1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package machinelearning
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/machinelearning/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
"time"
)
// Returns an MLModel that includes detailed metadata, data source information,
// and the current status of the MLModel . GetMLModel provides results in normal
// or verbose format.
func (c *Client) GetMLModel(ctx context.Context, params *GetMLModelInput, optFns ...func(*Options)) (*GetMLModelOutput, error) {
if params == nil {
params = &GetMLModelInput{}
}
result, metadata, err := c.invokeOperation(ctx, "GetMLModel", params, optFns, c.addOperationGetMLModelMiddlewares)
if err != nil {
return nil, err
}
out := result.(*GetMLModelOutput)
out.ResultMetadata = metadata
return out, nil
}
type GetMLModelInput struct {
// The ID assigned to the MLModel at creation.
//
// This member is required.
MLModelId *string
// Specifies whether the GetMLModel operation should return Recipe . If true,
// Recipe is returned. If false, Recipe is not returned.
Verbose bool
noSmithyDocumentSerde
}
// Represents the output of a GetMLModel operation, and provides detailed
// information about a MLModel .
type GetMLModelOutput struct {
// The approximate CPU time in milliseconds that Amazon Machine Learning spent
// processing the MLModel , normalized and scaled on computation resources.
// ComputeTime is only available if the MLModel is in the COMPLETED state.
ComputeTime *int64
// The time that the MLModel was created. The time is expressed in epoch time.
CreatedAt *time.Time
// The AWS user account from which the MLModel was created. The account type can
// be either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser *string
// The current endpoint of the MLModel
EndpointInfo *types.RealtimeEndpointInfo
// The epoch time when Amazon Machine Learning marked the MLModel as COMPLETED or
// FAILED . FinishedAt is only available when the MLModel is in the COMPLETED or
// FAILED state.
FinishedAt *time.Time
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 *string
// The time of the most recent edit to the MLModel . The time is expressed in epoch
// time.
LastUpdatedAt *time.Time
// A link to the file that contains logs of the CreateMLModel operation.
LogUri *string
// The MLModel ID, which is same as the MLModelId in the request.
MLModelId *string
// Identifies the MLModel category. The following are the available types:
// - REGRESSION -- Produces a numeric result. For example, "What price should a
// house be listed at?"
// - BINARY -- Produces one of two possible results. For example, "Is this an
// e-commerce website?"
// - MULTICLASS -- Produces one of several possible results. For example, "Is
// this a HIGH, LOW or MEDIUM risk trade?"
MLModelType types.MLModelType
// A description of the most recent details about accessing the MLModel .
Message *string
// A user-supplied name or description of the MLModel .
Name *string
// The recipe to use when training the MLModel . The Recipe provides detailed
// information about the observation data to use during training, and manipulations
// to perform on the observation data during training. Note: This parameter is
// provided as part of the verbose format.
Recipe *string
// The schema used by all of the data files referenced by the DataSource . Note:
// This parameter is provided as part of the verbose format.
Schema *string
// The scoring threshold is used in binary classification MLModel models. It marks
// the boundary between a positive prediction and a negative prediction. Output
// values greater than or equal to the threshold receive a positive result from the
// MLModel, such as true . Output values less than the threshold receive a negative
// response from the MLModel, such as false .
ScoreThreshold *float32
// The time of the most recent edit to the ScoreThreshold . The time is expressed
// in epoch time.
ScoreThresholdLastUpdatedAt *time.Time
// Long integer type that is a 64-bit signed number.
SizeInBytes *int64
// The epoch time when Amazon Machine Learning marked the MLModel as INPROGRESS .
// StartedAt isn't available if the MLModel is in the PENDING state.
StartedAt *time.Time
// The current status of the MLModel . This element can have one of the following
// values:
// - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// describe a MLModel .
// - INPROGRESS - The request is processing.
// - FAILED - The request did not run to completion. The ML model isn't usable.
// - COMPLETED - The request completed successfully.
// - DELETED - The MLModel is marked as deleted. It isn't usable.
Status types.EntityStatus
// The ID of the training DataSource .
TrainingDataSourceId *string
// A list of the training parameters in the MLModel . The list is implemented as a
// map of key-value pairs. The following is the current set of training parameters:
//
// - sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance. The value
// is an integer that ranges from 100000 to 2147483648 . The default value is
// 33554432 .
// - sgd.maxPasses - The number of times that the training process traverses the
// observations to build the MLModel . The value is an integer that ranges from 1
// to 10000 . The default value is 10 .
// - sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// data improves a model's ability to find the optimal solution for a variety of
// data types. The valid values are auto and none . The default value is none .
// We strongly recommend that you shuffle your data.
// - sgd.l1RegularizationAmount - The coefficient regularization L1 norm. It
// controls overfitting the data by penalizing large coefficients. This tends to
// drive coefficients to zero, resulting in a sparse feature set. If you use this
// parameter, start by specifying a small value, such as 1.0E-08 . The value is a
// double that ranges from 0 to MAX_DOUBLE . The default is to not use L1
// normalization. This parameter can't be used when L2 is specified. Use this
// parameter sparingly.
// - sgd.l2RegularizationAmount - The coefficient regularization L2 norm. It
// controls overfitting the data by penalizing large coefficients. This tends to
// drive coefficients to small, nonzero values. If you use this parameter, start by
// specifying a small value, such as 1.0E-08 . The value is a double that ranges
// from 0 to MAX_DOUBLE . The default is to not use L2 normalization. This
// parameter can't be used when L1 is specified. Use this parameter sparingly.
TrainingParameters map[string]string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationGetMLModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpGetMLModel{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpGetMLModel{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "GetMLModel"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpGetMLModelValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opGetMLModel(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opGetMLModel(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "GetMLModel",
}
}
|