1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package rekognition
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/rekognition/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Detects faces in the input image and adds them to the specified collection.
// Amazon Rekognition doesn't save the actual faces that are detected. Instead, the
// underlying detection algorithm first detects the faces in the input image. For
// each face, the algorithm extracts facial features into a feature vector, and
// stores it in the backend database. Amazon Rekognition uses feature vectors when
// it performs face match and search operations using the SearchFaces and
// SearchFacesByImage operations. For more information, see Adding faces to a
// collection in the Amazon Rekognition Developer Guide. To get the number of faces
// in a collection, call DescribeCollection . If you're using version 1.0 of the
// face detection model, IndexFaces indexes the 15 largest faces in the input
// image. Later versions of the face detection model index the 100 largest faces in
// the input image. If you're using version 4 or later of the face model, image
// orientation information is not returned in the OrientationCorrection field. To
// determine which version of the model you're using, call DescribeCollection and
// supply the collection ID. You can also get the model version from the value of
// FaceModelVersion in the response from IndexFaces For more information, see
// Model Versioning in the Amazon Rekognition Developer Guide. If you provide the
// optional ExternalImageId for the input image you provided, Amazon Rekognition
// associates this ID with all faces that it detects. When you call the ListFaces
// operation, the response returns the external ID. You can use this external image
// ID to create a client-side index to associate the faces with each image. You can
// then use the index to find all faces in an image. You can specify the maximum
// number of faces to index with the MaxFaces input parameter. This is useful when
// you want to index the largest faces in an image and don't want to index smaller
// faces, such as those belonging to people standing in the background. The
// QualityFilter input parameter allows you to filter out detected faces that don’t
// meet a required quality bar. The quality bar is based on a variety of common use
// cases. By default, IndexFaces chooses the quality bar that's used to filter
// faces. You can also explicitly choose the quality bar. Use QualityFilter , to
// set the quality bar by specifying LOW , MEDIUM , or HIGH . If you do not want to
// filter detected faces, specify NONE . To use quality filtering, you need a
// collection associated with version 3 of the face model or higher. To get the
// version of the face model associated with a collection, call DescribeCollection
// . Information about faces detected in an image, but not indexed, is returned in
// an array of UnindexedFace objects, UnindexedFaces . Faces aren't indexed for
// reasons such as:
// - The number of faces detected exceeds the value of the MaxFaces request
// parameter.
// - The face is too small compared to the image dimensions.
// - The face is too blurry.
// - The image is too dark.
// - The face has an extreme pose.
// - The face doesn’t have enough detail to be suitable for face search.
//
// In response, the IndexFaces operation returns an array of metadata for all
// detected faces, FaceRecords . This includes:
// - The bounding box, BoundingBox , of the detected face.
// - A confidence value, Confidence , which indicates the confidence that the
// bounding box contains a face.
// - A face ID, FaceId , assigned by the service for each face that's detected
// and stored.
// - An image ID, ImageId , assigned by the service for the input image.
//
// If you request ALL or specific facial attributes (e.g., FACE_OCCLUDED ) by using
// the detectionAttributes parameter, Amazon Rekognition returns detailed facial
// attributes, such as facial landmarks (for example, location of eye and mouth),
// facial occlusion, and other facial attributes. If you provide the same image,
// specify the same collection, and use the same external ID in the IndexFaces
// operation, Amazon Rekognition doesn't save duplicate face metadata. The input
// image is passed either as base64-encoded image bytes, or as a reference to an
// image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
// operations, passing image bytes isn't supported. The image must be formatted as
// a PNG or JPEG file. This operation requires permissions to perform the
// rekognition:IndexFaces action.
func (c *Client) IndexFaces(ctx context.Context, params *IndexFacesInput, optFns ...func(*Options)) (*IndexFacesOutput, error) {
if params == nil {
params = &IndexFacesInput{}
}
result, metadata, err := c.invokeOperation(ctx, "IndexFaces", params, optFns, c.addOperationIndexFacesMiddlewares)
if err != nil {
return nil, err
}
out := result.(*IndexFacesOutput)
out.ResultMetadata = metadata
return out, nil
}
type IndexFacesInput struct {
// The ID of an existing collection to which you want to add the faces that are
// detected in the input images.
//
// This member is required.
CollectionId *string
// The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI
// to call Amazon Rekognition operations, passing base64-encoded image bytes isn't
// supported. If you are using an AWS SDK to call Amazon Rekognition, you might not
// need to base64-encode image bytes passed using the Bytes field. For more
// information, see Images in the Amazon Rekognition developer guide.
//
// This member is required.
Image *types.Image
// An array of facial attributes you want to be returned. A DEFAULT subset of
// facial attributes - BoundingBox , Confidence , Pose , Quality , and Landmarks -
// will always be returned. You can request for specific facial attributes (in
// addition to the default list) - by using ["DEFAULT", "FACE_OCCLUDED"] or just
// ["FACE_OCCLUDED"] . You can request for all facial attributes by using ["ALL"] .
// Requesting more attributes may increase response time. If you provide both,
// ["ALL", "DEFAULT"] , the service uses a logical AND operator to determine which
// attributes to return (in this case, all attributes).
DetectionAttributes []types.Attribute
// The ID you want to assign to all the faces detected in the image.
ExternalImageId *string
// The maximum number of faces to index. The value of MaxFaces must be greater
// than or equal to 1. IndexFaces returns no more than 100 detected faces in an
// image, even if you specify a larger value for MaxFaces . If IndexFaces detects
// more faces than the value of MaxFaces , the faces with the lowest quality are
// filtered out first. If there are still more faces than the value of MaxFaces ,
// the faces with the smallest bounding boxes are filtered out (up to the number
// that's needed to satisfy the value of MaxFaces ). Information about the
// unindexed faces is available in the UnindexedFaces array. The faces that are
// returned by IndexFaces are sorted by the largest face bounding box size to the
// smallest size, in descending order. MaxFaces can be used with a collection
// associated with any version of the face model.
MaxFaces *int32
// A filter that specifies a quality bar for how much filtering is done to
// identify faces. Filtered faces aren't indexed. If you specify AUTO , Amazon
// Rekognition chooses the quality bar. If you specify LOW , MEDIUM , or HIGH ,
// filtering removes all faces that don’t meet the chosen quality bar. The default
// value is AUTO . The quality bar is based on a variety of common use cases.
// Low-quality detections can occur for a number of reasons. Some examples are an
// object that's misidentified as a face, a face that's too blurry, or a face with
// a pose that's too extreme to use. If you specify NONE , no filtering is
// performed. To use quality filtering, the collection you are using must be
// associated with version 3 of the face model or higher.
QualityFilter types.QualityFilter
noSmithyDocumentSerde
}
type IndexFacesOutput struct {
// The version number of the face detection model that's associated with the input
// collection ( CollectionId ).
FaceModelVersion *string
// An array of faces detected and added to the collection. For more information,
// see Searching Faces in a Collection in the Amazon Rekognition Developer Guide.
FaceRecords []types.FaceRecord
// If your collection is associated with a face detection model that's later than
// version 3.0, the value of OrientationCorrection is always null and no
// orientation information is returned. If your collection is associated with a
// face detection model that's version 3.0 or earlier, the following applies:
// - If the input image is in .jpeg format, it might contain exchangeable image
// file format (Exif) metadata that includes the image's orientation. Amazon
// Rekognition uses this orientation information to perform image correction - the
// bounding box coordinates are translated to represent object locations after the
// orientation information in the Exif metadata is used to correct the image
// orientation. Images in .png format don't contain Exif metadata. The value of
// OrientationCorrection is null.
// - If the image doesn't contain orientation information in its Exif metadata,
// Amazon Rekognition returns an estimated orientation (ROTATE_0, ROTATE_90,
// ROTATE_180, ROTATE_270). Amazon Rekognition doesn’t perform image correction for
// images. The bounding box coordinates aren't translated and represent the object
// locations before the image is rotated.
// Bounding box information is returned in the FaceRecords array. You can get the
// version of the face detection model by calling DescribeCollection .
OrientationCorrection types.OrientationCorrection
// An array of faces that were detected in the image but weren't indexed. They
// weren't indexed because the quality filter identified them as low quality, or
// the MaxFaces request parameter filtered them out. To use the quality filter,
// you specify the QualityFilter request parameter.
UnindexedFaces []types.UnindexedFace
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationIndexFacesMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpIndexFaces{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpIndexFaces{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "IndexFaces"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpIndexFacesValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opIndexFaces(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opIndexFaces(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "IndexFaces",
}
}
|