1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package rekognition
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/rekognition/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Detects instances of real-world entities within an image (JPEG or PNG) provided
// as input. This includes objects like flower, tree, and table; events like
// wedding, graduation, and birthday party; and concepts like landscape, evening,
// and nature. For an example, see Analyzing images stored in an Amazon S3 bucket
// in the Amazon Rekognition Developer Guide. You pass the input image as
// base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket.
// If you use the AWS CLI to call Amazon Rekognition operations, passing image
// bytes is not supported. The image must be either a PNG or JPEG formatted file.
// Optional Parameters You can specify one or both of the GENERAL_LABELS and
// IMAGE_PROPERTIES feature types when calling the DetectLabels API. Including
// GENERAL_LABELS will ensure the response includes the labels detected in the
// input image, while including IMAGE_PROPERTIES will ensure the response includes
// information about the image quality and color. When using GENERAL_LABELS and/or
// IMAGE_PROPERTIES you can provide filtering criteria to the Settings parameter.
// You can filter with sets of individual labels or with label categories. You can
// specify inclusive filters, exclusive filters, or a combination of inclusive and
// exclusive filters. For more information on filtering see Detecting Labels in an
// Image (https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html)
// . When getting labels, you can specify MinConfidence to control the confidence
// threshold for the labels returned. The default is 55%. You can also add the
// MaxLabels parameter to limit the number of labels returned. The default and
// upper limit is 1000 labels. These arguments are only valid when supplying
// GENERAL_LABELS as a feature type. Response Elements For each object, scene, and
// concept the API returns one or more labels. The API returns the following types
// of information about labels:
// - Name - The name of the detected label.
// - Confidence - The level of confidence in the label assigned to a detected
// object.
// - Parents - The ancestor labels for a detected label. DetectLabels returns a
// hierarchical taxonomy of detected labels. For example, a detected car might be
// assigned the label car. The label car has two parent labels: Vehicle (its
// parent) and Transportation (its grandparent). The response includes the all
// ancestors for a label, where every ancestor is a unique label. In the previous
// example, Car, Vehicle, and Transportation are returned as unique labels in the
// response.
// - Aliases - Possible Aliases for the label.
// - Categories - The label categories that the detected label belongs to.
// - BoundingBox — Bounding boxes are described for all instances of detected
// common object labels, returned in an array of Instance objects. An Instance
// object contains a BoundingBox object, describing the location of the label on
// the input image. It also includes the confidence for the accuracy of the
// detected bounding box.
//
// The API returns the following information regarding the image, as part of the
// ImageProperties structure:
// - Quality - Information about the Sharpness, Brightness, and Contrast of the
// input image, scored between 0 to 100. Image quality is returned for the entire
// image, as well as the background and the foreground.
// - Dominant Color - An array of the dominant colors in the image.
// - Foreground - Information about the sharpness, brightness, and dominant
// colors of the input image’s foreground.
// - Background - Information about the sharpness, brightness, and dominant
// colors of the input image’s background.
//
// The list of returned labels will include at least one label for every detected
// object, along with information about that label. In the following example,
// suppose the input image has a lighthouse, the sea, and a rock. The response
// includes all three labels, one for each object, as well as the confidence in the
// label: {Name: lighthouse, Confidence: 98.4629}
//
// {Name: rock,Confidence: 79.2097}
//
// {Name: sea,Confidence: 75.061} The list of labels can include multiple labels
// for the same object. For example, if the input image shows a flower (for
// example, a tulip), the operation might return the following three labels.
// {Name: flower,Confidence: 99.0562}
//
// {Name: plant,Confidence: 99.0562}
//
// {Name: tulip,Confidence: 99.0562} In this example, the detection algorithm more
// precisely identifies the flower as a tulip. If the object detected is a person,
// the operation doesn't provide the same facial details that the DetectFaces
// operation provides. This is a stateless API operation that doesn't return any
// data. This operation requires permissions to perform the
// rekognition:DetectLabels action.
func (c *Client) DetectLabels(ctx context.Context, params *DetectLabelsInput, optFns ...func(*Options)) (*DetectLabelsOutput, error) {
if params == nil {
params = &DetectLabelsInput{}
}
result, metadata, err := c.invokeOperation(ctx, "DetectLabels", params, optFns, c.addOperationDetectLabelsMiddlewares)
if err != nil {
return nil, err
}
out := result.(*DetectLabelsOutput)
out.ResultMetadata = metadata
return out, nil
}
type DetectLabelsInput struct {
// The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI
// to call Amazon Rekognition operations, passing image bytes is not supported.
// Images stored in an S3 Bucket do not need to be base64-encoded. If you are using
// an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image
// bytes passed using the Bytes field. For more information, see Images in the
// Amazon Rekognition developer guide.
//
// This member is required.
Image *types.Image
// A list of the types of analysis to perform. Specifying GENERAL_LABELS uses the
// label detection feature, while specifying IMAGE_PROPERTIES returns information
// regarding image color and quality. If no option is specified GENERAL_LABELS is
// used by default.
Features []types.DetectLabelsFeatureName
// Maximum number of labels you want the service to return in the response. The
// service returns the specified number of highest confidence labels. Only valid
// when GENERAL_LABELS is specified as a feature type in the Feature input
// parameter.
MaxLabels *int32
// Specifies the minimum confidence level for the labels to return. Amazon
// Rekognition doesn't return any labels with confidence lower than this specified
// value. If MinConfidence is not specified, the operation returns labels with a
// confidence values greater than or equal to 55 percent. Only valid when
// GENERAL_LABELS is specified as a feature type in the Feature input parameter.
MinConfidence *float32
// A list of the filters to be applied to returned detected labels and image
// properties. Specified filters can be inclusive, exclusive, or a combination of
// both. Filters can be used for individual labels or label categories. The exact
// label names or label categories must be supplied. For a full list of labels and
// label categories, see Detecting labels (https://docs.aws.amazon.com/rekognition/latest/dg/labels.html)
// .
Settings *types.DetectLabelsSettings
noSmithyDocumentSerde
}
type DetectLabelsOutput struct {
// Information about the properties of the input image, such as brightness,
// sharpness, contrast, and dominant colors.
ImageProperties *types.DetectLabelsImageProperties
// Version number of the label detection model that was used to detect labels.
LabelModelVersion *string
// An array of labels for the real-world objects detected.
Labels []types.Label
// The value of OrientationCorrection is always null. If the input image is in
// .jpeg format, it might contain exchangeable image file format (Exif) metadata
// that includes the image's orientation. Amazon Rekognition uses this orientation
// information to perform image correction. The bounding box coordinates are
// translated to represent object locations after the orientation information in
// the Exif metadata is used to correct the image orientation. Images in .png
// format don't contain Exif metadata. Amazon Rekognition doesn’t perform image
// correction for images in .png format and .jpeg images without orientation
// information in the image Exif metadata. The bounding box coordinates aren't
// translated and represent the object locations before the image is rotated.
OrientationCorrection types.OrientationCorrection
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationDetectLabelsMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpDetectLabels{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpDetectLabels{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "DetectLabels"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpDetectLabelsValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDetectLabels(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opDetectLabels(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "DetectLabels",
}
}
|