File: types.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.24.1-2~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 554,032 kB
  • sloc: java: 15,941; makefile: 419; sh: 175
file content (1456 lines) | stat: -rw-r--r-- 37,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
// Code generated by smithy-go-codegen DO NOT EDIT.

package types

import (
	smithydocument "github.com/aws/smithy-go/document"
)

// The log odds metric details. Account Takeover Insights (ATI) model uses event
// variables from the login data you provide to continuously calculate a set of
// variables (aggregated variables) based on historical events. For example, your
// ATI model might calculate the number of times an user has logged in using the
// same IP address. In this case, event variables used to derive the aggregated
// variables are IP address and user .
type AggregatedLogOddsMetric struct {

	// The relative importance of the variables in the list to the other event
	// variable.
	//
	// This member is required.
	AggregatedVariablesImportance *float32

	// The names of all the variables.
	//
	// This member is required.
	VariableNames []string

	noSmithyDocumentSerde
}

// The details of the impact of aggregated variables on the prediction score.
// Account Takeover Insights (ATI) model uses the login data you provide to
// continuously calculate a set of variables (aggregated variables) based on
// historical events. For example, the model might calculate the number of times an
// user has logged in using the same IP address. In this case, event variables used
// to derive the aggregated variables are IP address and user .
type AggregatedVariablesImpactExplanation struct {

	// The names of all the event variables that were used to derive the aggregated
	// variables.
	EventVariableNames []string

	// The raw, uninterpreted value represented as log-odds of the fraud. These values
	// are usually between -10 to +10, but range from -infinity to +infinity.
	//   - A positive value indicates that the variables drove the risk score up.
	//   - A negative value indicates that the variables drove the risk score down.
	LogOddsImpact *float32

	// The relative impact of the aggregated variables in terms of magnitude on the
	// prediction scores.
	RelativeImpact *string

	noSmithyDocumentSerde
}

// The details of the relative importance of the aggregated variables. Account
// Takeover Insights (ATI) model uses event variables from the login data you
// provide to continuously calculate a set of variables (aggregated variables)
// based on historical events. For example, your ATI model might calculate the
// number of times an user has logged in using the same IP address. In this case,
// event variables used to derive the aggregated variables are IP address and user .
type AggregatedVariablesImportanceMetrics struct {

	// List of variables' metrics.
	LogOddsMetrics []AggregatedLogOddsMetric

	noSmithyDocumentSerde
}

// The metadata of a list.
type AllowDenyList struct {

	// The name of the list.
	//
	// This member is required.
	Name *string

	// The ARN of the list.
	Arn *string

	// The time the list was created.
	CreatedTime *string

	// The description of the list.
	Description *string

	// The time the list was last updated.
	UpdatedTime *string

	// The variable type of the list.
	VariableType *string

	noSmithyDocumentSerde
}

// The Account Takeover Insights (ATI) model performance metrics data points.
type ATIMetricDataPoint struct {

	// The anomaly discovery rate. This metric quantifies the percentage of anomalies
	// that can be detected by the model at the selected score threshold. A lower score
	// threshold increases the percentage of anomalies captured by the model, but would
	// also require challenging a larger percentage of login events, leading to a
	// higher customer friction.
	Adr *float32

	// The account takeover discovery rate. This metric quantifies the percentage of
	// account compromise events that can be detected by the model at the selected
	// score threshold. This metric is only available if 50 or more entities with
	// at-least one labeled account takeover event is present in the ingested dataset.
	Atodr *float32

	// The challenge rate. This indicates the percentage of login events that the
	// model recommends to challenge such as one-time password, multi-factor
	// authentication, and investigations.
	Cr *float32

	// The model's threshold that specifies an acceptable fraud capture rate. For
	// example, a threshold of 500 means any model score 500 or above is labeled as
	// fraud.
	Threshold *float32

	noSmithyDocumentSerde
}

// The Account Takeover Insights (ATI) model performance score.
type ATIModelPerformance struct {

	// The anomaly separation index (ASI) score. This metric summarizes the overall
	// ability of the model to separate anomalous activities from the normal behavior.
	// Depending on the business, a large fraction of these anomalous activities can be
	// malicious and correspond to the account takeover attacks. A model with no
	// separability power will have the lowest possible ASI score of 0.5, whereas the a
	// model with a high separability power will have the highest possible ASI score of
	// 1.0
	Asi *float32

	noSmithyDocumentSerde
}

// The Account Takeover Insights (ATI) model training metric details.
type ATITrainingMetricsValue struct {

	// The model's performance metrics data points.
	MetricDataPoints []ATIMetricDataPoint

	// The model's overall performance scores.
	ModelPerformance *ATIModelPerformance

	noSmithyDocumentSerde
}

// Provides the error of the batch create variable API.
type BatchCreateVariableError struct {

	// The error code.
	Code int32

	// The error message.
	Message *string

	// The name.
	Name *string

	noSmithyDocumentSerde
}

// Provides the error of the batch get variable API.
type BatchGetVariableError struct {

	// The error code.
	Code int32

	// The error message.
	Message *string

	// The error name.
	Name *string

	noSmithyDocumentSerde
}

// The batch import job details.
type BatchImport struct {

	// The ARN of the batch import job.
	Arn *string

	// Timestamp of when batch import job completed.
	CompletionTime *string

	// The name of the event type.
	EventTypeName *string

	// The number of records that failed to import.
	FailedRecordsCount *int32

	// The reason batch import job failed.
	FailureReason *string

	// The ARN of the IAM role to use for this job request.
	IamRoleArn *string

	// The Amazon S3 location of your data file for batch import.
	InputPath *string

	// The ID of the batch import job.
	JobId *string

	// The Amazon S3 location of your output file.
	OutputPath *string

	// The number of records processed by batch import job.
	ProcessedRecordsCount *int32

	// Timestamp of when the batch import job started.
	StartTime *string

	// The status of the batch import job.
	Status AsyncJobStatus

	// The total number of records in the batch import job.
	TotalRecordsCount *int32

	noSmithyDocumentSerde
}

// The batch prediction details.
type BatchPrediction struct {

	// The ARN of batch prediction job.
	Arn *string

	// Timestamp of when the batch prediction job completed.
	CompletionTime *string

	// The name of the detector.
	DetectorName *string

	// The detector version.
	DetectorVersion *string

	// The name of the event type.
	EventTypeName *string

	// The reason a batch prediction job failed.
	FailureReason *string

	// The ARN of the IAM role to use for this job request.
	IamRoleArn *string

	// The Amazon S3 location of your training file.
	InputPath *string

	// The job ID for the batch prediction.
	JobId *string

	// Timestamp of most recent heartbeat indicating the batch prediction job was
	// making progress.
	LastHeartbeatTime *string

	// The Amazon S3 location of your output file.
	OutputPath *string

	// The number of records processed by the batch prediction job.
	ProcessedRecordsCount *int32

	// Timestamp of when the batch prediction job started.
	StartTime *string

	// The batch prediction status.
	Status AsyncJobStatus

	// The total number of records in the batch prediction job.
	TotalRecordsCount *int32

	noSmithyDocumentSerde
}

// The model training data validation metrics.
type DataValidationMetrics struct {

	// The field-specific model training validation messages.
	FieldLevelMessages []FieldValidationMessage

	// The file-specific model training data validation messages.
	FileLevelMessages []FileValidationMessage

	noSmithyDocumentSerde
}

// The detector.
type Detector struct {

	// The detector ARN.
	Arn *string

	// Timestamp of when the detector was created.
	CreatedTime *string

	// The detector description.
	Description *string

	// The detector ID.
	DetectorId *string

	// The name of the event type.
	EventTypeName *string

	// Timestamp of when the detector was last updated.
	LastUpdatedTime *string

	noSmithyDocumentSerde
}

// The summary of the detector version.
type DetectorVersionSummary struct {

	// The detector version description.
	Description *string

	// The detector version ID.
	DetectorVersionId *string

	// Timestamp of when the detector version was last updated.
	LastUpdatedTime *string

	// The detector version status.
	Status DetectorVersionStatus

	noSmithyDocumentSerde
}

// The entity details.
type Entity struct {

	// The entity ID. If you do not know the entityId , you can pass unknown , which is
	// areserved string literal.
	//
	// This member is required.
	EntityId *string

	// The entity type.
	//
	// This member is required.
	EntityType *string

	noSmithyDocumentSerde
}

// The entity type details.
type EntityType struct {

	// The entity type ARN.
	Arn *string

	// Timestamp of when the entity type was created.
	CreatedTime *string

	// The entity type description.
	Description *string

	// Timestamp of when the entity type was last updated.
	LastUpdatedTime *string

	// The entity type name.
	Name *string

	noSmithyDocumentSerde
}

// The details of the external (Amazon Sagemaker) model evaluated for generating
// predictions.
type EvaluatedExternalModel struct {

	// Input variables use for generating predictions.
	InputVariables map[string]string

	// The endpoint of the external (Amazon Sagemaker) model.
	ModelEndpoint *string

	// Output variables.
	OutputVariables map[string]string

	// Indicates whether event variables were used to generate predictions.
	UseEventVariables *bool

	noSmithyDocumentSerde
}

// The model version evaluated for generating prediction.
type EvaluatedModelVersion struct {

	// Evaluations generated for the model version.
	Evaluations []ModelVersionEvaluation

	// The model ID.
	ModelId *string

	// The model type. Valid values: ONLINE_FRAUD_INSIGHTS | TRANSACTION_FRAUD_INSIGHTS
	ModelType *string

	// The model version.
	ModelVersion *string

	noSmithyDocumentSerde
}

// The details of the rule used for evaluating variable values.
type EvaluatedRule struct {

	// Indicates whether the rule was evaluated.
	Evaluated *bool

	// The rule expression.
	Expression *string

	// The rule expression value.
	ExpressionWithValues *string

	// Indicates whether the rule matched.
	Matched *bool

	// The rule outcome.
	Outcomes []string

	// The rule ID.
	RuleId *string

	// The rule version.
	RuleVersion *string

	noSmithyDocumentSerde
}

// The event details.
type Event struct {

	// The label associated with the event.
	CurrentLabel *string

	// The event entities.
	Entities []Entity

	// The event ID.
	EventId *string

	// The timestamp that defines when the event under evaluation occurred. The
	// timestamp must be specified using ISO 8601 standard in UTC.
	EventTimestamp *string

	// The event type.
	EventTypeName *string

	// Names of the event type's variables you defined in Amazon Fraud Detector to
	// represent data elements and their corresponding values for the event you are
	// sending for evaluation.
	EventVariables map[string]string

	// The timestamp associated with the label to update. The timestamp must be
	// specified using ISO 8601 standard in UTC.
	LabelTimestamp *string

	noSmithyDocumentSerde
}

// The event orchestration status.
type EventOrchestration struct {

	// Specifies if event orchestration is enabled through Amazon EventBridge.
	//
	// This member is required.
	EventBridgeEnabled *bool

	noSmithyDocumentSerde
}

// Information about the summary of an event prediction.
type EventPredictionSummary struct {

	// The detector ID.
	DetectorId *string

	// The detector version ID.
	DetectorVersionId *string

	// The event ID.
	EventId *string

	// The timestamp of the event.
	EventTimestamp *string

	// The event type.
	EventTypeName *string

	// The timestamp when the prediction was generated.
	PredictionTimestamp *string

	noSmithyDocumentSerde
}

// The event type details.
type EventType struct {

	// The entity type ARN.
	Arn *string

	// Timestamp of when the event type was created.
	CreatedTime *string

	// The event type description.
	Description *string

	// The event type entity types.
	EntityTypes []string

	// If Enabled , Amazon Fraud Detector stores event data when you generate a
	// prediction and uses that data to update calculated variables in near real-time.
	// Amazon Fraud Detector uses this data, known as INGESTED_EVENTS , to train your
	// model and improve fraud predictions.
	EventIngestion EventIngestion

	// The event orchestration status.
	EventOrchestration *EventOrchestration

	// The event type event variables.
	EventVariables []string

	// Data about the stored events.
	IngestedEventStatistics *IngestedEventStatistics

	// The event type labels.
	Labels []string

	// Timestamp of when the event type was last updated.
	LastUpdatedTime *string

	// The event type name.
	Name *string

	noSmithyDocumentSerde
}

// Information about the summary of an event variable that was evaluated for
// generating prediction.
type EventVariableSummary struct {

	// The event variable name.
	Name *string

	// The event variable source.
	Source *string

	// The value of the event variable.
	Value *string

	noSmithyDocumentSerde
}

// Details for the external events data used for model version training.
type ExternalEventsDetail struct {

	// The ARN of the role that provides Amazon Fraud Detector access to the data
	// location.
	//
	// This member is required.
	DataAccessRoleArn *string

	// The Amazon S3 bucket location for the data.
	//
	// This member is required.
	DataLocation *string

	noSmithyDocumentSerde
}

// The Amazon SageMaker model.
type ExternalModel struct {

	// The model ARN.
	Arn *string

	// Timestamp of when the model was last created.
	CreatedTime *string

	// The input configuration.
	InputConfiguration *ModelInputConfiguration

	// The role used to invoke the model.
	InvokeModelEndpointRoleArn *string

	// Timestamp of when the model was last updated.
	LastUpdatedTime *string

	// The Amazon SageMaker model endpoints.
	ModelEndpoint *string

	// The Amazon Fraud Detector status for the external model endpoint
	ModelEndpointStatus ModelEndpointStatus

	// The source of the model.
	ModelSource ModelSource

	// The output configuration.
	OutputConfiguration *ModelOutputConfiguration

	noSmithyDocumentSerde
}

// The fraud prediction scores from Amazon SageMaker model.
type ExternalModelOutputs struct {

	// The Amazon SageMaker model.
	ExternalModel *ExternalModelSummary

	// The fraud prediction scores from Amazon SageMaker model.
	Outputs map[string]string

	noSmithyDocumentSerde
}

// The Amazon SageMaker model.
type ExternalModelSummary struct {

	// The endpoint of the Amazon SageMaker model.
	ModelEndpoint *string

	// The source of the model.
	ModelSource ModelSource

	noSmithyDocumentSerde
}

// The message details.
type FieldValidationMessage struct {

	// The message content.
	Content *string

	// The field name.
	FieldName *string

	// The message ID.
	Identifier *string

	// The message title.
	Title *string

	// The message type.
	Type *string

	noSmithyDocumentSerde
}

// The message details.
type FileValidationMessage struct {

	// The message content.
	Content *string

	// The message title.
	Title *string

	// The message type.
	Type *string

	noSmithyDocumentSerde
}

// A conditional statement for filtering a list of past predictions.
type FilterCondition struct {

	// A statement containing a resource property and a value to specify filter
	// condition.
	Value *string

	noSmithyDocumentSerde
}

// The details of the ingested event.
type IngestedEventsDetail struct {

	// The start and stop time of the ingested events.
	//
	// This member is required.
	IngestedEventsTimeWindow *IngestedEventsTimeWindow

	noSmithyDocumentSerde
}

// Data about the stored events.
type IngestedEventStatistics struct {

	// The total size of the stored events.
	EventDataSizeInBytes *int64

	// Timestamp of when the stored event was last updated.
	LastUpdatedTime *string

	// The oldest stored event.
	LeastRecentEvent *string

	// The newest stored event.
	MostRecentEvent *string

	// The number of stored events.
	NumberOfEvents *int64

	noSmithyDocumentSerde
}

// The start and stop time of the ingested events.
type IngestedEventsTimeWindow struct {

	// Timestamp of the final ingested event.
	//
	// This member is required.
	EndTime *string

	// Timestamp of the first ingensted event.
	//
	// This member is required.
	StartTime *string

	noSmithyDocumentSerde
}

// The KMS key details.
type KMSKey struct {

	// The encryption key ARN.
	KmsEncryptionKeyArn *string

	noSmithyDocumentSerde
}

// The label details.
type Label struct {

	// The label ARN.
	Arn *string

	// Timestamp of when the event type was created.
	CreatedTime *string

	// The label description.
	Description *string

	// Timestamp of when the label was last updated.
	LastUpdatedTime *string

	// The label name.
	Name *string

	noSmithyDocumentSerde
}

// The label schema.
type LabelSchema struct {

	// The label mapper maps the Amazon Fraud Detector supported model classification
	// labels ( FRAUD , LEGIT ) to the appropriate event type labels. For example, if "
	// FRAUD " and " LEGIT " are Amazon Fraud Detector supported labels, this mapper
	// could be: {"FRAUD" => ["0"] , "LEGIT" => ["1"]} or {"FRAUD" => ["false"] ,
	// "LEGIT" => ["true"]} or {"FRAUD" => ["fraud", "abuse"] , "LEGIT" => ["legit",
	// "safe"]} . The value part of the mapper is a list, because you may have multiple
	// label variants from your event type for a single Amazon Fraud Detector label.
	LabelMapper map[string][]string

	// The action to take for unlabeled events.
	//   - Use IGNORE if you want the unlabeled events to be ignored. This is
	//   recommended when the majority of the events in the dataset are labeled.
	//   - Use FRAUD if you want to categorize all unlabeled events as “Fraud”. This is
	//   recommended when most of the events in your dataset are fraudulent.
	//   - Use LEGIT if you want to categorize all unlabeled events as “Legit”. This is
	//   recommended when most of the events in your dataset are legitimate.
	//   - Use AUTO if you want Amazon Fraud Detector to decide how to use the
	//   unlabeled data. This is recommended when there is significant unlabeled events
	//   in the dataset.
	// By default, Amazon Fraud Detector ignores the unlabeled data.
	UnlabeledEventsTreatment UnlabeledEventsTreatment

	noSmithyDocumentSerde
}

// The log odds metric details.
type LogOddsMetric struct {

	// The relative importance of the variable. For more information, see Model
	// variable importance (https://docs.aws.amazon.com/frauddetector/latest/ug/model-variable-importance.html)
	// .
	//
	// This member is required.
	VariableImportance *float32

	// The name of the variable.
	//
	// This member is required.
	VariableName *string

	// The type of variable.
	//
	// This member is required.
	VariableType *string

	noSmithyDocumentSerde
}

// Model performance metrics data points.
type MetricDataPoint struct {

	// The false positive rate. This is the percentage of total legitimate events that
	// are incorrectly predicted as fraud.
	Fpr *float32

	// The percentage of fraud events correctly predicted as fraudulent as compared to
	// all events predicted as fraudulent.
	Precision *float32

	// The model threshold that specifies an acceptable fraud capture rate. For
	// example, a threshold of 500 means any model score 500 or above is labeled as
	// fraud.
	Threshold *float32

	// The true positive rate. This is the percentage of total fraud the model
	// detects. Also known as capture rate.
	Tpr *float32

	noSmithyDocumentSerde
}

// The model.
type Model struct {

	// The ARN of the model.
	Arn *string

	// Timestamp of when the model was created.
	CreatedTime *string

	// The model description.
	Description *string

	// The name of the event type.
	EventTypeName *string

	// Timestamp of last time the model was updated.
	LastUpdatedTime *string

	// The model ID.
	ModelId *string

	// The model type.
	ModelType ModelTypeEnum

	noSmithyDocumentSerde
}

// A pre-formed Amazon SageMaker model input you can include if your detector
// version includes an imported Amazon SageMaker model endpoint with pass-through
// input configuration.
type ModelEndpointDataBlob struct {

	// The byte buffer of the Amazon SageMaker model endpoint input data blob.
	ByteBuffer []byte

	// The content type of the Amazon SageMaker model endpoint input data blob.
	ContentType *string

	noSmithyDocumentSerde
}

// The Amazon SageMaker model input configuration.
type ModelInputConfiguration struct {

	// The event variables.
	//
	// This member is required.
	UseEventVariables *bool

	// Template for constructing the CSV input-data sent to SageMaker. At
	// event-evaluation, the placeholders for variable-names in the template will be
	// replaced with the variable values before being sent to SageMaker.
	CsvInputTemplate *string

	// The event type name.
	EventTypeName *string

	// The format of the model input configuration. The format differs depending on if
	// it is passed through to SageMaker or constructed by Amazon Fraud Detector.
	Format ModelInputDataFormat

	// Template for constructing the JSON input-data sent to SageMaker. At
	// event-evaluation, the placeholders for variable names in the template will be
	// replaced with the variable values before being sent to SageMaker.
	JsonInputTemplate *string

	noSmithyDocumentSerde
}

// Provides the Amazon Sagemaker model output configuration.
type ModelOutputConfiguration struct {

	// The format of the model output configuration.
	//
	// This member is required.
	Format ModelOutputDataFormat

	// A map of CSV index values in the SageMaker response to the Amazon Fraud
	// Detector variables.
	CsvIndexToVariableMap map[string]string

	// A map of JSON keys in response from SageMaker to the Amazon Fraud Detector
	// variables.
	JsonKeyToVariableMap map[string]string

	noSmithyDocumentSerde
}

// The fraud prediction scores.
type ModelScores struct {

	// The model version.
	ModelVersion *ModelVersion

	// The model's fraud prediction scores.
	Scores map[string]float32

	noSmithyDocumentSerde
}

// The model version.
type ModelVersion struct {

	// The model ID.
	//
	// This member is required.
	ModelId *string

	// The model type.
	//
	// This member is required.
	ModelType ModelTypeEnum

	// The model version number.
	//
	// This member is required.
	ModelVersionNumber *string

	// The model version ARN.
	Arn *string

	noSmithyDocumentSerde
}

// The details of the model version.
type ModelVersionDetail struct {

	// The model version ARN.
	Arn *string

	// The timestamp when the model was created.
	CreatedTime *string

	// The external events data details. This will be populated if the
	// trainingDataSource for the model version is specified as EXTERNAL_EVENTS .
	ExternalEventsDetail *ExternalEventsDetail

	// The ingested events data details. This will be populated if the
	// trainingDataSource for the model version is specified as INGESTED_EVENTS .
	IngestedEventsDetail *IngestedEventsDetail

	// The timestamp when the model was last updated.
	LastUpdatedTime *string

	// The model ID.
	ModelId *string

	// The model type.
	ModelType ModelTypeEnum

	// The model version number.
	ModelVersionNumber *string

	// The status of the model version.
	Status *string

	// The training data schema.
	TrainingDataSchema *TrainingDataSchema

	// The model version training data source.
	TrainingDataSource TrainingDataSourceEnum

	// The training results.
	TrainingResult *TrainingResult

	// The training result details. The details include the relative importance of the
	// variables.
	TrainingResultV2 *TrainingResultV2

	noSmithyDocumentSerde
}

// The model version evalutions.
type ModelVersionEvaluation struct {

	// The evaluation score generated for the model version.
	EvaluationScore *string

	// The output variable name.
	OutputVariableName *string

	// The prediction explanations generated for the model version.
	PredictionExplanations *PredictionExplanations

	noSmithyDocumentSerde
}

// The Online Fraud Insights (OFI) model performance metrics data points.
type OFIMetricDataPoint struct {

	// The false positive rate. This is the percentage of total legitimate events that
	// are incorrectly predicted as fraud.
	Fpr *float32

	// The percentage of fraud events correctly predicted as fraudulent as compared to
	// all events predicted as fraudulent.
	Precision *float32

	// The model threshold that specifies an acceptable fraud capture rate. For
	// example, a threshold of 500 means any model score 500 or above is labeled as
	// fraud.
	Threshold *float32

	// The true positive rate. This is the percentage of total fraud the model
	// detects. Also known as capture rate.
	Tpr *float32

	noSmithyDocumentSerde
}

// The Online Fraud Insights (OFI) model performance score.
type OFIModelPerformance struct {

	// The area under the curve (auc). This summarizes the total positive rate (tpr)
	// and false positive rate (FPR) across all possible model score thresholds.
	Auc *float32

	// Indicates the range of area under curve (auc) expected from the OFI model. A
	// range greater than 0.1 indicates higher model uncertainity.
	UncertaintyRange *UncertaintyRange

	noSmithyDocumentSerde
}

// The Online Fraud Insights (OFI) model training metric details.
type OFITrainingMetricsValue struct {

	// The model's performance metrics data points.
	MetricDataPoints []OFIMetricDataPoint

	// The model's overall performance score.
	ModelPerformance *OFIModelPerformance

	noSmithyDocumentSerde
}

// The outcome.
type Outcome struct {

	// The outcome ARN.
	Arn *string

	// The timestamp when the outcome was created.
	CreatedTime *string

	// The outcome description.
	Description *string

	// The timestamp when the outcome was last updated.
	LastUpdatedTime *string

	// The outcome name.
	Name *string

	noSmithyDocumentSerde
}

// The prediction explanations that provide insight into how each event variable
// impacted the model version's fraud prediction score.
type PredictionExplanations struct {

	// The details of the aggregated variables impact on the prediction score. Account
	// Takeover Insights (ATI) model uses event variables from the login data you
	// provide to continuously calculate a set of variables (aggregated variables)
	// based on historical events. For example, your ATI model might calculate the
	// number of times an user has logged in using the same IP address. In this case,
	// event variables used to derive the aggregated variables are IP address and user .
	AggregatedVariablesImpactExplanations []AggregatedVariablesImpactExplanation

	// The details of the event variable's impact on the prediction score.
	VariableImpactExplanations []VariableImpactExplanation

	noSmithyDocumentSerde
}

// The time period for when the predictions were generated.
type PredictionTimeRange struct {

	// The end time of the time period for when the predictions were generated.
	//
	// This member is required.
	EndTime *string

	// The start time of the time period for when the predictions were generated.
	//
	// This member is required.
	StartTime *string

	noSmithyDocumentSerde
}

// A rule.
type Rule struct {

	// The detector for which the rule is associated.
	//
	// This member is required.
	DetectorId *string

	// The rule ID.
	//
	// This member is required.
	RuleId *string

	// The rule version.
	//
	// This member is required.
	RuleVersion *string

	noSmithyDocumentSerde
}

// The details of the rule.
type RuleDetail struct {

	// The rule ARN.
	Arn *string

	// The timestamp of when the rule was created.
	CreatedTime *string

	// The rule description.
	Description *string

	// The detector for which the rule is associated.
	DetectorId *string

	// The rule expression.
	Expression *string

	// The rule language.
	Language Language

	// Timestamp of the last time the rule was updated.
	LastUpdatedTime *string

	// The rule outcomes.
	Outcomes []string

	// The rule ID.
	RuleId *string

	// The rule version.
	RuleVersion *string

	noSmithyDocumentSerde
}

// The rule results.
type RuleResult struct {

	// The outcomes of the matched rule, based on the rule execution mode.
	Outcomes []string

	// The rule ID that was matched, based on the rule execution mode.
	RuleId *string

	noSmithyDocumentSerde
}

// A key and value pair.
type Tag struct {

	// A tag key.
	//
	// This member is required.
	Key *string

	// A value assigned to a tag key.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// The performance metrics data points for Transaction Fraud Insights (TFI) model.
type TFIMetricDataPoint struct {

	// The false positive rate. This is the percentage of total legitimate events that
	// are incorrectly predicted as fraud.
	Fpr *float32

	// The percentage of fraud events correctly predicted as fraudulent as compared to
	// all events predicted as fraudulent.
	Precision *float32

	// The model threshold that specifies an acceptable fraud capture rate. For
	// example, a threshold of 500 means any model score 500 or above is labeled as
	// fraud.
	Threshold *float32

	// The true positive rate. This is the percentage of total fraud the model
	// detects. Also known as capture rate.
	Tpr *float32

	noSmithyDocumentSerde
}

// The Transaction Fraud Insights (TFI) model performance score.
type TFIModelPerformance struct {

	// The area under the curve (auc). This summarizes the total positive rate (tpr)
	// and false positive rate (FPR) across all possible model score thresholds.
	Auc *float32

	// Indicates the range of area under curve (auc) expected from the TFI model. A
	// range greater than 0.1 indicates higher model uncertainity.
	UncertaintyRange *UncertaintyRange

	noSmithyDocumentSerde
}

// The Transaction Fraud Insights (TFI) model training metric details.
type TFITrainingMetricsValue struct {

	// The model's performance metrics data points.
	MetricDataPoints []TFIMetricDataPoint

	// The model performance score.
	ModelPerformance *TFIModelPerformance

	noSmithyDocumentSerde
}

// The training data schema.
type TrainingDataSchema struct {

	// The training data schema variables.
	//
	// This member is required.
	ModelVariables []string

	// The label schema.
	LabelSchema *LabelSchema

	noSmithyDocumentSerde
}

// The training metric details.
type TrainingMetrics struct {

	// The area under the curve. This summarizes true positive rate (TPR) and false
	// positive rate (FPR) across all possible model score thresholds. A model with no
	// predictive power has an AUC of 0.5, whereas a perfect model has a score of 1.0.
	Auc *float32

	// The data points details.
	MetricDataPoints []MetricDataPoint

	noSmithyDocumentSerde
}

// The training metrics details.
type TrainingMetricsV2 struct {

	// The Account Takeover Insights (ATI) model training metric details.
	Ati *ATITrainingMetricsValue

	// The Online Fraud Insights (OFI) model training metric details.
	Ofi *OFITrainingMetricsValue

	// The Transaction Fraud Insights (TFI) model training metric details.
	Tfi *TFITrainingMetricsValue

	noSmithyDocumentSerde
}

// The training result details.
type TrainingResult struct {

	// The validation metrics.
	DataValidationMetrics *DataValidationMetrics

	// The training metric details.
	TrainingMetrics *TrainingMetrics

	// The variable importance metrics.
	VariableImportanceMetrics *VariableImportanceMetrics

	noSmithyDocumentSerde
}

// The training result details.
type TrainingResultV2 struct {

	// The variable importance metrics of the aggregated variables. Account Takeover
	// Insights (ATI) model uses event variables from the login data you provide to
	// continuously calculate a set of variables (aggregated variables) based on
	// historical events. For example, your ATI model might calculate the number of
	// times an user has logged in using the same IP address. In this case, event
	// variables used to derive the aggregated variables are IP address and user .
	AggregatedVariablesImportanceMetrics *AggregatedVariablesImportanceMetrics

	// The model training data validation metrics.
	DataValidationMetrics *DataValidationMetrics

	// The training metric details.
	TrainingMetricsV2 *TrainingMetricsV2

	// The variable importance metrics details.
	VariableImportanceMetrics *VariableImportanceMetrics

	noSmithyDocumentSerde
}

// Range of area under curve (auc) expected from the model. A range greater than
// 0.1 indicates higher model uncertainity. A range is the difference between upper
// and lower bound of auc.
type UncertaintyRange struct {

	// The lower bound value of the area under curve (auc).
	//
	// This member is required.
	LowerBoundValue *float32

	// The upper bound value of the area under curve (auc).
	//
	// This member is required.
	UpperBoundValue *float32

	noSmithyDocumentSerde
}

// The variable.
type Variable struct {

	// The ARN of the variable.
	Arn *string

	// The time when the variable was created.
	CreatedTime *string

	// The data source of the variable.
	DataSource DataSource

	// The data type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types)
	// .
	DataType DataType

	// The default value of the variable.
	DefaultValue *string

	// The description of the variable.
	Description *string

	// The time when variable was last updated.
	LastUpdatedTime *string

	// The name of the variable.
	Name *string

	// The variable type of the variable. Valid Values: AUTH_CODE | AVS |
	// BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 | BILLING_CITY | BILLING_COUNTRY |
	// BILLING_NAME | BILLING_PHONE | BILLING_STATE | BILLING_ZIP | CARD_BIN |
	// CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS | FINGERPRINT | FRAUD_LABEL |
	// FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID | PAYMENT_TYPE | PHONE_NUMBER |
	// PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 | SHIPPING_ADDRESS_L2 |
	// SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME | SHIPPING_PHONE |
	// SHIPPING_STATE | SHIPPING_ZIP | USERAGENT
	VariableType *string

	noSmithyDocumentSerde
}

// A variable in the list of variables for the batch create variable request.
type VariableEntry struct {

	// The data source of the variable.
	DataSource *string

	// The data type of the variable.
	DataType *string

	// The default value of the variable.
	DefaultValue *string

	// The description of the variable.
	Description *string

	// The name of the variable.
	Name *string

	// The type of the variable. For more information see Variable types (https://docs.aws.amazon.com/frauddetector/latest/ug/create-a-variable.html#variable-types)
	// . Valid Values: AUTH_CODE | AVS | BILLING_ADDRESS_L1 | BILLING_ADDRESS_L2 |
	// BILLING_CITY | BILLING_COUNTRY | BILLING_NAME | BILLING_PHONE | BILLING_STATE |
	// BILLING_ZIP | CARD_BIN | CATEGORICAL | CURRENCY_CODE | EMAIL_ADDRESS |
	// FINGERPRINT | FRAUD_LABEL | FREE_FORM_TEXT | IP_ADDRESS | NUMERIC | ORDER_ID |
	// PAYMENT_TYPE | PHONE_NUMBER | PRICE | PRODUCT_CATEGORY | SHIPPING_ADDRESS_L1 |
	// SHIPPING_ADDRESS_L2 | SHIPPING_CITY | SHIPPING_COUNTRY | SHIPPING_NAME |
	// SHIPPING_PHONE | SHIPPING_STATE | SHIPPING_ZIP | USERAGENT
	VariableType *string

	noSmithyDocumentSerde
}

// The details of the event variable's impact on the prediction score.
type VariableImpactExplanation struct {

	// The event variable name.
	EventVariableName *string

	// The raw, uninterpreted value represented as log-odds of the fraud. These values
	// are usually between -10 to +10, but range from - infinity to + infinity.
	//   - A positive value indicates that the variable drove the risk score up.
	//   - A negative value indicates that the variable drove the risk score down.
	LogOddsImpact *float32

	// The event variable's relative impact in terms of magnitude on the prediction
	// scores. The relative impact values consist of a numerical rating (0-5, 5 being
	// the highest) and direction (increased/decreased) impact of the fraud risk.
	RelativeImpact *string

	noSmithyDocumentSerde
}

// The variable importance metrics details.
type VariableImportanceMetrics struct {

	// List of variable metrics.
	LogOddsMetrics []LogOddsMetric

	noSmithyDocumentSerde
}

type noSmithyDocumentSerde = smithydocument.NoSerde