1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package machinelearning
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a DataSource object. A DataSource references data that can be used to
// perform CreateMLModel , CreateEvaluation , or CreateBatchPrediction operations.
// CreateDataSourceFromS3 is an asynchronous operation. In response to
// CreateDataSourceFromS3 , Amazon Machine Learning (Amazon ML) immediately returns
// and sets the DataSource status to PENDING . After the DataSource has been
// created and is ready for use, Amazon ML sets the Status parameter to COMPLETED .
// DataSource in the COMPLETED or PENDING state can be used to perform only
// CreateMLModel , CreateEvaluation or CreateBatchPrediction operations. If Amazon
// ML can't accept the input source, it sets the Status parameter to FAILED and
// includes an error message in the Message attribute of the GetDataSource
// operation response. The observation data used in a DataSource should be ready
// to use; that is, it should have a consistent structure, and missing data values
// should be kept to a minimum. The observation data must reside in one or more
// .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with
// a schema that describes the data items by name and type. The same schema must be
// used for all of the data files referenced by the DataSource . After the
// DataSource has been created, it's ready to use in evaluations and batch
// predictions. If you plan to use the DataSource to train an MLModel , the
// DataSource also needs a recipe. A recipe describes how each input variable will
// be used in training an MLModel . Will the variable be included or excluded from
// training? Will the variable be manipulated; for example, will it be combined
// with another variable or will it be split apart into word combinations? The
// recipe provides answers to these questions.
func (c *Client) CreateDataSourceFromS3(ctx context.Context, params *CreateDataSourceFromS3Input, optFns ...func(*Options)) (*CreateDataSourceFromS3Output, error) {
if params == nil {
params = &CreateDataSourceFromS3Input{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateDataSourceFromS3", params, optFns, c.addOperationCreateDataSourceFromS3Middlewares)
if err != nil {
return nil, err
}
out := result.(*CreateDataSourceFromS3Output)
out.ResultMetadata = metadata
return out, nil
}
type CreateDataSourceFromS3Input struct {
// A user-supplied identifier that uniquely identifies the DataSource .
//
// This member is required.
DataSourceId *string
// The data specification of a DataSource :
// - DataLocationS3 - The Amazon S3 location of the observation data.
// - DataSchemaLocationS3 - The Amazon S3 location of the DataSchema .
// - DataSchema - A JSON string representing the schema. This is not required if
// DataSchemaUri is specified.
// - DataRearrangement - A JSON string that represents the splitting and
// rearrangement requirements for the Datasource . Sample -
// "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
//
// This member is required.
DataSpec *types.S3DataSpec
// The compute statistics for a DataSource . The statistics are generated from the
// observation data referenced by a DataSource . Amazon ML uses the statistics
// internally during MLModel training. This parameter must be set to true if the
// DataSource needs to be used for MLModel training.
ComputeStatistics bool
// A user-supplied name or description of the DataSource .
DataSourceName *string
noSmithyDocumentSerde
}
// Represents the output of a CreateDataSourceFromS3 operation, and is an
// acknowledgement that Amazon ML received the request. The CreateDataSourceFromS3
// operation is asynchronous. You can poll for updates by using the
// GetBatchPrediction operation and checking the Status parameter.
type CreateDataSourceFromS3Output struct {
// A user-supplied ID that uniquely identifies the DataSource . This value should
// be identical to the value of the DataSourceID in the request.
DataSourceId *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateDataSourceFromS3Middlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateDataSourceFromS3{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateDataSourceFromS3{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateDataSourceFromS3"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateDataSourceFromS3ValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateDataSourceFromS3(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateDataSourceFromS3(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateDataSourceFromS3",
}
}
|