1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package sagemaker
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates an Autopilot job also referred to as Autopilot experiment or AutoML
// job. We recommend using the new versions CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html)
// and DescribeAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html)
// , which offer backward compatibility. CreateAutoMLJobV2 can manage tabular
// problem types identical to those of its previous version CreateAutoMLJob , as
// well as time-series forecasting, non-tabular problem types such as image or text
// classification, and text generation (LLMs fine-tuning). Find guidelines about
// how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a
// CreateAutoMLJob to CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2)
// . You can find the best-performing model after you run an AutoML job by calling
// DescribeAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html)
// (recommended) or DescribeAutoMLJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html)
// .
func (c *Client) CreateAutoMLJob(ctx context.Context, params *CreateAutoMLJobInput, optFns ...func(*Options)) (*CreateAutoMLJobOutput, error) {
if params == nil {
params = &CreateAutoMLJobInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateAutoMLJob", params, optFns, c.addOperationCreateAutoMLJobMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateAutoMLJobOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateAutoMLJobInput struct {
// Identifies an Autopilot job. The name must be unique to your account and is
// case insensitive.
//
// This member is required.
AutoMLJobName *string
// An array of channel objects that describes the input data and its location.
// Each channel is a named input source. Similar to InputDataConfig supported by
// HyperParameterTrainingJobDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html)
// . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the
// training dataset. There is not a minimum number of rows required for the
// validation dataset.
//
// This member is required.
InputDataConfig []types.AutoMLChannel
// Provides information about encryption and the Amazon S3 output path needed to
// store artifacts from an AutoML job. Format(s) supported: CSV.
//
// This member is required.
OutputDataConfig *types.AutoMLOutputDataConfig
// The ARN of the role that is used to access the data.
//
// This member is required.
RoleArn *string
// A collection of settings used to configure an AutoML job.
AutoMLJobConfig *types.AutoMLJobConfig
// Specifies a metric to minimize or maximize as the objective of a job. If not
// specified, the default objective metric depends on the problem type. See
// AutoMLJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html)
// for the default values.
AutoMLJobObjective *types.AutoMLJobObjective
// Generates possible candidates without training the models. A candidate is a
// combination of data preprocessors, algorithms, and algorithm parameter settings.
GenerateCandidateDefinitionsOnly *bool
// Specifies how to generate the endpoint name for an automatic one-click
// Autopilot model deployment.
ModelDeployConfig *types.ModelDeployConfig
// Defines the type of supervised learning problem available for the candidates.
// For more information, see Amazon SageMaker Autopilot problem types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
// .
ProblemType types.ProblemType
// An array of key-value pairs. You can use tags to categorize your Amazon Web
// Services resources in different ways, for example, by purpose, owner, or
// environment. For more information, see Tagging Amazon Web ServicesResources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// . Tag keys must be unique per resource.
Tags []types.Tag
noSmithyDocumentSerde
}
type CreateAutoMLJobOutput struct {
// The unique ARN assigned to the AutoML job when it is created.
//
// This member is required.
AutoMLJobArn *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateAutoMLJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateAutoMLJob{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateAutoMLJob{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateAutoMLJob"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateAutoMLJobValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateAutoMLJob(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateAutoMLJob(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateAutoMLJob",
}
}
|