1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package machinelearning
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new MLModel using the DataSource and the recipe as information
// sources. An MLModel is nearly immutable. Users can update only the MLModelName
// and the ScoreThreshold in an MLModel without creating a new MLModel .
// CreateMLModel is an asynchronous operation. In response to CreateMLModel ,
// Amazon Machine Learning (Amazon ML) immediately returns and sets the MLModel
// status to PENDING . After the MLModel has been created and ready is for use,
// Amazon ML sets the status to COMPLETED . You can use the GetMLModel operation
// to check the progress of the MLModel during the creation operation.
// CreateMLModel requires a DataSource with computed statistics, which can be
// created by setting ComputeStatistics to true in CreateDataSourceFromRDS ,
// CreateDataSourceFromS3 , or CreateDataSourceFromRedshift operations.
func (c *Client) CreateMLModel(ctx context.Context, params *CreateMLModelInput, optFns ...func(*Options)) (*CreateMLModelOutput, error) {
if params == nil {
params = &CreateMLModelInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateMLModel", params, optFns, c.addOperationCreateMLModelMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateMLModelOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateMLModelInput struct {
// A user-supplied ID that uniquely identifies the MLModel .
//
// This member is required.
MLModelId *string
// The category of supervised learning that this MLModel will address. Choose from
// the following types:
// - Choose REGRESSION if the MLModel will be used to predict a numeric value.
// - Choose BINARY if the MLModel result has two possible values.
// - Choose MULTICLASS if the MLModel result has a limited number of values.
// For more information, see the Amazon Machine Learning Developer Guide (https://docs.aws.amazon.com/machine-learning/latest/dg)
// .
//
// This member is required.
MLModelType types.MLModelType
// The DataSource that points to the training data.
//
// This member is required.
TrainingDataSourceId *string
// A user-supplied name or description of the MLModel .
MLModelName *string
// A list of the training parameters in the MLModel . The list is implemented as a
// map of key-value pairs. The following is the current set of training parameters:
//
// - sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance. The value
// is an integer that ranges from 100000 to 2147483648 . The default value is
// 33554432 .
// - sgd.maxPasses - The number of times that the training process traverses the
// observations to build the MLModel . The value is an integer that ranges from 1
// to 10000 . The default value is 10 .
// - sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// the data improves a model's ability to find the optimal solution for a variety
// of data types. The valid values are auto and none . The default value is none
// . We strongly recommend that you shuffle your data.
// - sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It
// controls overfitting the data by penalizing large coefficients. This tends to
// drive coefficients to zero, resulting in a sparse feature set. If you use this
// parameter, start by specifying a small value, such as 1.0E-08 . The value is a
// double that ranges from 0 to MAX_DOUBLE . The default is to not use L1
// normalization. This parameter can't be used when L2 is specified. Use this
// parameter sparingly.
// - sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It
// controls overfitting the data by penalizing large coefficients. This tends to
// drive coefficients to small, nonzero values. If you use this parameter, start by
// specifying a small value, such as 1.0E-08 . The value is a double that ranges
// from 0 to MAX_DOUBLE . The default is to not use L2 normalization. This
// parameter can't be used when L1 is specified. Use this parameter sparingly.
Parameters map[string]string
// The data recipe for creating the MLModel . You must specify either the recipe or
// its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
Recipe *string
// The Amazon Simple Storage Service (Amazon S3) location and file name that
// contains the MLModel recipe. You must specify either the recipe or its URI. If
// you don't specify a recipe or its URI, Amazon ML creates a default.
RecipeUri *string
noSmithyDocumentSerde
}
// Represents the output of a CreateMLModel operation, and is an acknowledgement
// that Amazon ML received the request. The CreateMLModel operation is
// asynchronous. You can poll for status updates by using the GetMLModel operation
// and checking the Status parameter.
type CreateMLModelOutput struct {
// A user-supplied ID that uniquely identifies the MLModel . This value should be
// identical to the value of the MLModelId in the request.
MLModelId *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateMLModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateMLModel{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateMLModel{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateMLModel"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateMLModelValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateMLModel(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateMLModel(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateMLModel",
}
}
|