1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package machinelearning
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new Evaluation of an MLModel . An MLModel is evaluated on a set of
// observations associated to a DataSource . Like a DataSource for an MLModel , the
// DataSource for an Evaluation contains values for the Target Variable . The
// Evaluation compares the predicted result for each observation to the actual
// outcome and provides a summary so that you know how effective the MLModel
// functions on the test data. Evaluation generates a relevant performance metric,
// such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the
// corresponding MLModelType : BINARY , REGRESSION or MULTICLASS . CreateEvaluation
// is an asynchronous operation. In response to CreateEvaluation , Amazon Machine
// Learning (Amazon ML) immediately returns and sets the evaluation status to
// PENDING . After the Evaluation is created and ready for use, Amazon ML sets the
// status to COMPLETED . You can use the GetEvaluation operation to check progress
// of the evaluation during the creation operation.
func (c *Client) CreateEvaluation(ctx context.Context, params *CreateEvaluationInput, optFns ...func(*Options)) (*CreateEvaluationOutput, error) {
if params == nil {
params = &CreateEvaluationInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateEvaluation", params, optFns, c.addOperationCreateEvaluationMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateEvaluationOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateEvaluationInput struct {
// The ID of the DataSource for the evaluation. The schema of the DataSource must
// match the schema used to create the MLModel .
//
// This member is required.
EvaluationDataSourceId *string
// A user-supplied ID that uniquely identifies the Evaluation .
//
// This member is required.
EvaluationId *string
// The ID of the MLModel to evaluate. The schema used in creating the MLModel must
// match the schema of the DataSource used in the Evaluation .
//
// This member is required.
MLModelId *string
// A user-supplied name or description of the Evaluation .
EvaluationName *string
noSmithyDocumentSerde
}
// Represents the output of a CreateEvaluation operation, and is an
// acknowledgement that Amazon ML received the request. CreateEvaluation operation
// is asynchronous. You can poll for status updates by using the GetEvcaluation
// operation and checking the Status parameter.
type CreateEvaluationOutput struct {
// The user-supplied ID that uniquely identifies the Evaluation . This value should
// be identical to the value of the EvaluationId in the request.
EvaluationId *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateEvaluationMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateEvaluation{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateEvaluation{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateEvaluation"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateEvaluationValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateEvaluation(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateEvaluation(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateEvaluation",
}
}
|