File: api_op_CreateHyperParameterTuningJob.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.24.1-2~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 554,032 kB
  • sloc: java: 15,941; makefile: 419; sh: 175
file content (219 lines) | stat: -rw-r--r-- 10,214 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Code generated by smithy-go-codegen DO NOT EDIT.

package sagemaker

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
	"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best
// version of a model by running many training jobs on your dataset using the
// algorithm you choose and values for hyperparameters within ranges that you
// specify. It then chooses the hyperparameter values that result in a model that
// performs the best, as measured by an objective metric that you choose. A
// hyperparameter tuning job automatically creates Amazon SageMaker experiments,
// trials, and trial components for each training job that it runs. You can view
// these entities in Amazon SageMaker Studio. For more information, see View
// Experiments, Trials, and Trial Components (https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view)
// . Do not include any security-sensitive information including account access
// IDs, secrets or tokens in any hyperparameter field. If the use of
// security-sensitive credentials are detected, SageMaker will reject your training
// job request and return an exception error.
func (c *Client) CreateHyperParameterTuningJob(ctx context.Context, params *CreateHyperParameterTuningJobInput, optFns ...func(*Options)) (*CreateHyperParameterTuningJobOutput, error) {
	if params == nil {
		params = &CreateHyperParameterTuningJobInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "CreateHyperParameterTuningJob", params, optFns, c.addOperationCreateHyperParameterTuningJobMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*CreateHyperParameterTuningJobOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type CreateHyperParameterTuningJobInput struct {

	// The HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
	// object that describes the tuning job, including the search strategy, the
	// objective metric used to evaluate training jobs, ranges of parameters to search,
	// and resource limits for the tuning job. For more information, see How
	// Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
	// .
	//
	// This member is required.
	HyperParameterTuningJobConfig *types.HyperParameterTuningJobConfig

	// The name of the tuning job. This name is the prefix for the names of all
	// training jobs that this tuning job launches. The name must be unique within the
	// same Amazon Web Services account and Amazon Web Services Region. The name must
	// have 1 to 32 characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % -
	// (hyphen). The name is not case sensitive.
	//
	// This member is required.
	HyperParameterTuningJobName *string

	// Configures SageMaker Automatic model tuning (AMT) to automatically find optimal
	// parameters for the following fields:
	//   - ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges)
	//   : The names and ranges of parameters that a hyperparameter tuning job can
	//   optimize.
	//   - ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
	//   : The maximum resources that can be used for a training job. These resources
	//   include the maximum number of training jobs, the maximum runtime of a tuning
	//   job, and the maximum number of training jobs to run at the same time.
	//   - TrainingJobEarlyStoppingType (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType)
	//   : A flag that specifies whether or not to use early stopping for training jobs
	//   launched by a hyperparameter tuning job.
	//   - RetryStrategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy)
	//   : The number of times to retry a training job.
	//   - Strategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
	//   : Specifies how hyperparameter tuning chooses the combinations of hyperparameter
	//   values to use for the training jobs that it launches.
	//   - ConvergenceDetected (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html)
	//   : A flag to indicate that Automatic model tuning (AMT) has detected model
	//   convergence.
	Autotune *types.Autotune

	// An array of key-value pairs. You can use tags to categorize your Amazon Web
	// Services resources in different ways, for example, by purpose, owner, or
	// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// . Tags that you specify for the tuning job are also added to all training jobs
	// that the tuning job launches.
	Tags []types.Tag

	// The HyperParameterTrainingJobDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html)
	// object that describes the training jobs that this tuning job launches, including
	// static hyperparameters, input data configuration, output data configuration,
	// resource configuration, and stopping condition.
	TrainingJobDefinition *types.HyperParameterTrainingJobDefinition

	// A list of the HyperParameterTrainingJobDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html)
	// objects launched for this tuning job.
	TrainingJobDefinitions []types.HyperParameterTrainingJobDefinition

	// Specifies the configuration for starting the hyperparameter tuning job using
	// one or more previous tuning jobs as a starting point. The results of previous
	// tuning jobs are used to inform which combinations of hyperparameters to search
	// over in the new tuning job. All training jobs launched by the new hyperparameter
	// tuning job are evaluated by using the objective metric. If you specify
	// IDENTICAL_DATA_AND_ALGORITHM as the WarmStartType value for the warm start
	// configuration, the training job that performs the best in the new tuning job is
	// compared to the best training jobs from the parent tuning jobs. From these, the
	// training job that performs the best as measured by the objective metric is
	// returned as the overall best training job. All training jobs launched by parent
	// hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
	// the limit of training jobs for the tuning job.
	WarmStartConfig *types.HyperParameterTuningJobWarmStartConfig

	noSmithyDocumentSerde
}

type CreateHyperParameterTuningJobOutput struct {

	// The Amazon Resource Name (ARN) of the tuning job. SageMaker assigns an ARN to a
	// hyperparameter tuning job when you create it.
	//
	// This member is required.
	HyperParameterTuningJobArn *string

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationCreateHyperParameterTuningJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateHyperParameterTuningJob{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateHyperParameterTuningJob{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "CreateHyperParameterTuningJob"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
		return err
	}
	if err = addRetryMiddlewares(stack, options); err != nil {
		return err
	}
	if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addOpCreateHyperParameterTuningJobValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateHyperParameterTuningJob(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opCreateHyperParameterTuningJob(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "CreateHyperParameterTuningJob",
	}
}