File: api_op_Decrypt.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.24.1-2~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 554,032 kB
  • sloc: java: 15,941; makefile: 419; sh: 175
file content (286 lines) | stat: -rw-r--r-- 14,374 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Code generated by smithy-go-codegen DO NOT EDIT.

package kms

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
	"github.com/aws/aws-sdk-go-v2/service/kms/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Decrypts ciphertext that was encrypted by a KMS key using any of the following
// operations:
//   - Encrypt
//   - GenerateDataKey
//   - GenerateDataKeyPair
//   - GenerateDataKeyWithoutPlaintext
//   - GenerateDataKeyPairWithoutPlaintext
//
// You can use this operation to decrypt ciphertext that was encrypted under a
// symmetric encryption KMS key or an asymmetric encryption KMS key. When the KMS
// key is asymmetric, you must specify the KMS key and the encryption algorithm
// that was used to encrypt the ciphertext. For information about asymmetric KMS
// keys, see Asymmetric KMS keys (https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html)
// in the Key Management Service Developer Guide. The Decrypt operation also
// decrypts ciphertext that was encrypted outside of KMS by the public key in an
// KMS asymmetric KMS key. However, it cannot decrypt symmetric ciphertext produced
// by other libraries, such as the Amazon Web Services Encryption SDK (https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/)
// or Amazon S3 client-side encryption (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html)
// . These libraries return a ciphertext format that is incompatible with KMS. If
// the ciphertext was encrypted under a symmetric encryption KMS key, the KeyId
// parameter is optional. KMS can get this information from metadata that it adds
// to the symmetric ciphertext blob. This feature adds durability to your
// implementation by ensuring that authorized users can decrypt ciphertext decades
// after it was encrypted, even if they've lost track of the key ID. However,
// specifying the KMS key is always recommended as a best practice. When you use
// the KeyId parameter to specify a KMS key, KMS only uses the KMS key you
// specify. If the ciphertext was encrypted under a different KMS key, the Decrypt
// operation fails. This practice ensures that you use the KMS key that you intend.
// Whenever possible, use key policies to give users permission to call the Decrypt
// operation on a particular KMS key, instead of using &IAM; policies. Otherwise,
// you might create an &IAM; policy that gives the user Decrypt permission on all
// KMS keys. This user could decrypt ciphertext that was encrypted by KMS keys in
// other accounts if the key policy for the cross-account KMS key permits it. If
// you must use an IAM policy for Decrypt permissions, limit the user to
// particular KMS keys or particular trusted accounts. For details, see Best
// practices for IAM policies (https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices)
// in the Key Management Service Developer Guide. Decrypt also supports Amazon Web
// Services Nitro Enclaves (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nitro-enclave.html)
// , which provide an isolated compute environment in Amazon EC2. To call Decrypt
// for a Nitro enclave, use the Amazon Web Services Nitro Enclaves SDK (https://docs.aws.amazon.com/enclaves/latest/user/developing-applications.html#sdk)
// or any Amazon Web Services SDK. Use the Recipient parameter to provide the
// attestation document for the enclave. Instead of the plaintext data, the
// response includes the plaintext data encrypted with the public key from the
// attestation document ( CiphertextForRecipient ). For information about the
// interaction between KMS and Amazon Web Services Nitro Enclaves, see How Amazon
// Web Services Nitro Enclaves uses KMS (https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html)
// in the Key Management Service Developer Guide. The KMS key that you use for this
// operation must be in a compatible key state. For details, see Key states of KMS
// keys (https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html) in
// the Key Management Service Developer Guide. Cross-account use: Yes. If you use
// the KeyId parameter to identify a KMS key in a different Amazon Web Services
// account, specify the key ARN or the alias ARN of the KMS key. Required
// permissions: kms:Decrypt (https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html)
// (key policy) Related operations:
//   - Encrypt
//   - GenerateDataKey
//   - GenerateDataKeyPair
//   - ReEncrypt
//
// Eventual consistency: The KMS API follows an eventual consistency model. For
// more information, see KMS eventual consistency (https://docs.aws.amazon.com/kms/latest/developerguide/programming-eventual-consistency.html)
// .
func (c *Client) Decrypt(ctx context.Context, params *DecryptInput, optFns ...func(*Options)) (*DecryptOutput, error) {
	if params == nil {
		params = &DecryptInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "Decrypt", params, optFns, c.addOperationDecryptMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*DecryptOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type DecryptInput struct {

	// Ciphertext to be decrypted. The blob includes metadata.
	//
	// This member is required.
	CiphertextBlob []byte

	// Checks if your request will succeed. DryRun is an optional parameter. To learn
	// more about how to use this parameter, see Testing your KMS API calls (https://docs.aws.amazon.com/kms/latest/developerguide/programming-dryrun.html)
	// in the Key Management Service Developer Guide.
	DryRun *bool

	// Specifies the encryption algorithm that will be used to decrypt the ciphertext.
	// Specify the same algorithm that was used to encrypt the data. If you specify a
	// different algorithm, the Decrypt operation fails. This parameter is required
	// only when the ciphertext was encrypted under an asymmetric KMS key. The default
	// value, SYMMETRIC_DEFAULT , represents the only supported algorithm that is valid
	// for symmetric encryption KMS keys.
	EncryptionAlgorithm types.EncryptionAlgorithmSpec

	// Specifies the encryption context to use when decrypting the data. An encryption
	// context is valid only for cryptographic operations (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#cryptographic-operations)
	// with a symmetric encryption KMS key. The standard asymmetric encryption
	// algorithms and HMAC algorithms that KMS uses do not support an encryption
	// context. An encryption context is a collection of non-secret key-value pairs
	// that represent additional authenticated data. When you use an encryption context
	// to encrypt data, you must specify the same (an exact case-sensitive match)
	// encryption context to decrypt the data. An encryption context is supported only
	// on operations with symmetric encryption KMS keys. On operations with symmetric
	// encryption KMS keys, an encryption context is optional, but it is strongly
	// recommended. For more information, see Encryption context (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context)
	// in the Key Management Service Developer Guide.
	EncryptionContext map[string]string

	// A list of grant tokens. Use a grant token when your permission to call this
	// operation comes from a new grant that has not yet achieved eventual consistency.
	// For more information, see Grant token (https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#grant_token)
	// and Using a grant token (https://docs.aws.amazon.com/kms/latest/developerguide/grant-manage.html#using-grant-token)
	// in the Key Management Service Developer Guide.
	GrantTokens []string

	// Specifies the KMS key that KMS uses to decrypt the ciphertext. Enter a key ID
	// of the KMS key that was used to encrypt the ciphertext. If you identify a
	// different KMS key, the Decrypt operation throws an IncorrectKeyException . This
	// parameter is required only when the ciphertext was encrypted under an asymmetric
	// KMS key. If you used a symmetric encryption KMS key, KMS can get the KMS key
	// from metadata that it adds to the symmetric ciphertext blob. However, it is
	// always recommended as a best practice. This practice ensures that you use the
	// KMS key that you intend. To specify a KMS key, use its key ID, key ARN, alias
	// name, or alias ARN. When using an alias name, prefix it with "alias/" . To
	// specify a KMS key in a different Amazon Web Services account, you must use the
	// key ARN or alias ARN. For example:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias
	// To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey . To
	// get the alias name and alias ARN, use ListAliases .
	KeyId *string

	// A signed attestation document (https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave-concepts.html#term-attestdoc)
	// from an Amazon Web Services Nitro enclave and the encryption algorithm to use
	// with the enclave's public key. The only valid encryption algorithm is
	// RSAES_OAEP_SHA_256 . This parameter only supports attestation documents for
	// Amazon Web Services Nitro Enclaves. To include this parameter, use the Amazon
	// Web Services Nitro Enclaves SDK (https://docs.aws.amazon.com/enclaves/latest/user/developing-applications.html#sdk)
	// or any Amazon Web Services SDK. When you use this parameter, instead of
	// returning the plaintext data, KMS encrypts the plaintext data with the public
	// key in the attestation document, and returns the resulting ciphertext in the
	// CiphertextForRecipient field in the response. This ciphertext can be decrypted
	// only with the private key in the enclave. The Plaintext field in the response
	// is null or empty. For information about the interaction between KMS and Amazon
	// Web Services Nitro Enclaves, see How Amazon Web Services Nitro Enclaves uses KMS (https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html)
	// in the Key Management Service Developer Guide.
	Recipient *types.RecipientInfo

	noSmithyDocumentSerde
}

type DecryptOutput struct {

	// The plaintext data encrypted with the public key in the attestation document.
	// This field is included in the response only when the Recipient parameter in the
	// request includes a valid attestation document from an Amazon Web Services Nitro
	// enclave. For information about the interaction between KMS and Amazon Web
	// Services Nitro Enclaves, see How Amazon Web Services Nitro Enclaves uses KMS (https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html)
	// in the Key Management Service Developer Guide.
	CiphertextForRecipient []byte

	// The encryption algorithm that was used to decrypt the ciphertext.
	EncryptionAlgorithm types.EncryptionAlgorithmSpec

	// The Amazon Resource Name ( key ARN (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN)
	// ) of the KMS key that was used to decrypt the ciphertext.
	KeyId *string

	// Decrypted plaintext data. When you use the HTTP API or the Amazon Web Services
	// CLI, the value is Base64-encoded. Otherwise, it is not Base64-encoded. If the
	// response includes the CiphertextForRecipient field, the Plaintext field is null
	// or empty.
	Plaintext []byte

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationDecryptMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson11_serializeOpDecrypt{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpDecrypt{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "Decrypt"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
		return err
	}
	if err = addRetryMiddlewares(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addOpDecryptValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDecrypt(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opDecrypt(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "Decrypt",
	}
}