1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package sagemaker
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/sagemaker/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates an inference experiment using the configurations specified in the
// request. Use this API to setup and schedule an experiment to compare model
// variants on a Amazon SageMaker inference endpoint. For more information about
// inference experiments, see Shadow tests (https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html)
// . Amazon SageMaker begins your experiment at the scheduled time and routes
// traffic to your endpoint's model variants based on your specified configuration.
// While the experiment is in progress or after it has concluded, you can view
// metrics that compare your model variants. For more information, see View,
// monitor, and edit shadow tests (https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests-view-monitor-edit.html)
// .
func (c *Client) CreateInferenceExperiment(ctx context.Context, params *CreateInferenceExperimentInput, optFns ...func(*Options)) (*CreateInferenceExperimentOutput, error) {
if params == nil {
params = &CreateInferenceExperimentInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateInferenceExperiment", params, optFns, c.addOperationCreateInferenceExperimentMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateInferenceExperimentOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateInferenceExperimentInput struct {
// The name of the Amazon SageMaker endpoint on which you want to run the
// inference experiment.
//
// This member is required.
EndpointName *string
// An array of ModelVariantConfig objects. There is one for each variant in the
// inference experiment. Each ModelVariantConfig object in the array describes the
// infrastructure configuration for the corresponding variant.
//
// This member is required.
ModelVariants []types.ModelVariantConfig
// The name for the inference experiment.
//
// This member is required.
Name *string
// The ARN of the IAM role that Amazon SageMaker can assume to access model
// artifacts and container images, and manage Amazon SageMaker Inference endpoints
// for model deployment.
//
// This member is required.
RoleArn *string
// The configuration of ShadowMode inference experiment type. Use this field to
// specify a production variant which takes all the inference requests, and a
// shadow variant to which Amazon SageMaker replicates a percentage of the
// inference requests. For the shadow variant also specify the percentage of
// requests that Amazon SageMaker replicates.
//
// This member is required.
ShadowModeConfig *types.ShadowModeConfig
// The type of the inference experiment that you want to run. The following types
// of experiments are possible:
// - ShadowMode : You can use this type to validate a shadow variant. For more
// information, see Shadow tests (https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html)
// .
//
// This member is required.
Type types.InferenceExperimentType
// The Amazon S3 location and configuration for storing inference request and
// response data. This is an optional parameter that you can use for data capture.
// For more information, see Capture data (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html)
// .
DataStorageConfig *types.InferenceExperimentDataStorageConfig
// A description for the inference experiment.
Description *string
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
// ML compute instance that hosts the endpoint. The KmsKey can be any of the
// following formats:
// - KMS key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - Amazon Resource Name (ARN) of a KMS key
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// - KMS key Alias "alias/ExampleAlias"
// - Amazon Resource Name (ARN) of a KMS key Alias
// "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
// If you use a KMS key ID or an alias of your KMS key, the Amazon SageMaker
// execution role must include permissions to call kms:Encrypt . If you don't
// provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3
// for your role's account. Amazon SageMaker uses server-side encryption with KMS
// managed keys for OutputDataConfig . If you use a bucket policy with an
// s3:PutObject permission that only allows objects with server-side encryption,
// set the condition key of s3:x-amz-server-side-encryption to "aws:kms" . For more
// information, see KMS managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
// grant permission to the IAM role that you specify in your CreateEndpoint and
// UpdateEndpoint requests. For more information, see Using Key Policies in Amazon
// Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
// in the Amazon Web Services Key Management Service Developer Guide.
KmsKey *string
// The duration for which you want the inference experiment to run. If you don't
// specify this field, the experiment automatically starts immediately upon
// creation and concludes after 7 days.
Schedule *types.InferenceExperimentSchedule
// Array of key-value pairs. You can use tags to categorize your Amazon Web
// Services resources in different ways, for example, by purpose, owner, or
// environment. For more information, see Tagging your Amazon Web Services
// Resources (https://docs.aws.amazon.com/ARG/latest/userguide/tagging.html) .
Tags []types.Tag
noSmithyDocumentSerde
}
type CreateInferenceExperimentOutput struct {
// The ARN for your inference experiment.
//
// This member is required.
InferenceExperimentArn *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateInferenceExperimentMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateInferenceExperiment{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateInferenceExperiment{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateInferenceExperiment"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateInferenceExperimentValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateInferenceExperiment(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateInferenceExperiment(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateInferenceExperiment",
}
}
|