1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package sagemaker
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates an Autopilot job also referred to as Autopilot experiment or AutoML job
// V2. CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html)
// and DescribeAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html)
// are new versions of CreateAutoMLJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html)
// and DescribeAutoMLJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html)
// which offer backward compatibility. CreateAutoMLJobV2 can manage tabular
// problem types identical to those of its previous version CreateAutoMLJob , as
// well as time-series forecasting, non-tabular problem types such as image or text
// classification, and text generation (LLMs fine-tuning). Find guidelines about
// how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a
// CreateAutoMLJob to CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2)
// . For the list of available problem types supported by CreateAutoMLJobV2 , see
// AutoMLProblemTypeConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html)
// . You can find the best-performing model after you run an AutoML job V2 by
// calling DescribeAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html)
// .
func (c *Client) CreateAutoMLJobV2(ctx context.Context, params *CreateAutoMLJobV2Input, optFns ...func(*Options)) (*CreateAutoMLJobV2Output, error) {
if params == nil {
params = &CreateAutoMLJobV2Input{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateAutoMLJobV2", params, optFns, c.addOperationCreateAutoMLJobV2Middlewares)
if err != nil {
return nil, err
}
out := result.(*CreateAutoMLJobV2Output)
out.ResultMetadata = metadata
return out, nil
}
type CreateAutoMLJobV2Input struct {
// An array of channel objects describing the input data and their location. Each
// channel is a named input source. Similar to the InputDataConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig)
// attribute in the CreateAutoMLJob input parameters. The supported formats depend
// on the problem type:
// - For tabular problem types: S3Prefix , ManifestFile .
// - For image classification: S3Prefix , ManifestFile , AugmentedManifestFile .
// - For text classification: S3Prefix .
// - For time-series forecasting: S3Prefix .
// - For text generation (LLMs fine-tuning): S3Prefix .
//
// This member is required.
AutoMLJobInputDataConfig []types.AutoMLJobChannel
// Identifies an Autopilot job. The name must be unique to your account and is
// case insensitive.
//
// This member is required.
AutoMLJobName *string
// Defines the configuration settings of one of the supported problem types.
//
// This member is required.
AutoMLProblemTypeConfig types.AutoMLProblemTypeConfig
// Provides information about encryption and the Amazon S3 output path needed to
// store artifacts from an AutoML job.
//
// This member is required.
OutputDataConfig *types.AutoMLOutputDataConfig
// The ARN of the role that is used to access the data.
//
// This member is required.
RoleArn *string
// Specifies a metric to minimize or maximize as the objective of a job. If not
// specified, the default objective metric depends on the problem type. For the
// list of default values per problem type, see AutoMLJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html)
// .
// - For tabular problem types: You must either provide both the
// AutoMLJobObjective and indicate the type of supervised learning problem in
// AutoMLProblemTypeConfig ( TabularJobConfig.ProblemType ), or none at all.
// - For text generation problem types (LLMs fine-tuning): Fine-tuning language
// models in Autopilot does not require setting the AutoMLJobObjective field.
// Autopilot fine-tunes LLMs without requiring multiple candidates to be trained
// and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your
// target model to enhance a default objective metric, the cross-entropy loss.
// After fine-tuning a language model, you can evaluate the quality of its
// generated text using different metrics. For a list of the available metrics, see
// Metrics for fine-tuning LLMs in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html)
// .
AutoMLJobObjective *types.AutoMLJobObjective
// This structure specifies how to split the data into train and validation
// datasets. The validation and training datasets must contain the same headers.
// For jobs created by calling CreateAutoMLJob , the validation dataset must be
// less than 2 GB in size. This attribute must not be set for the time-series
// forecasting problem type, as Autopilot automatically splits the input dataset
// into training and validation sets.
DataSplitConfig *types.AutoMLDataSplitConfig
// Specifies how to generate the endpoint name for an automatic one-click
// Autopilot model deployment.
ModelDeployConfig *types.ModelDeployConfig
// The security configuration for traffic encryption or Amazon VPC settings.
SecurityConfig *types.AutoMLSecurityConfig
// An array of key-value pairs. You can use tags to categorize your Amazon Web
// Services resources in different ways, such as by purpose, owner, or environment.
// For more information, see Tagging Amazon Web ServicesResources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// . Tag keys must be unique per resource.
Tags []types.Tag
noSmithyDocumentSerde
}
type CreateAutoMLJobV2Output struct {
// The unique ARN assigned to the AutoMLJob when it is created.
//
// This member is required.
AutoMLJobArn *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateAutoMLJobV2Middlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateAutoMLJobV2{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateAutoMLJobV2{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateAutoMLJobV2"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateAutoMLJobV2ValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateAutoMLJobV2(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateAutoMLJobV2(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateAutoMLJobV2",
}
}
|