File: api_op_DescribeMLModels.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.24.1-2~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 554,032 kB
  • sloc: java: 15,941; makefile: 419; sh: 175
file content (495 lines) | stat: -rw-r--r-- 16,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Code generated by smithy-go-codegen DO NOT EDIT.

package machinelearning

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
	"github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
	"github.com/aws/smithy-go/middleware"
	smithytime "github.com/aws/smithy-go/time"
	smithyhttp "github.com/aws/smithy-go/transport/http"
	smithywaiter "github.com/aws/smithy-go/waiter"
	"github.com/jmespath/go-jmespath"
	"time"
)

// Returns a list of MLModel that match the search criteria in the request.
func (c *Client) DescribeMLModels(ctx context.Context, params *DescribeMLModelsInput, optFns ...func(*Options)) (*DescribeMLModelsOutput, error) {
	if params == nil {
		params = &DescribeMLModelsInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "DescribeMLModels", params, optFns, c.addOperationDescribeMLModelsMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*DescribeMLModelsOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type DescribeMLModelsInput struct {

	// The equal to operator. The MLModel results will have FilterVariable values that
	// exactly match the value specified with EQ .
	EQ *string

	// Use one of the following variables to filter a list of MLModel :
	//   - CreatedAt - Sets the search criteria to MLModel creation date.
	//   - Status - Sets the search criteria to MLModel status.
	//   - Name - Sets the search criteria to the contents of MLModel Name .
	//   - IAMUser - Sets the search criteria to the user account that invoked the
	//   MLModel creation.
	//   - TrainingDataSourceId - Sets the search criteria to the DataSource used to
	//   train one or more MLModel .
	//   - RealtimeEndpointStatus - Sets the search criteria to the MLModel real-time
	//   endpoint status.
	//   - MLModelType - Sets the search criteria to MLModel type: binary, regression,
	//   or multi-class.
	//   - Algorithm - Sets the search criteria to the algorithm that the MLModel uses.
	//   - TrainingDataURI - Sets the search criteria to the data file(s) used in
	//   training a MLModel . The URL can identify either a file or an Amazon Simple
	//   Storage Service (Amazon S3) bucket or directory.
	FilterVariable types.MLModelFilterVariable

	// The greater than or equal to operator. The MLModel results will have
	// FilterVariable values that are greater than or equal to the value specified with
	// GE .
	GE *string

	// The greater than operator. The MLModel results will have FilterVariable values
	// that are greater than the value specified with GT .
	GT *string

	// The less than or equal to operator. The MLModel results will have FilterVariable
	// values that are less than or equal to the value specified with LE .
	LE *string

	// The less than operator. The MLModel results will have FilterVariable values
	// that are less than the value specified with LT .
	LT *string

	// The number of pages of information to include in the result. The range of
	// acceptable values is 1 through 100 . The default value is 100 .
	Limit *int32

	// The not equal to operator. The MLModel results will have FilterVariable values
	// not equal to the value specified with NE .
	NE *string

	// The ID of the page in the paginated results.
	NextToken *string

	// A string that is found at the beginning of a variable, such as Name or Id . For
	// example, an MLModel could have the Name 2014-09-09-HolidayGiftMailer . To search
	// for this MLModel , select Name for the FilterVariable and any of the following
	// strings for the Prefix :
	//   - 2014-09
	//   - 2014-09-09
	//   - 2014-09-09-Holiday
	Prefix *string

	// A two-value parameter that determines the sequence of the resulting list of
	// MLModel .
	//   - asc - Arranges the list in ascending order (A-Z, 0-9).
	//   - dsc - Arranges the list in descending order (Z-A, 9-0).
	// Results are sorted by FilterVariable .
	SortOrder types.SortOrder

	noSmithyDocumentSerde
}

// Represents the output of a DescribeMLModels operation. The content is
// essentially a list of MLModel .
type DescribeMLModelsOutput struct {

	// The ID of the next page in the paginated results that indicates at least one
	// more page follows.
	NextToken *string

	// A list of MLModel that meet the search criteria.
	Results []types.MLModel

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationDescribeMLModelsMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson11_serializeOpDescribeMLModels{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpDescribeMLModels{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "DescribeMLModels"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
		return err
	}
	if err = addRetryMiddlewares(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDescribeMLModels(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

// DescribeMLModelsAPIClient is a client that implements the DescribeMLModels
// operation.
type DescribeMLModelsAPIClient interface {
	DescribeMLModels(context.Context, *DescribeMLModelsInput, ...func(*Options)) (*DescribeMLModelsOutput, error)
}

var _ DescribeMLModelsAPIClient = (*Client)(nil)

// DescribeMLModelsPaginatorOptions is the paginator options for DescribeMLModels
type DescribeMLModelsPaginatorOptions struct {
	// The number of pages of information to include in the result. The range of
	// acceptable values is 1 through 100 . The default value is 100 .
	Limit int32

	// Set to true if pagination should stop if the service returns a pagination token
	// that matches the most recent token provided to the service.
	StopOnDuplicateToken bool
}

// DescribeMLModelsPaginator is a paginator for DescribeMLModels
type DescribeMLModelsPaginator struct {
	options   DescribeMLModelsPaginatorOptions
	client    DescribeMLModelsAPIClient
	params    *DescribeMLModelsInput
	nextToken *string
	firstPage bool
}

// NewDescribeMLModelsPaginator returns a new DescribeMLModelsPaginator
func NewDescribeMLModelsPaginator(client DescribeMLModelsAPIClient, params *DescribeMLModelsInput, optFns ...func(*DescribeMLModelsPaginatorOptions)) *DescribeMLModelsPaginator {
	if params == nil {
		params = &DescribeMLModelsInput{}
	}

	options := DescribeMLModelsPaginatorOptions{}
	if params.Limit != nil {
		options.Limit = *params.Limit
	}

	for _, fn := range optFns {
		fn(&options)
	}

	return &DescribeMLModelsPaginator{
		options:   options,
		client:    client,
		params:    params,
		firstPage: true,
		nextToken: params.NextToken,
	}
}

// HasMorePages returns a boolean indicating whether more pages are available
func (p *DescribeMLModelsPaginator) HasMorePages() bool {
	return p.firstPage || (p.nextToken != nil && len(*p.nextToken) != 0)
}

// NextPage retrieves the next DescribeMLModels page.
func (p *DescribeMLModelsPaginator) NextPage(ctx context.Context, optFns ...func(*Options)) (*DescribeMLModelsOutput, error) {
	if !p.HasMorePages() {
		return nil, fmt.Errorf("no more pages available")
	}

	params := *p.params
	params.NextToken = p.nextToken

	var limit *int32
	if p.options.Limit > 0 {
		limit = &p.options.Limit
	}
	params.Limit = limit

	result, err := p.client.DescribeMLModels(ctx, &params, optFns...)
	if err != nil {
		return nil, err
	}
	p.firstPage = false

	prevToken := p.nextToken
	p.nextToken = result.NextToken

	if p.options.StopOnDuplicateToken &&
		prevToken != nil &&
		p.nextToken != nil &&
		*prevToken == *p.nextToken {
		p.nextToken = nil
	}

	return result, nil
}

// MLModelAvailableWaiterOptions are waiter options for MLModelAvailableWaiter
type MLModelAvailableWaiterOptions struct {

	// Set of options to modify how an operation is invoked. These apply to all
	// operations invoked for this client. Use functional options on operation call to
	// modify this list for per operation behavior.
	APIOptions []func(*middleware.Stack) error

	// MinDelay is the minimum amount of time to delay between retries. If unset,
	// MLModelAvailableWaiter will use default minimum delay of 30 seconds. Note that
	// MinDelay must resolve to a value lesser than or equal to the MaxDelay.
	MinDelay time.Duration

	// MaxDelay is the maximum amount of time to delay between retries. If unset or
	// set to zero, MLModelAvailableWaiter will use default max delay of 120 seconds.
	// Note that MaxDelay must resolve to value greater than or equal to the MinDelay.
	MaxDelay time.Duration

	// LogWaitAttempts is used to enable logging for waiter retry attempts
	LogWaitAttempts bool

	// Retryable is function that can be used to override the service defined
	// waiter-behavior based on operation output, or returned error. This function is
	// used by the waiter to decide if a state is retryable or a terminal state. By
	// default service-modeled logic will populate this option. This option can thus be
	// used to define a custom waiter state with fall-back to service-modeled waiter
	// state mutators.The function returns an error in case of a failure state. In case
	// of retry state, this function returns a bool value of true and nil error, while
	// in case of success it returns a bool value of false and nil error.
	Retryable func(context.Context, *DescribeMLModelsInput, *DescribeMLModelsOutput, error) (bool, error)
}

// MLModelAvailableWaiter defines the waiters for MLModelAvailable
type MLModelAvailableWaiter struct {
	client DescribeMLModelsAPIClient

	options MLModelAvailableWaiterOptions
}

// NewMLModelAvailableWaiter constructs a MLModelAvailableWaiter.
func NewMLModelAvailableWaiter(client DescribeMLModelsAPIClient, optFns ...func(*MLModelAvailableWaiterOptions)) *MLModelAvailableWaiter {
	options := MLModelAvailableWaiterOptions{}
	options.MinDelay = 30 * time.Second
	options.MaxDelay = 120 * time.Second
	options.Retryable = mLModelAvailableStateRetryable

	for _, fn := range optFns {
		fn(&options)
	}
	return &MLModelAvailableWaiter{
		client:  client,
		options: options,
	}
}

// Wait calls the waiter function for MLModelAvailable waiter. The maxWaitDur is
// the maximum wait duration the waiter will wait. The maxWaitDur is required and
// must be greater than zero.
func (w *MLModelAvailableWaiter) Wait(ctx context.Context, params *DescribeMLModelsInput, maxWaitDur time.Duration, optFns ...func(*MLModelAvailableWaiterOptions)) error {
	_, err := w.WaitForOutput(ctx, params, maxWaitDur, optFns...)
	return err
}

// WaitForOutput calls the waiter function for MLModelAvailable waiter and returns
// the output of the successful operation. The maxWaitDur is the maximum wait
// duration the waiter will wait. The maxWaitDur is required and must be greater
// than zero.
func (w *MLModelAvailableWaiter) WaitForOutput(ctx context.Context, params *DescribeMLModelsInput, maxWaitDur time.Duration, optFns ...func(*MLModelAvailableWaiterOptions)) (*DescribeMLModelsOutput, error) {
	if maxWaitDur <= 0 {
		return nil, fmt.Errorf("maximum wait time for waiter must be greater than zero")
	}

	options := w.options
	for _, fn := range optFns {
		fn(&options)
	}

	if options.MaxDelay <= 0 {
		options.MaxDelay = 120 * time.Second
	}

	if options.MinDelay > options.MaxDelay {
		return nil, fmt.Errorf("minimum waiter delay %v must be lesser than or equal to maximum waiter delay of %v.", options.MinDelay, options.MaxDelay)
	}

	ctx, cancelFn := context.WithTimeout(ctx, maxWaitDur)
	defer cancelFn()

	logger := smithywaiter.Logger{}
	remainingTime := maxWaitDur

	var attempt int64
	for {

		attempt++
		apiOptions := options.APIOptions
		start := time.Now()

		if options.LogWaitAttempts {
			logger.Attempt = attempt
			apiOptions = append([]func(*middleware.Stack) error{}, options.APIOptions...)
			apiOptions = append(apiOptions, logger.AddLogger)
		}

		out, err := w.client.DescribeMLModels(ctx, params, func(o *Options) {
			o.APIOptions = append(o.APIOptions, apiOptions...)
		})

		retryable, err := options.Retryable(ctx, params, out, err)
		if err != nil {
			return nil, err
		}
		if !retryable {
			return out, nil
		}

		remainingTime -= time.Since(start)
		if remainingTime < options.MinDelay || remainingTime <= 0 {
			break
		}

		// compute exponential backoff between waiter retries
		delay, err := smithywaiter.ComputeDelay(
			attempt, options.MinDelay, options.MaxDelay, remainingTime,
		)
		if err != nil {
			return nil, fmt.Errorf("error computing waiter delay, %w", err)
		}

		remainingTime -= delay
		// sleep for the delay amount before invoking a request
		if err := smithytime.SleepWithContext(ctx, delay); err != nil {
			return nil, fmt.Errorf("request cancelled while waiting, %w", err)
		}
	}
	return nil, fmt.Errorf("exceeded max wait time for MLModelAvailable waiter")
}

func mLModelAvailableStateRetryable(ctx context.Context, input *DescribeMLModelsInput, output *DescribeMLModelsOutput, err error) (bool, error) {

	if err == nil {
		pathValue, err := jmespath.Search("Results[].Status", output)
		if err != nil {
			return false, fmt.Errorf("error evaluating waiter state: %w", err)
		}

		expectedValue := "COMPLETED"
		var match = true
		listOfValues, ok := pathValue.([]interface{})
		if !ok {
			return false, fmt.Errorf("waiter comparator expected list got %T", pathValue)
		}

		if len(listOfValues) == 0 {
			match = false
		}
		for _, v := range listOfValues {
			value, ok := v.(types.EntityStatus)
			if !ok {
				return false, fmt.Errorf("waiter comparator expected types.EntityStatus value, got %T", pathValue)
			}

			if string(value) != expectedValue {
				match = false
			}
		}

		if match {
			return false, nil
		}
	}

	if err == nil {
		pathValue, err := jmespath.Search("Results[].Status", output)
		if err != nil {
			return false, fmt.Errorf("error evaluating waiter state: %w", err)
		}

		expectedValue := "FAILED"
		listOfValues, ok := pathValue.([]interface{})
		if !ok {
			return false, fmt.Errorf("waiter comparator expected list got %T", pathValue)
		}

		for _, v := range listOfValues {
			value, ok := v.(types.EntityStatus)
			if !ok {
				return false, fmt.Errorf("waiter comparator expected types.EntityStatus value, got %T", pathValue)
			}

			if string(value) == expectedValue {
				return false, fmt.Errorf("waiter state transitioned to Failure")
			}
		}
	}

	return true, nil
}

func newServiceMetadataMiddleware_opDescribeMLModels(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "DescribeMLModels",
	}
}