The training results.
TrainingResult *TrainingResult
// The training result details. The details include the relative importance of the
// variables.
TrainingResultV2 *TrainingResultV2
noSmithyDocumentSerde
}
// The model version evalutions.
type ModelVersionEvaluation struct {
// The evaluation score generated for the model version.
EvaluationScore *string
// The output variable name.
OutputVariableName *string
// The prediction explanations generated for the model version.
PredictionExplanations *PredictionExplanations
noSmithyDocumentSerde
}
// The Online Fraud Insights (OFI) model performance metrics data points.
type OFIMetricDataPoint struct {
// The false positive rate. This is the percentage of total legitimate events that
// are incorrectly predicted as fraud.
Fpr *float32
// The percentage of fraud events correctly predicted as fraudulent as compared to
// all events predicted as fraudulent.
Precision *float32
// The model threshold that specifies an acceptable fraud capture rate. For
// example, a threshold of 500 means any model score 500 or above is labeled as
// fraud.
Threshold *float32
// The true positive rate. This is the percentage of total fraud the model
// detects. Also known as capture rate.
Tpr *float32
noSmithyDocumentSerde
}
// The Online Fraud Insights (OFI) model performance score.
type OFIModelPerformance struct {
// The area under the curve (auc). This summarizes the total positive rate (tpr)
// and false positive rate (FPR) across all possible model score thresholds.
Auc *float32
// Indicates the range of area under curve (auc) expected from the OFI model. A
// range greater than 0.1 indicates higher model uncertainity.
UncertaintyRange *UncertaintyRange
noSmithyDocumentSerde
}
// The Online Fraud Insights (OFI) model training metric details.
type OFITrainingMetricsValue struct {
// The model's performance metrics data points.
MetricDataPoints []OFIMetricDataPoint
// The model's overall performance score.
ModelPerformance *OFIModelPerformance
noSmithyDocumentSerde
}
// The outcome.
type Outcome struct {
// The outcome ARN.
Arn *string
// The timestamp when the outcome was created.
CreatedTime *string
// The outcome description.
Description *string
// The timestamp when the outcome was last updated.
LastUpdatedTime *string
// The outcome name.
Name *string
noSmithyDocumentSerde
}
// The prediction explanations that provide insight into how each event variable
// impacted the model version's fraud prediction score.
type PredictionExplanations struct {
// The details of the aggregated variables impact on the prediction score. Account
// Takeover Insights (ATI) model uses event variables from the login data you
// provide to continuously calculate a set of variables (aggregated variables)
// based on historical events. For example, your ATI model might calculate the
// number of times an user has logged in using the same IP address. In this case,
// event variables used to derive the aggregated variables are IP address and user .
AggregatedVariablesImpactExplanations []AggregatedVariablesImpactExplanation
// The details of the event variable's impact on the prediction score.
VariableImpactExplanations []VariableImpactExplanation
noSmithyDocumentSerde
}
// The time period for when the predictions were generated.
type PredictionTimeRange struct {
// The end time of the time period for when the predictions were generated.
//
// This member is required.
EndTime *string
// The start time of the time period for when the predictions were generated.
//
// This member is required.
StartTime *string
noSmithyDocumentSerde
}
// A rule.
type Rule struct {
// The detector for which the rule is associated.
//
// This member is required.
DetectorId *string
// The rule ID.
//
// This member is required.
RuleId *string
// The rule version.
//
// This member is required.
RuleVersion *string
noSmithyDocumentSerde
}
// The details of the rule.
type RuleDetail struct {
// The rule ARN.
Arn *string
// The timestamp of when the rule was created.
CreatedTime *string
// The rule description.
Description *string
// The detector for which the rule is associated.
DetectorId *string
// The rule expression.
Expression *string
// The rule language.
Language Language
// Timestamp of the last time the rule was updated.
LastUpdatedTime *string
// The rule outcomes.
Outcomes []string
// The rule ID.
RuleId *string
// The rule version.
RuleVersion *string
noSmithyDocumentSerde
}
// The rule results.
type RuleResult struct {
// The outcomes of the matched rule, based on the rule execution mode.
Outcomes []string
// The rule ID that was matched, based on the rule execution mode.
RuleId *string
noSmithyDocumentSerde
}
// A key and value pair.
type Tag struct {
// A tag key.
//
// This member is required.
Key *string
// A value assigned to a tag key.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// The performance metrics data points for Transaction Fraud Insights (TFI) model.
type TFIMetricDataPoint struct {
// The false positive rate. This is the percentage of total legitimate events that
// are incorrectly predicted as fraud.
Fpr *float32
// The percentage of fraud events correctly predicted as fraudulent as compared to
// all events predicted as fraudulent.
Precision *float32
// The model threshold that specifies an acceptable fraud capture rate. For
// example, a threshold of 500 means any model score 500 or above is labeled as
// fraud.
Threshold *float32
// The true positive rate. This is the percentage of total fraud the model
// detects. Also known as capture rate.
Tpr *float32
noSmithyDocumentSerde
}
// The Transaction Fraud Insights (TFI) model performance score.
type TFIModelPerformance struct {
// The area under the curve (auc). This summarizes the total positive rate (tpr)
// and false positive rate (FPR) across all possible model score thresholds.
Auc *float32
// Indicates the range of area under curve (auc) expected from the TFI model. A
// range greater than 0.1 indicates higher model uncertainity.
UncertaintyRange *UncertaintyRange
noSmithyDocumentSerde
}
// The Transaction Fraud Insights (TFI) model training metric details.
type TFITrainingMetricsValue struct {
// The model's performance metrics data points.
MetricDataPoints []TFIMetricDataPoint
// The model performance score.
ModelPerformance *TFIModelPerformance
noSmithyDocumentSerde
}
// The training data schema.
type TrainingDataSchema struct {
// The training data schema variables.
//
// This member is required.
ModelVariables []string
// The label schema.
LabelSchema *LabelSchema
noSmithyDocumentSerde
}
// The training metric details.
type TrainingMetrics struct {
// The area under the curve. This summarizes true positive rate (TPR) and false
// positive rate (FPR) across all possible model score thresholds. A model with no
// predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0.
Auc *float32
// The data points details.
MetricDataPoints []MetricDataPoint
noSmithyDocumentSerde
}
// The training metrics details.
type TrainingMetricsV2 struct {
// The Account Takeover Insights (ATI) model training metric details.
Ati *ATITrainingMetricsValue
// The Online Fraud Insights (OFI) model training metric details.
Ofi *OFITrainingMetricsValue
// The Transaction Fraud Insights (TFI) model training metric details.
Tfi *TFITrainingMetricsValue
noSmithyDocumentSerde
}
// The training result details.
type TrainingResult struct {
// The validation metrics.
DataValidationMetrics *DataValidationMetrics
// The training metric details.
TrainingMetrics *TrainingMetrics
// The variable importance metrics.
VariableImportanceMetrics *VariableImportanceMetrics
noSmithyDocumentSerde
}
// The training result details.
type TrainingResultV2 struct {
// The variable importance metrics of the aggregated variables. Account Takeover
// Insights (ATI) model uses event variables from the login data you provide to
// continuously calculate a set of variables (aggregated variables) based on
// historical events. For example, your ATI model might calculate the number of
// times an user has logged in using the same IP address. In this case, event
// variables used to derive the aggregated variables are IP address and user .
AggregatedVariablesImportanceMetrics *AggregatedVariablesImportanceMetrics
// The model training data validation metrics.
DataValidationMetrics *DataValidationMetrics
// The training metric details.
TrainingMetricsV2 *TrainingMetricsV2
// The variable importance metrics details.
VariableImportanceMetrics *VariableImportanceMetrics
noSmithyDocumentSerde
}
// Range of area under curve (auc) expected from the model. A range greater than
// 0.1 indicates higher model uncertainity. A range is the difference between upper
// and lower bound of auc.
type UncertaintyRange struct {
// The lower bound value of the area under curve (auc).
//
// This member is required.
LowerBoundValue *float32
// The upper bound value of the area under curve (auc).
//
// This member is required.
UpperBoundValue *float32
noSmithyDocumentSerde
}
// The variable.
type Variable struct {
// The ARN of the variable.
Arn *string
// The time when the variable was created.
CreatedTime *string
// The data source of the variable.
DataSource DataSource
// The data type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types)
// .
DataType DataType
// The default value of the variable.
DefaultValue *string
// The description of the variable.
Description *string
// The time when variable was last updated.
LastUpdatedTime *string
// The name of the variable.
Name *string
// The variable type of the variable. Valid Values: AUTH_CODE | AVS |
// BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | BILLING_CITY | BILLING_COUNTRY |
// BILLING_NAME | BILLING_PHONE | BILLING_STATE | BILLING_ZIP | CARD_BIN |
// CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | FINGERPRINT | FRAUD_LABEL |
// FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | PAYMENT_TYPE | PHONE_NUMBER |
// PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | SHIPPING_ADDRESS_L2 |
// SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | SHIPPING_PHONE |
// SHIPPING_STATE | SHIPPING_ZIP | USERAGENT
VariableType *string
noSmithyDocumentSerde
}
// A variable in the list of variables for the batch create variable request.
type VariableEntry struct {
// The data source of the variable.
DataSource *string
// The data type of the variable.
DataType *string
// The default value of the variable.
DefaultValue *string
// The description of the variable.
Description *string
// The name of the variable.
Name *string
// The type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types)
// . Valid Values: AUTH_CODE | AVS | BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 |
// BILLING_CITY | BILLING_COUNTRY | BILLING_NAME | BILLING_PHONE | BILLING_STATE |
// BILLING_ZIP | CARD_BIN | CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS |
// FINGERPRINT | FRAUD_LABEL | FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID |
// PAYMENT_TYPE | PHONE_NUMBER | PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 |
// SHIPPING_ADDRESS_L2 | SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME |
// SHIPPING_PHONE | SHIPPING_STATE | SHIPPING_ZIP | USERAGENT
VariableType *string
noSmithyDocumentSerde
}
// The details of the event variable's impact on the prediction score.
type VariableImpactExplanation struct {
// The event variable name.
EventVariableName *string
// The raw, uninterpreted value represented as log-odds of the fraud. These values
// are usually between -10 to +10, but range from - infinity to + infinity.
// - A positive value indicates that the variable drove the risk score up.
// - A negative value indicates that the variable drove the risk score down.
LogOddsImpact *float32
// The event variable's relative impact in terms of magnitude on the prediction
// scores. The relative impact values consist of a numerical rating (0-5, 5 being
// the highest) and direction (increased/decreased) impact of the fraud risk.
RelativeImpact *string
noSmithyDocumentSerde
}
// The variable importance metrics details.
type VariableImportanceMetrics struct {
// List of variable metrics.
LogOddsMetrics []LogOddsMetric
noSmithyDocumentSerde
}
type noSmithyDocumentSerde = smithydocument.NoSerde
|