1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package types
import (
smithydocument "github.com/aws/smithy-go/document"
"time"
)
// Represents the output of a GetBatchPrediction operation. The content consists
// of the detailed metadata, the status, and the data file information of a Batch
// Prediction .
type BatchPrediction struct {
// The ID of the DataSource that points to the group of observations to predict.
BatchPredictionDataSourceId *string
// The ID assigned to the BatchPrediction at creation. This value should be
// identical to the value of the BatchPredictionID in the request.
BatchPredictionId *string
// Long integer type that is a 64-bit signed number.
ComputeTime *int64
// The time that the BatchPrediction was created. The time is expressed in epoch
// time.
CreatedAt *time.Time
// The AWS user account that invoked the BatchPrediction . The account type can be
// either an AWS root account or an AWS Identity and Access Management (IAM) user
// account.
CreatedByIamUser *string
// A timestamp represented in epoch time.
FinishedAt *time.Time
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 *string
// Long integer type that is a 64-bit signed number.
InvalidRecordCount *int64
// The time of the most recent edit to the BatchPrediction . The time is expressed
// in epoch time.
LastUpdatedAt *time.Time
// The ID of the MLModel that generated predictions for the BatchPrediction
// request.
MLModelId *string
// A description of the most recent details about processing the batch prediction
// request.
Message *string
// A user-supplied name or description of the BatchPrediction .
Name *string
// The location of an Amazon S3 bucket or directory to receive the operation
// results. The following substrings are not allowed in the s3 key portion of the
// outputURI field: ':', '//', '/./', '/../'.
OutputUri *string
// A timestamp represented in epoch time.
StartedAt *time.Time
// The status of the BatchPrediction . This element can have one of the following
// values:
// - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// generate predictions for a batch of observations.
// - INPROGRESS - The process is underway.
// - FAILED - The request to perform a batch prediction did not run to
// completion. It is not usable.
// - COMPLETED - The batch prediction process completed successfully.
// - DELETED - The BatchPrediction is marked as deleted. It is not usable.
Status EntityStatus
// Long integer type that is a 64-bit signed number.
TotalRecordCount *int64
noSmithyDocumentSerde
}
// Represents the output of the GetDataSource operation. The content consists of
// the detailed metadata and data file information and the current status of the
// DataSource .
type DataSource struct {
// The parameter is true if statistics need to be generated from the observation
// data.
ComputeStatistics bool
// Long integer type that is a 64-bit signed number.
ComputeTime *int64
// The time that the DataSource was created. The time is expressed in epoch time.
CreatedAt *time.Time
// The AWS user account from which the DataSource was created. The account type
// can be either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser *string
// The location and name of the data in Amazon Simple Storage Service (Amazon S3)
// that is used by a DataSource .
DataLocationS3 *string
// A JSON string that represents the splitting and rearrangement requirement used
// when this DataSource was created.
DataRearrangement *string
// The total number of observations contained in the data files that the DataSource
// references.
DataSizeInBytes *int64
// The ID that is assigned to the DataSource during creation.
DataSourceId *string
// A timestamp represented in epoch time.
FinishedAt *time.Time
// The time of the most recent edit to the BatchPrediction . The time is expressed
// in epoch time.
LastUpdatedAt *time.Time
// A description of the most recent details about creating the DataSource .
Message *string
// A user-supplied name or description of the DataSource .
Name *string
// The number of data files referenced by the DataSource .
NumberOfFiles *int64
// The datasource details that are specific to Amazon RDS.
RDSMetadata *RDSMetadata
// Describes the DataSource details specific to Amazon Redshift.
RedshiftMetadata *RedshiftMetadata
// The Amazon Resource Name (ARN) of an AWS IAM Role (https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-toplevel.html#roles-about-termsandconcepts)
// , such as the following: arn:aws:iam::account:role/rolename.
RoleARN *string
// A timestamp represented in epoch time.
StartedAt *time.Time
// The current status of the DataSource . This element can have one of the
// following values:
// - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
// a DataSource .
// - INPROGRESS - The creation process is underway.
// - FAILED - The request to create a DataSource did not run to completion. It is
// not usable.
// - COMPLETED - The creation process completed successfully.
// - DELETED - The DataSource is marked as deleted. It is not usable.
Status EntityStatus
noSmithyDocumentSerde
}
// Represents the output of GetEvaluation operation. The content consists of the
// detailed metadata and data file information and the current status of the
// Evaluation .
type Evaluation struct {
// Long integer type that is a 64-bit signed number.
ComputeTime *int64
// The time that the Evaluation was created. The time is expressed in epoch time.
CreatedAt *time.Time
// The AWS user account that invoked the evaluation. The account type can be
// either an AWS root account or an AWS Identity and Access Management (IAM) user
// account.
CreatedByIamUser *string
// The ID of the DataSource that is used to evaluate the MLModel .
EvaluationDataSourceId *string
// The ID that is assigned to the Evaluation at creation.
EvaluationId *string
// A timestamp represented in epoch time.
FinishedAt *time.Time
// The location and name of the data in Amazon Simple Storage Server (Amazon S3)
// that is used in the evaluation.
InputDataLocationS3 *string
// The time of the most recent edit to the Evaluation . The time is expressed in
// epoch time.
LastUpdatedAt *time.Time
// The ID of the MLModel that is the focus of the evaluation.
MLModelId *string
// A description of the most recent details about evaluating the MLModel .
Message *string
// A user-supplied name or description of the Evaluation .
Name *string
// Measurements of how well the MLModel performed, using observations referenced
// by the DataSource . One of the following metrics is returned, based on the type
// of the MLModel :
// - BinaryAUC: A binary MLModel uses the Area Under the Curve (AUC) technique to
// measure performance.
// - RegressionRMSE: A regression MLModel uses the Root Mean Square Error (RMSE)
// technique to measure performance. RMSE measures the difference between predicted
// and actual values for a single variable.
// - MulticlassAvgFScore: A multiclass MLModel uses the F1 score technique to
// measure performance.
// For more information about performance metrics, please see the Amazon Machine
// Learning Developer Guide (https://docs.aws.amazon.com/machine-learning/latest/dg)
// .
PerformanceMetrics *PerformanceMetrics
// A timestamp represented in epoch time.
StartedAt *time.Time
// The status of the evaluation. This element can have one of the following
// values:
// - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to
// evaluate an MLModel .
// - INPROGRESS - The evaluation is underway.
// - FAILED - The request to evaluate an MLModel did not run to completion. It is
// not usable.
// - COMPLETED - The evaluation process completed successfully.
// - DELETED - The Evaluation is marked as deleted. It is not usable.
Status EntityStatus
noSmithyDocumentSerde
}
// Represents the output of a GetMLModel operation. The content consists of the
// detailed metadata and the current status of the MLModel .
type MLModel struct {
// The algorithm used to train the MLModel . The following algorithm is supported:
// - SGD -- Stochastic gradient descent. The goal of SGD is to minimize the
// gradient of the loss function.
Algorithm Algorithm
// Long integer type that is a 64-bit signed number.
ComputeTime *int64
// The time that the MLModel was created. The time is expressed in epoch time.
CreatedAt *time.Time
// The AWS user account from which the MLModel was created. The account type can
// be either an AWS root account or an AWS Identity and Access Management (IAM)
// user account.
CreatedByIamUser *string
// The current endpoint of the MLModel .
EndpointInfo *RealtimeEndpointInfo
// A timestamp represented in epoch time.
FinishedAt *time.Time
// The location of the data file or directory in Amazon Simple Storage Service
// (Amazon S3).
InputDataLocationS3 *string
// The time of the most recent edit to the MLModel . The time is expressed in epoch
// time.
LastUpdatedAt *time.Time
// The ID assigned to the MLModel at creation.
MLModelId *string
// Identifies the MLModel category. The following are the available types:
// - REGRESSION - Produces a numeric result. For example, "What price should a
// house be listed at?"
// - BINARY - Produces one of two possible results. For example, "Is this a
// child-friendly web site?".
// - MULTICLASS - Produces one of several possible results. For example, "Is this
// a HIGH-, LOW-, or MEDIUM-risk trade?".
MLModelType MLModelType
// A description of the most recent details about accessing the MLModel .
Message *string
// A user-supplied name or description of the MLModel .
Name *string
ScoreThreshold *float32
// The time of the most recent edit to the ScoreThreshold . The time is expressed
// in epoch time.
ScoreThresholdLastUpdatedAt *time.Time
// Long integer type that is a 64-bit signed number.
SizeInBytes *int64
// A timestamp represented in epoch time.
StartedAt *time.Time
// The current status of an MLModel . This element can have one of the following
// values:
// - PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create
// an MLModel .
// - INPROGRESS - The creation process is underway.
// - FAILED - The request to create an MLModel didn't run to completion. The
// model isn't usable.
// - COMPLETED - The creation process completed successfully.
// - DELETED - The MLModel is marked as deleted. It isn't usable.
Status EntityStatus
// The ID of the training DataSource . The CreateMLModel operation uses the
// TrainingDataSourceId .
TrainingDataSourceId *string
// A list of the training parameters in the MLModel . The list is implemented as a
// map of key-value pairs. The following is the current set of training parameters:
//
// - sgd.maxMLModelSizeInBytes - The maximum allowed size of the model. Depending
// on the input data, the size of the model might affect its performance. The value
// is an integer that ranges from 100000 to 2147483648 . The default value is
// 33554432 .
// - sgd.maxPasses - The number of times that the training process traverses the
// observations to build the MLModel . The value is an integer that ranges from 1
// to 10000 . The default value is 10 .
// - sgd.shuffleType - Whether Amazon ML shuffles the training data. Shuffling
// the data improves a model's ability to find the optimal solution for a variety
// of data types. The valid values are auto and none . The default value is none
// .
// - sgd.l1RegularizationAmount - The coefficient regularization L1 norm, which
// controls overfitting the data by penalizing large coefficients. This parameter
// tends to drive coefficients to zero, resulting in sparse feature set. If you use
// this parameter, start by specifying a small value, such as 1.0E-08 . The value
// is a double that ranges from 0 to MAX_DOUBLE . The default is to not use L1
// normalization. This parameter can't be used when L2 is specified. Use this
// parameter sparingly.
// - sgd.l2RegularizationAmount - The coefficient regularization L2 norm, which
// controls overfitting the data by penalizing large coefficients. This tends to
// drive coefficients to small, nonzero values. If you use this parameter, start by
// specifying a small value, such as 1.0E-08 . The value is a double that ranges
// from 0 to MAX_DOUBLE . The default is to not use L2 normalization. This
// parameter can't be used when L1 is specified. Use this parameter sparingly.
TrainingParameters map[string]string
noSmithyDocumentSerde
}
// Measurements of how well the MLModel performed on known observations. One of
// the following metrics is returned, based on the type of the MLModel :
// - BinaryAUC: The binary MLModel uses the Area Under the Curve (AUC) technique
// to measure performance.
// - RegressionRMSE: The regression MLModel uses the Root Mean Square Error
// (RMSE) technique to measure performance. RMSE measures the difference between
// predicted and actual values for a single variable.
// - MulticlassAvgFScore: The multiclass MLModel uses the F1 score technique to
// measure performance.
//
// For more information about performance metrics, please see the Amazon Machine
// Learning Developer Guide (https://docs.aws.amazon.com/machine-learning/latest/dg)
// .
type PerformanceMetrics struct {
Properties map[string]string
noSmithyDocumentSerde
}
// The output from a Predict operation:
// - Details - Contains the following attributes:
// DetailsAttributes.PREDICTIVE_MODEL_TYPE - REGRESSION | BINARY | MULTICLASS
// DetailsAttributes.ALGORITHM - SGD
// - PredictedLabel - Present for either a BINARY or MULTICLASS MLModel request.
// - PredictedScores - Contains the raw classification score corresponding to
// each label.
// - PredictedValue - Present for a REGRESSION MLModel request.
type Prediction struct {
// Provides any additional details regarding the prediction.
Details map[string]string
// The prediction label for either a BINARY or MULTICLASS MLModel .
PredictedLabel *string
// Provides the raw classification score corresponding to each label.
PredictedScores map[string]float32
// The prediction value for REGRESSION MLModel .
PredictedValue *float32
noSmithyDocumentSerde
}
// The database details of an Amazon RDS database.
type RDSDatabase struct {
// The name of a database hosted on an RDS DB instance.
//
// This member is required.
DatabaseName *string
// The ID of an RDS DB instance.
//
// This member is required.
InstanceIdentifier *string
noSmithyDocumentSerde
}
// The database credentials to connect to a database on an RDS DB instance.
type RDSDatabaseCredentials struct {
// The password to be used by Amazon ML to connect to a database on an RDS DB
// instance. The password should have sufficient permissions to execute the
// RDSSelectQuery query.
//
// This member is required.
Password *string
// The username to be used by Amazon ML to connect to database on an Amazon RDS
// instance. The username should have sufficient permissions to execute an
// RDSSelectSqlQuery query.
//
// This member is required.
Username *string
noSmithyDocumentSerde
}
// The data specification of an Amazon Relational Database Service (Amazon RDS)
// DataSource .
type RDSDataSpec struct {
// The AWS Identity and Access Management (IAM) credentials that are used connect
// to the Amazon RDS database.
//
// This member is required.
DatabaseCredentials *RDSDatabaseCredentials
// Describes the DatabaseName and InstanceIdentifier of an Amazon RDS database.
//
// This member is required.
DatabaseInformation *RDSDatabase
// The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute
// Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to
// an Amazon S3 task. For more information, see Role templates (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
//
// This member is required.
ResourceRole *string
// The Amazon S3 location for staging Amazon RDS data. The data retrieved from
// Amazon RDS using SelectSqlQuery is stored in this location.
//
// This member is required.
S3StagingLocation *string
// The security group IDs to be used to access a VPC-based RDS DB instance. Ensure
// that there are appropriate ingress rules set up to allow access to the RDS DB
// instance. This attribute is used by Data Pipeline to carry out the copy
// operation from Amazon RDS to an Amazon S3 task.
//
// This member is required.
SecurityGroupIds []string
// The query that is used to retrieve the observation data for the DataSource .
//
// This member is required.
SelectSqlQuery *string
// The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to
// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
// information, see Role templates (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
//
// This member is required.
ServiceRole *string
// The subnet ID to be used to access a VPC-based RDS DB instance. This attribute
// is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon
// S3.
//
// This member is required.
SubnetId *string
// A JSON string that represents the splitting and rearrangement processing to be
// applied to a DataSource . If the DataRearrangement parameter is not provided,
// all of the input data is used to create the Datasource . There are multiple
// parameters that control what data is used to create a datasource:
// - percentBegin Use percentBegin to indicate the beginning of the range of the
// data used to create the Datasource. If you do not include percentBegin and
// percentEnd , Amazon ML includes all of the data when creating the datasource.
// - percentEnd Use percentEnd to indicate the end of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd ,
// Amazon ML includes all of the data when creating the datasource.
// - complement The complement parameter instructs Amazon ML to use the data that
// is not included in the range of percentBegin to percentEnd to create a
// datasource. The complement parameter is useful if you need to create
// complementary datasources for training and evaluation. To create a complementary
// datasource, use the same values for percentBegin and percentEnd , along with
// the complement parameter. For example, the following two datasources do not
// share any data, and can be used to train and evaluate a model. The first
// datasource has 25 percent of the data, and the second one has 75 percent of the
// data. Datasource for evaluation: {"splitting":{"percentBegin":0,
// "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0,
// "percentEnd":25, "complement":"true"}}
// - strategy To change how Amazon ML splits the data for a datasource, use the
// strategy parameter. The default value for the strategy parameter is sequential
// , meaning that Amazon ML takes all of the data records between the
// percentBegin and percentEnd parameters for the datasource, in the order that
// the records appear in the input data. The following two DataRearrangement
// lines are examples of sequentially ordered training and evaluation datasources:
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential",
// "complement":"true"}} To randomly split the input data into the proportions
// indicated by the percentBegin and percentEnd parameters, set the strategy
// parameter to random and provide a string that is used as the seed value for
// the random data splitting (for example, you can use the S3 path to your data as
// the random seed string). If you choose the random split strategy, Amazon ML
// assigns each row of data a pseudo-random number between 0 and 100, and then
// selects the rows that have an assigned number between percentBegin and
// percentEnd . Pseudo-random numbers are assigned using both the input seed
// string value and the byte offset as a seed, so changing the data results in a
// different split. Any existing ordering is preserved. The random splitting
// strategy ensures that variables in the training and evaluation data are
// distributed similarly. It is useful in the cases where the input data may have
// an implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records. The following two
// DataRearrangement lines are examples of non-sequentially ordered training and
// evaluation datasources: Datasource for evaluation:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement *string
// A JSON string that represents the schema for an Amazon RDS DataSource . The
// DataSchema defines the structure of the observation data in the data file(s)
// referenced in the DataSource . A DataSchema is not required if you specify a
// DataSchemaUri Define your DataSchema as a series of key-value pairs. attributes
// and excludedVariableNames have an array of key-value pairs for their value. Use
// the following format to define your DataSchema . { "version": "1.0",
// "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2",
// "targetFieldName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": true,
// "attributes": [ { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2",
// "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, {
// "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType":
// "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName":
// "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
// "WEIGHTED_STRING_SEQUENCE" } ], "excludedVariableNames": [ "F6" ] }
DataSchema *string
// The Amazon S3 location of the DataSchema .
DataSchemaUri *string
noSmithyDocumentSerde
}
// The datasource details that are specific to Amazon RDS.
type RDSMetadata struct {
// The ID of the Data Pipeline instance that is used to carry to copy data from
// Amazon RDS to Amazon S3. You can use the ID to find details about the instance
// in the Data Pipeline console.
DataPipelineId *string
// The database details required to connect to an Amazon RDS.
Database *RDSDatabase
// The username to be used by Amazon ML to connect to database on an Amazon RDS
// instance. The username should have sufficient permissions to execute an
// RDSSelectSqlQuery query.
DatabaseUserName *string
// The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to
// carry out the copy task from Amazon RDS to Amazon S3. For more information, see
// Role templates (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
ResourceRole *string
// The SQL query that is supplied during CreateDataSourceFromRDS . Returns only if
// Verbose is true in GetDataSourceInput .
SelectSqlQuery *string
// The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to
// monitor the progress of the copy task from Amazon RDS to Amazon S3. For more
// information, see Role templates (https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html)
// for data pipelines.
ServiceRole *string
noSmithyDocumentSerde
}
// Describes the real-time endpoint information for an MLModel .
type RealtimeEndpointInfo struct {
// The time that the request to create the real-time endpoint for the MLModel was
// received. The time is expressed in epoch time.
CreatedAt *time.Time
// The current status of the real-time endpoint for the MLModel . This element can
// have one of the following values:
// - NONE - Endpoint does not exist or was previously deleted.
// - READY - Endpoint is ready to be used for real-time predictions.
// - UPDATING - Updating/creating the endpoint.
EndpointStatus RealtimeEndpointStatus
// The URI that specifies where to send real-time prediction requests for the
// MLModel . Note: The application must wait until the real-time endpoint is ready
// before using this URI.
EndpointUrl *string
// The maximum processing rate for the real-time endpoint for MLModel , measured in
// incoming requests per second.
PeakRequestsPerSecond int32
noSmithyDocumentSerde
}
// Describes the database details required to connect to an Amazon Redshift
// database.
type RedshiftDatabase struct {
// The ID of an Amazon Redshift cluster.
//
// This member is required.
ClusterIdentifier *string
// The name of a database hosted on an Amazon Redshift cluster.
//
// This member is required.
DatabaseName *string
noSmithyDocumentSerde
}
// Describes the database credentials for connecting to a database on an Amazon
// Redshift cluster.
type RedshiftDatabaseCredentials struct {
// A password to be used by Amazon ML to connect to a database on an Amazon
// Redshift cluster. The password should have sufficient permissions to execute a
// RedshiftSelectSqlQuery query. The password should be valid for an Amazon
// Redshift USER (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html)
// .
//
// This member is required.
Password *string
// A username to be used by Amazon Machine Learning (Amazon ML)to connect to a
// database on an Amazon Redshift cluster. The username should have sufficient
// permissions to execute the RedshiftSelectSqlQuery query. The username should be
// valid for an Amazon Redshift USER (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html)
// .
//
// This member is required.
Username *string
noSmithyDocumentSerde
}
// Describes the data specification of an Amazon Redshift DataSource .
type RedshiftDataSpec struct {
// Describes AWS Identity and Access Management (IAM) credentials that are used
// connect to the Amazon Redshift database.
//
// This member is required.
DatabaseCredentials *RedshiftDatabaseCredentials
// Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift
// DataSource .
//
// This member is required.
DatabaseInformation *RedshiftDatabase
// Describes an Amazon S3 location to store the result set of the SelectSqlQuery
// query.
//
// This member is required.
S3StagingLocation *string
// Describes the SQL Query to execute on an Amazon Redshift database for an Amazon
// Redshift DataSource .
//
// This member is required.
SelectSqlQuery *string
// A JSON string that represents the splitting and rearrangement processing to be
// applied to a DataSource . If the DataRearrangement parameter is not provided,
// all of the input data is used to create the Datasource . There are multiple
// parameters that control what data is used to create a datasource:
// - percentBegin Use percentBegin to indicate the beginning of the range of the
// data used to create the Datasource. If you do not include percentBegin and
// percentEnd , Amazon ML includes all of the data when creating the datasource.
// - percentEnd Use percentEnd to indicate the end of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd ,
// Amazon ML includes all of the data when creating the datasource.
// - complement The complement parameter instructs Amazon ML to use the data that
// is not included in the range of percentBegin to percentEnd to create a
// datasource. The complement parameter is useful if you need to create
// complementary datasources for training and evaluation. To create a complementary
// datasource, use the same values for percentBegin and percentEnd , along with
// the complement parameter. For example, the following two datasources do not
// share any data, and can be used to train and evaluate a model. The first
// datasource has 25 percent of the data, and the second one has 75 percent of the
// data. Datasource for evaluation: {"splitting":{"percentBegin":0,
// "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0,
// "percentEnd":25, "complement":"true"}}
// - strategy To change how Amazon ML splits the data for a datasource, use the
// strategy parameter. The default value for the strategy parameter is sequential
// , meaning that Amazon ML takes all of the data records between the
// percentBegin and percentEnd parameters for the datasource, in the order that
// the records appear in the input data. The following two DataRearrangement
// lines are examples of sequentially ordered training and evaluation datasources:
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential",
// "complement":"true"}} To randomly split the input data into the proportions
// indicated by the percentBegin and percentEnd parameters, set the strategy
// parameter to random and provide a string that is used as the seed value for
// the random data splitting (for example, you can use the S3 path to your data as
// the random seed string). If you choose the random split strategy, Amazon ML
// assigns each row of data a pseudo-random number between 0 and 100, and then
// selects the rows that have an assigned number between percentBegin and
// percentEnd . Pseudo-random numbers are assigned using both the input seed
// string value and the byte offset as a seed, so changing the data results in a
// different split. Any existing ordering is preserved. The random splitting
// strategy ensures that variables in the training and evaluation data are
// distributed similarly. It is useful in the cases where the input data may have
// an implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records. The following two
// DataRearrangement lines are examples of non-sequentially ordered training and
// evaluation datasources: Datasource for evaluation:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement *string
// A JSON string that represents the schema for an Amazon Redshift DataSource . The
// DataSchema defines the structure of the observation data in the data file(s)
// referenced in the DataSource . A DataSchema is not required if you specify a
// DataSchemaUri . Define your DataSchema as a series of key-value pairs.
// attributes and excludedVariableNames have an array of key-value pairs for their
// value. Use the following format to define your DataSchema . { "version": "1.0",
// "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2",
// "targetFieldName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": true,
// "attributes": [ { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2",
// "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, {
// "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType":
// "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName":
// "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
// "WEIGHTED_STRING_SEQUENCE" } ], "excludedVariableNames": [ "F6" ] }
DataSchema *string
// Describes the schema location for an Amazon Redshift DataSource .
DataSchemaUri *string
noSmithyDocumentSerde
}
// Describes the DataSource details specific to Amazon Redshift.
type RedshiftMetadata struct {
// A username to be used by Amazon Machine Learning (Amazon ML)to connect to a
// database on an Amazon Redshift cluster. The username should have sufficient
// permissions to execute the RedshiftSelectSqlQuery query. The username should be
// valid for an Amazon Redshift USER (https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html)
// .
DatabaseUserName *string
// Describes the database details required to connect to an Amazon Redshift
// database.
RedshiftDatabase *RedshiftDatabase
// The SQL query that is specified during CreateDataSourceFromRedshift . Returns
// only if Verbose is true in GetDataSourceInput.
SelectSqlQuery *string
noSmithyDocumentSerde
}
// Describes the data specification of a DataSource .
type S3DataSpec struct {
// The location of the data file(s) used by a DataSource . The URI specifies a data
// file or an Amazon Simple Storage Service (Amazon S3) directory or bucket
// containing data files.
//
// This member is required.
DataLocationS3 *string
// A JSON string that represents the splitting and rearrangement processing to be
// applied to a DataSource . If the DataRearrangement parameter is not provided,
// all of the input data is used to create the Datasource . There are multiple
// parameters that control what data is used to create a datasource:
// - percentBegin Use percentBegin to indicate the beginning of the range of the
// data used to create the Datasource. If you do not include percentBegin and
// percentEnd , Amazon ML includes all of the data when creating the datasource.
// - percentEnd Use percentEnd to indicate the end of the range of the data used
// to create the Datasource. If you do not include percentBegin and percentEnd ,
// Amazon ML includes all of the data when creating the datasource.
// - complement The complement parameter instructs Amazon ML to use the data that
// is not included in the range of percentBegin to percentEnd to create a
// datasource. The complement parameter is useful if you need to create
// complementary datasources for training and evaluation. To create a complementary
// datasource, use the same values for percentBegin and percentEnd , along with
// the complement parameter. For example, the following two datasources do not
// share any data, and can be used to train and evaluate a model. The first
// datasource has 25 percent of the data, and the second one has 75 percent of the
// data. Datasource for evaluation: {"splitting":{"percentBegin":0,
// "percentEnd":25}} Datasource for training: {"splitting":{"percentBegin":0,
// "percentEnd":25, "complement":"true"}}
// - strategy To change how Amazon ML splits the data for a datasource, use the
// strategy parameter. The default value for the strategy parameter is sequential
// , meaning that Amazon ML takes all of the data records between the
// percentBegin and percentEnd parameters for the datasource, in the order that
// the records appear in the input data. The following two DataRearrangement
// lines are examples of sequentially ordered training and evaluation datasources:
// Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100,
// "strategy":"sequential"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential",
// "complement":"true"}} To randomly split the input data into the proportions
// indicated by the percentBegin and percentEnd parameters, set the strategy
// parameter to random and provide a string that is used as the seed value for
// the random data splitting (for example, you can use the S3 path to your data as
// the random seed string). If you choose the random split strategy, Amazon ML
// assigns each row of data a pseudo-random number between 0 and 100, and then
// selects the rows that have an assigned number between percentBegin and
// percentEnd . Pseudo-random numbers are assigned using both the input seed
// string value and the byte offset as a seed, so changing the data results in a
// different split. Any existing ordering is preserved. The random splitting
// strategy ensures that variables in the training and evaluation data are
// distributed similarly. It is useful in the cases where the input data may have
// an implicit sort order, which would otherwise result in training and evaluation
// datasources containing non-similar data records. The following two
// DataRearrangement lines are examples of non-sequentially ordered training and
// evaluation datasources: Datasource for evaluation:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv"}} Datasource for training:
// {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random",
// "randomSeed"="s3://my_s3_path/bucket/file.csv", "complement":"true"}}
DataRearrangement *string
// A JSON string that represents the schema for an Amazon S3 DataSource . The
// DataSchema defines the structure of the observation data in the data file(s)
// referenced in the DataSource . You must provide either the DataSchema or the
// DataSchemaLocationS3 . Define your DataSchema as a series of key-value pairs.
// attributes and excludedVariableNames have an array of key-value pairs for their
// value. Use the following format to define your DataSchema . { "version": "1.0",
// "recordAnnotationFieldName": "F1", "recordWeightFieldName": "F2",
// "targetFieldName": "F3", "dataFormat": "CSV", "dataFileContainsHeader": true,
// "attributes": [ { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2",
// "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, {
// "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType":
// "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName":
// "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType":
// "WEIGHTED_STRING_SEQUENCE" } ], "excludedVariableNames": [ "F6" ] }
DataSchema *string
// Describes the schema location in Amazon S3. You must provide either the
// DataSchema or the DataSchemaLocationS3 .
DataSchemaLocationS3 *string
noSmithyDocumentSerde
}
// A custom key-value pair associated with an ML object, such as an ML model.
type Tag struct {
// A unique identifier for the tag. Valid characters include Unicode letters,
// digits, white space, _, ., /, =, +, -, %, and @.
Key *string
// An optional string, typically used to describe or define the tag. Valid
// characters include Unicode letters, digits, white space, _, ., /, =, +, -, %,
// and @.
Value *string
noSmithyDocumentSerde
}
type noSmithyDocumentSerde = smithydocument.NoSerde
|