1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package types
import (
smithydocument "github.com/aws/smithy-go/document"
"time"
)
// A structure describing the source of an action.
type ActionSource struct {
// The URI of the source.
//
// This member is required.
SourceUri *string
// The ID of the source.
SourceId *string
// The type of the source.
SourceType *string
noSmithyDocumentSerde
}
// Lists the properties of an action. An action represents an action or activity.
// Some examples are a workflow step and a model deployment. Generally, an action
// involves at least one input artifact or output artifact.
type ActionSummary struct {
// The Amazon Resource Name (ARN) of the action.
ActionArn *string
// The name of the action.
ActionName *string
// The type of the action.
ActionType *string
// When the action was created.
CreationTime *time.Time
// When the action was last modified.
LastModifiedTime *time.Time
// The source of the action.
Source *ActionSource
// The status of the action.
Status ActionStatus
noSmithyDocumentSerde
}
// A structure of additional Inference Specification. Additional Inference
// Specification specifies details about inference jobs that can be run with models
// based on this model package
type AdditionalInferenceSpecificationDefinition struct {
// The Amazon ECR registry path of the Docker image that contains the inference
// code.
//
// This member is required.
Containers []ModelPackageContainerDefinition
// A unique name to identify the additional inference specification. The name must
// be unique within the list of your additional inference specifications for a
// particular model package.
//
// This member is required.
Name *string
// A description of the additional Inference specification
Description *string
// The supported MIME types for the input data.
SupportedContentTypes []string
// A list of the instance types that are used to generate inferences in real-time.
SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType
// The supported MIME types for the output data.
SupportedResponseMIMETypes []string
// A list of the instance types on which a transformation job can be run or on
// which an endpoint can be deployed.
SupportedTransformInstanceTypes []TransformInstanceType
noSmithyDocumentSerde
}
// A data source used for training or inference that is in addition to the input
// dataset or model data.
type AdditionalS3DataSource struct {
// The data type of the additional data source that you specify for use in
// inference or training.
//
// This member is required.
S3DataType AdditionalS3DataSourceDataType
// The uniform resource identifier (URI) used to identify an additional data
// source used in inference or training.
//
// This member is required.
S3Uri *string
// The type of compression used for an additional data source used in inference or
// training. Specify None if your additional data source is not compressed.
CompressionType CompressionType
noSmithyDocumentSerde
}
// Edge Manager agent version.
type AgentVersion struct {
// The number of Edge Manager agents.
//
// This member is required.
AgentCount *int64
// Version of the agent.
//
// This member is required.
Version *string
noSmithyDocumentSerde
}
// An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.
type Alarm struct {
// The name of a CloudWatch alarm in your account.
AlarmName *string
noSmithyDocumentSerde
}
// Specifies the training algorithm to use in a CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// request. For more information about algorithms provided by SageMaker, see
// Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html) . For
// information about using your own algorithms, see Using Your Own Algorithms with
// Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// .
type AlgorithmSpecification struct {
// The training input mode that the algorithm supports. For more information about
// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
// directly from Amazon S3 to the container. File mode If an algorithm supports
// File mode, SageMaker downloads the training data from S3 to the provisioned ML
// storage volume, and mounts the directory to the Docker volume for the training
// container. You must provision the ML storage volume with sufficient capacity to
// accommodate the data downloaded from S3. In addition to the training data, the
// ML storage volume also stores the output model. The algorithm container uses the
// ML storage volume to also store intermediate information, if any. For
// distributed algorithms, training data is distributed uniformly. Your training
// duration is predictable if the input data objects sizes are approximately the
// same. SageMaker does not split the files any further for model training. If the
// object sizes are skewed, training won't be optimal as the data distribution is
// also skewed when one host in a training cluster is overloaded, thus becoming a
// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
// SageMaker streams data directly from S3 to the container with no code changes,
// and provides file system access to the data. Users can author their training
// script to interact with these files as if they were stored on disk. FastFile
// mode works best when the data is read sequentially. Augmented manifest files
// aren't supported. The startup time is lower when there are fewer files in the S3
// bucket provided.
//
// This member is required.
TrainingInputMode TrainingInputMode
// The name of the algorithm resource to use for the training job. This must be an
// algorithm resource that you created or subscribe to on Amazon Web Services
// Marketplace. You must specify either the algorithm name to the AlgorithmName
// parameter or the image URI of the algorithm container to the TrainingImage
// parameter. Note that the AlgorithmName parameter is mutually exclusive with the
// TrainingImage parameter. If you specify a value for the AlgorithmName
// parameter, you can't specify a value for TrainingImage , and vice versa. If you
// specify values for both parameters, the training job might break; if you don't
// specify any value for both parameters, the training job might raise a null
// error.
AlgorithmName *string
// The arguments for a container used to run a training job. See How Amazon
// SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
// for additional information.
ContainerArguments []string
// The entrypoint script for a Docker container (https://docs.docker.com/engine/reference/builder/)
// used to run a training job. This script takes precedence over the default train
// processing instructions. See How Amazon SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
// for more information.
ContainerEntrypoint []string
// To generate and save time-series metrics during training, set to true . The
// default is false and time-series metrics aren't generated except in the
// following cases:
// - You use one of the SageMaker built-in algorithms
// - You use one of the following Prebuilt SageMaker Docker Images (https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html)
// :
// - Tensorflow (version >= 1.15)
// - MXNet (version >= 1.6)
// - PyTorch (version >= 1.3)
// - You specify at least one MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
EnableSageMakerMetricsTimeSeries *bool
// A list of metric definition objects. Each object specifies the metric name and
// regular expressions used to parse algorithm logs. SageMaker publishes each
// metric to Amazon CloudWatch.
MetricDefinitions []MetricDefinition
// The registry path of the Docker image that contains the training algorithm. For
// information about docker registry paths for SageMaker built-in algorithms, see
// Docker Registry Paths and Example Code (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
// in the Amazon SageMaker developer guide. SageMaker supports both
// registry/repository[:tag] and registry/repository[@digest] image path formats.
// For more information about using your custom training container, see Using Your
// Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// . You must specify either the algorithm name to the AlgorithmName parameter or
// the image URI of the algorithm container to the TrainingImage parameter. For
// more information, see the note in the AlgorithmName parameter description.
TrainingImage *string
// The configuration to use an image from a private Docker registry for a training
// job.
TrainingImageConfig *TrainingImageConfig
noSmithyDocumentSerde
}
// Specifies the validation and image scan statuses of the algorithm.
type AlgorithmStatusDetails struct {
// The status of the scan of the algorithm's Docker image container.
ImageScanStatuses []AlgorithmStatusItem
// The status of algorithm validation.
ValidationStatuses []AlgorithmStatusItem
noSmithyDocumentSerde
}
// Represents the overall status of an algorithm.
type AlgorithmStatusItem struct {
// The name of the algorithm for which the overall status is being reported.
//
// This member is required.
Name *string
// The current status.
//
// This member is required.
Status DetailedAlgorithmStatus
// if the overall status is Failed , the reason for the failure.
FailureReason *string
noSmithyDocumentSerde
}
// Provides summary information about an algorithm.
type AlgorithmSummary struct {
// The Amazon Resource Name (ARN) of the algorithm.
//
// This member is required.
AlgorithmArn *string
// The name of the algorithm that is described by the summary.
//
// This member is required.
AlgorithmName *string
// The overall status of the algorithm.
//
// This member is required.
AlgorithmStatus AlgorithmStatus
// A timestamp that shows when the algorithm was created.
//
// This member is required.
CreationTime *time.Time
// A brief description of the algorithm.
AlgorithmDescription *string
noSmithyDocumentSerde
}
// Defines a training job and a batch transform job that SageMaker runs to
// validate your algorithm. The data provided in the validation profile is made
// available to your buyers on Amazon Web Services Marketplace.
type AlgorithmValidationProfile struct {
// The name of the profile for the algorithm. The name must have 1 to 63
// characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
//
// This member is required.
ProfileName *string
// The TrainingJobDefinition object that describes the training job that SageMaker
// runs to validate your algorithm.
//
// This member is required.
TrainingJobDefinition *TrainingJobDefinition
// The TransformJobDefinition object that describes the transform job that
// SageMaker runs to validate your algorithm.
TransformJobDefinition *TransformJobDefinition
noSmithyDocumentSerde
}
// Specifies configurations for one or more training jobs that SageMaker runs to
// test the algorithm.
type AlgorithmValidationSpecification struct {
// An array of AlgorithmValidationProfile objects, each of which specifies a
// training job and batch transform job that SageMaker runs to validate your
// algorithm.
//
// This member is required.
ValidationProfiles []AlgorithmValidationProfile
// The IAM roles that SageMaker uses to run the training jobs.
//
// This member is required.
ValidationRole *string
noSmithyDocumentSerde
}
// Configures how labels are consolidated across human workers and processes
// output data.
type AnnotationConsolidationConfig struct {
// The Amazon Resource Name (ARN) of a Lambda function implements the logic for
// annotation consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
// and to process output data. This parameter is required for all labeling jobs.
// For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
// for AnnotationConsolidationLambdaArn . For custom labeling workflows, see
// Post-annotation Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda)
// . Bounding box - Finds the most similar boxes from different workers based on
// the Jaccard index of the boxes.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
// Image classification - Uses a variant of the Expectation Maximization approach
// to estimate the true class of an image based on annotations from individual
// workers.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
// Multi-label image classification - Uses a variant of the Expectation
// Maximization approach to estimate the true classes of an image based on
// annotations from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
// Semantic segmentation - Treats each pixel in an image as a multi-class
// classification and treats pixel annotations from workers as "votes" for the
// correct label.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
// Text classification - Uses a variant of the Expectation Maximization approach
// to estimate the true class of text based on annotations from individual workers.
//
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
// Multi-label text classification - Uses a variant of the Expectation
// Maximization approach to estimate the true classes of text based on annotations
// from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
// Named entity recognition - Groups similar selections and calculates aggregate
// boundaries, resolving to most-assigned label.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
// Video Classification - Use this task type when you need workers to classify
// videos using predefined labels that you specify. Workers are shown videos and
// are asked to choose one label for each video.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
// Video Frame Object Detection - Use this task type to have workers identify and
// locate objects in a sequence of video frames (images extracted from a video)
// using bounding boxes. For example, you can use this task to ask workers to
// identify and localize various objects in a series of video frames, such as cars,
// bikes, and pedestrians.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
// Video Frame Object Tracking - Use this task type to have workers track the
// movement of objects in a sequence of video frames (images extracted from a
// video) using bounding boxes. For example, you can use this task to ask workers
// to track the movement of objects, such as cars, bikes, and pedestrians.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
// 3D Point Cloud Object Detection - Use this task type when you want workers to
// classify objects in a 3D point cloud by drawing 3D cuboids around objects. For
// example, you can use this task type to ask workers to identify different types
// of objects in a point cloud, such as cars, bikes, and pedestrians.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
// 3D Point Cloud Object Tracking - Use this task type when you want workers to
// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
// frames. For example, you can use this task type to ask workers to track the
// movement of vehicles across multiple point cloud frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
// to create a point-level semantic segmentation masks by painting objects in a 3D
// point cloud using different colors where each color is assigned to one of the
// classes you specify.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
// Use the following ARNs for Label Verification and Adjustment Jobs Use label
// verification and adjustment jobs to review and adjust labels. To learn more, see
// Verify and Adjust Labels (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
// . Semantic Segmentation Adjustment - Treats each pixel in an image as a
// multi-class classification and treats pixel adjusted annotations from workers as
// "votes" for the correct label.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
// Semantic Segmentation Verification - Uses a variant of the Expectation
// Maximization approach to estimate the true class of verification judgment for
// semantic segmentation labels based on annotations from individual workers.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
// Bounding Box Adjustment - Finds the most similar boxes from different workers
// based on the Jaccard index of the adjusted annotations.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
// - arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
// Bounding Box Verification - Uses a variant of the Expectation Maximization
// approach to estimate the true class of verification judgement for bounding box
// labels based on annotations from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
// Video Frame Object Detection Adjustment - Use this task type when you want
// workers to adjust bounding boxes that workers have added to video frames to
// classify and localize objects in a sequence of video frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
// Video Frame Object Tracking Adjustment - Use this task type when you want
// workers to adjust bounding boxes that workers have added to video frames to
// track object movement across a sequence of video frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
// 3D Point Cloud Object Detection Adjustment - Use this task type when you want
// workers to adjust 3D cuboids around objects in a 3D point cloud.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
// 3D Point Cloud Object Tracking Adjustment - Use this task type when you want
// workers to adjust 3D cuboids around objects that appear in a sequence of 3D
// point cloud frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
// 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you
// want workers to adjust a point-level semantic segmentation masks using a paint
// tool.
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
//
// This member is required.
AnnotationConsolidationLambdaArn *string
noSmithyDocumentSerde
}
// Details about an Amazon SageMaker app.
type AppDetails struct {
// The name of the app.
AppName *string
// The type of app.
AppType AppType
// The creation time.
CreationTime *time.Time
// The domain ID.
DomainId *string
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
ResourceSpec *ResourceSpec
// The name of the space.
SpaceName *string
// The status.
Status AppStatus
// The user profile name.
UserProfileName *string
noSmithyDocumentSerde
}
// The configuration for running a SageMaker image as a KernelGateway app.
type AppImageConfigDetails struct {
// The Amazon Resource Name (ARN) of the AppImageConfig.
AppImageConfigArn *string
// The name of the AppImageConfig. Must be unique to your account.
AppImageConfigName *string
// When the AppImageConfig was created.
CreationTime *time.Time
// The configuration for the file system and the runtime, such as the environment
// variables and entry point.
JupyterLabAppImageConfig *JupyterLabAppImageConfig
// The configuration for the file system and kernels in the SageMaker image.
KernelGatewayImageConfig *KernelGatewayImageConfig
// When the AppImageConfig was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Configuration to run a processing job in a specified container image.
type AppSpecification struct {
// The container image to be run by the processing job.
//
// This member is required.
ImageUri *string
// The arguments for a container used to run a processing job.
ContainerArguments []string
// The entrypoint for a container used to run a processing job.
ContainerEntrypoint []string
noSmithyDocumentSerde
}
// A structure describing the source of an artifact.
type ArtifactSource struct {
// The URI of the source.
//
// This member is required.
SourceUri *string
// A list of source types.
SourceTypes []ArtifactSourceType
noSmithyDocumentSerde
}
// The ID and ID type of an artifact source.
type ArtifactSourceType struct {
// The type of ID.
//
// This member is required.
SourceIdType ArtifactSourceIdType
// The ID.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// Lists a summary of the properties of an artifact. An artifact represents a URI
// addressable object or data. Some examples are a dataset and a model.
type ArtifactSummary struct {
// The Amazon Resource Name (ARN) of the artifact.
ArtifactArn *string
// The name of the artifact.
ArtifactName *string
// The type of the artifact.
ArtifactType *string
// When the artifact was created.
CreationTime *time.Time
// When the artifact was last modified.
LastModifiedTime *time.Time
// The source of the artifact.
Source *ArtifactSource
noSmithyDocumentSerde
}
// Lists a summary of the properties of an association. An association is an
// entity that links other lineage or experiment entities. An example would be an
// association between a training job and a model.
type AssociationSummary struct {
// The type of the association.
AssociationType AssociationEdgeType
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// When the association was created.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the destination.
DestinationArn *string
// The name of the destination.
DestinationName *string
// The destination type.
DestinationType *string
// The ARN of the source.
SourceArn *string
// The name of the source.
SourceName *string
// The source type.
SourceType *string
noSmithyDocumentSerde
}
// Configures the behavior of the client used by SageMaker to interact with the
// model container during asynchronous inference.
type AsyncInferenceClientConfig struct {
// The maximum number of concurrent requests sent by the SageMaker client to the
// model container. If no value is provided, SageMaker chooses an optimal value.
MaxConcurrentInvocationsPerInstance *int32
noSmithyDocumentSerde
}
// Specifies configuration for how an endpoint performs asynchronous inference.
type AsyncInferenceConfig struct {
// Specifies the configuration for asynchronous inference invocation outputs.
//
// This member is required.
OutputConfig *AsyncInferenceOutputConfig
// Configures the behavior of the client used by SageMaker to interact with the
// model container during asynchronous inference.
ClientConfig *AsyncInferenceClientConfig
noSmithyDocumentSerde
}
// Specifies the configuration for notifications of inference results for
// asynchronous inference.
type AsyncInferenceNotificationConfig struct {
// Amazon SNS topic to post a notification to when inference fails. If no topic is
// provided, no notification is sent on failure.
ErrorTopic *string
// The Amazon SNS topics where you want the inference response to be included. The
// inference response is included only if the response size is less than or equal
// to 128 KB.
IncludeInferenceResponseIn []AsyncNotificationTopicTypes
// Amazon SNS topic to post a notification to when inference completes
// successfully. If no topic is provided, no notification is sent on success.
SuccessTopic *string
noSmithyDocumentSerde
}
// Specifies the configuration for asynchronous inference invocation outputs.
type AsyncInferenceOutputConfig struct {
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
KmsKeyId *string
// Specifies the configuration for notifications of inference results for
// asynchronous inference.
NotificationConfig *AsyncInferenceNotificationConfig
// The Amazon S3 location to upload failure inference responses to.
S3FailurePath *string
// The Amazon S3 location to upload inference responses to.
S3OutputPath *string
noSmithyDocumentSerde
}
// Configuration for Athena Dataset Definition input.
type AthenaDatasetDefinition struct {
// The name of the data catalog used in Athena query execution.
//
// This member is required.
Catalog *string
// The name of the database used in the Athena query execution.
//
// This member is required.
Database *string
// The data storage format for Athena query results.
//
// This member is required.
OutputFormat AthenaResultFormat
// The location in Amazon S3 where Athena query results are stored.
//
// This member is required.
OutputS3Uri *string
// The SQL query statements, to be executed.
//
// This member is required.
QueryString *string
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data generated from an Athena query
// execution.
KmsKeyId *string
// The compression used for Athena query results.
OutputCompression AthenaResultCompressionType
// The name of the workgroup in which the Athena query is being started.
WorkGroup *string
noSmithyDocumentSerde
}
// The collection of algorithms run on a dataset for training the model candidates
// of an Autopilot job.
type AutoMLAlgorithmConfig struct {
// The selection of algorithms run on a dataset to train the model candidates of
// an Autopilot job. Selected algorithms must belong to the list corresponding to
// the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode)
// ( ENSEMBLING or HYPERPARAMETER_TUNING ). Choose a minimum of 1 algorithm.
// - In ENSEMBLING mode:
// - "catboost"
// - "extra-trees"
// - "fastai"
// - "lightgbm"
// - "linear-learner"
// - "nn-torch"
// - "randomforest"
// - "xgboost"
// - In HYPERPARAMETER_TUNING mode:
// - "linear-learner"
// - "mlp"
// - "xgboost"
//
// This member is required.
AutoMLAlgorithms []AutoMLAlgorithm
noSmithyDocumentSerde
}
// Information about a candidate produced by an AutoML training job, including its
// status, steps, and other properties.
type AutoMLCandidate struct {
// The name of the candidate.
//
// This member is required.
CandidateName *string
// The candidate's status.
//
// This member is required.
CandidateStatus CandidateStatus
// Information about the candidate's steps.
//
// This member is required.
CandidateSteps []AutoMLCandidateStep
// The creation time.
//
// This member is required.
CreationTime *time.Time
// The last modified time.
//
// This member is required.
LastModifiedTime *time.Time
// The objective's status.
//
// This member is required.
ObjectiveStatus ObjectiveStatus
// The properties of an AutoML candidate job.
CandidateProperties *CandidateProperties
// The end time.
EndTime *time.Time
// The failure reason.
FailureReason *string
// The best candidate result from an AutoML training job.
FinalAutoMLJobObjectiveMetric *FinalAutoMLJobObjectiveMetric
// The mapping of all supported processing unit (CPU, GPU, etc...) to inference
// container definitions for the candidate. This field is populated for the AutoML
// jobs V2 (for example, for jobs created by calling CreateAutoMLJobV2 ) related to
// image or text classification problem types only.
InferenceContainerDefinitions map[string][]AutoMLContainerDefinition
// Information about the recommended inference container definitions.
InferenceContainers []AutoMLContainerDefinition
noSmithyDocumentSerde
}
// Stores the configuration information for how a candidate is generated
// (optional).
type AutoMLCandidateGenerationConfig struct {
// Stores the configuration information for the selection of algorithms used to
// train the model candidates. The list of available algorithms to choose from
// depends on the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html)
// .
// - AlgorithmsConfig should not be set in AUTO training mode.
// - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
// set and one only. If the list of algorithms provided as values for
// AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set
// of algorithms for the given training mode.
// - When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses
// the full set of algorithms for the given training mode.
// For the list of all algorithms per training mode, see AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// section in Autopilot developer guide.
AlgorithmsConfig []AutoMLAlgorithmConfig
// A URL to the Amazon S3 data source containing selected features from the input
// data source to run an Autopilot job. You can input FeatureAttributeNames
// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
// "col2", ...] } . You can also specify the data type of the feature (optional) in
// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
// "col2":"categorical" ... } } These column keys may not include the target
// column. In ensembling mode, Autopilot only supports the following data types:
// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
// numeric , categorical , text , datetime , and sequence . If only
// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
// subset of the column names in the input data. If both FeatureDataTypes and
// FeatureAttributeNames are provided, then the column keys should be a subset of
// the column names provided in FeatureAttributeNames . The key name
// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
// case sensitive and should be a list of strings containing unique values that are
// a subset of the column names in the input data. The list of columns provided
// must not include the target column.
FeatureSpecificationS3Uri *string
noSmithyDocumentSerde
}
// Information about the steps for a candidate and what step it is working on.
type AutoMLCandidateStep struct {
// The ARN for the candidate's step.
//
// This member is required.
CandidateStepArn *string
// The name for the candidate's step.
//
// This member is required.
CandidateStepName *string
// Whether the candidate is at the transform, training, or processing step.
//
// This member is required.
CandidateStepType CandidateStepType
noSmithyDocumentSerde
}
// A channel is a named input source that training algorithms can consume. The
// validation dataset size is limited to less than 2 GB. The training dataset size
// must be less than 100 GB. For more information, see Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html)
// . A validation dataset must contain the same headers as the training dataset.
type AutoMLChannel struct {
// The name of the target variable in supervised learning, usually represented by
// 'y'.
//
// This member is required.
TargetAttributeName *string
// The channel type (optional) is an enum string. The default value is training .
// Channels for training and validation must share the same ContentType and
// TargetAttributeName . For information on specifying training and validation
// channel types, see How to specify training and validation datasets (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation)
// .
ChannelType AutoMLChannelType
// You can use Gzip or None . The default value is None .
CompressionType CompressionType
// The content type of the data from the input source. You can use
// text/csv;header=present or x-application/vnd.amazon+parquet . The default value
// is text/csv;header=present .
ContentType *string
// The data source for an AutoML channel.
DataSource *AutoMLDataSource
// If specified, this column name indicates which column of the dataset should be
// treated as sample weights for use by the objective metric during the training,
// evaluation, and the selection of the best model. This column is not considered
// as a predictive feature. For more information on Autopilot metrics, see Metrics
// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
// . Sample weights should be numeric, non-negative, with larger values indicating
// which rows are more important than others. Data points that have invalid or no
// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
// mode only.
SampleWeightAttributeName *string
noSmithyDocumentSerde
}
// A list of container definitions that describe the different containers that
// make up an AutoML candidate. For more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
// .
type AutoMLContainerDefinition struct {
// The Amazon Elastic Container Registry (Amazon ECR) path of the container. For
// more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
// .
//
// This member is required.
Image *string
// The location of the model artifacts. For more information, see
// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
// .
//
// This member is required.
ModelDataUrl *string
// The environment variables to set in the container. For more information, see
// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
// .
Environment map[string]string
noSmithyDocumentSerde
}
// The data source for the Autopilot job.
type AutoMLDataSource struct {
// The Amazon S3 location of the input data.
//
// This member is required.
S3DataSource *AutoMLS3DataSource
noSmithyDocumentSerde
}
// This structure specifies how to split the data into train and validation
// datasets. The validation and training datasets must contain the same headers.
// For jobs created by calling CreateAutoMLJob , the validation dataset must be
// less than 2 GB in size.
type AutoMLDataSplitConfig struct {
// The validation fraction (optional) is a float that specifies the portion of the
// training dataset to be used for validation. The default value is 0.2, and values
// must be greater than 0 and less than 1. We recommend setting this value to be
// less than 0.5.
ValidationFraction *float32
noSmithyDocumentSerde
}
// The artifacts that are generated during an AutoML job.
type AutoMLJobArtifacts struct {
// The URL of the notebook location.
CandidateDefinitionNotebookLocation *string
// The URL of the notebook location.
DataExplorationNotebookLocation *string
noSmithyDocumentSerde
}
// A channel is a named input source that training algorithms can consume. This
// channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html)
// ).
type AutoMLJobChannel struct {
// The type of channel. Defines whether the data are used for training or
// validation. The default value is training . Channels for training and validation
// must share the same ContentType The type of channel defaults to training for
// the time-series forecasting problem type.
ChannelType AutoMLChannelType
// The allowed compression types depend on the input format and problem type. We
// allow the compression type Gzip for S3Prefix inputs on tabular data only. For
// all other inputs, the compression type should be None . If no compression type
// is provided, we default to None .
CompressionType CompressionType
// The content type of the data from the input source. The following are the
// allowed content types for different problems:
// - For tabular problem types: text/csv;header=present or
// x-application/vnd.amazon+parquet . The default value is
// text/csv;header=present .
// - For image classification: image/png , image/jpeg , or image/* . The default
// value is image/* .
// - For text classification: text/csv;header=present or
// x-application/vnd.amazon+parquet . The default value is
// text/csv;header=present .
// - For time-series forecasting: text/csv;header=present or
// x-application/vnd.amazon+parquet . The default value is
// text/csv;header=present .
// - For text generation (LLMs fine-tuning): text/csv;header=present or
// x-application/vnd.amazon+parquet . The default value is
// text/csv;header=present .
ContentType *string
// The data source for an AutoML channel (Required).
DataSource *AutoMLDataSource
noSmithyDocumentSerde
}
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
type AutoMLJobCompletionCriteria struct {
// The maximum runtime, in seconds, an AutoML job has to complete. If an AutoML
// job exceeds the maximum runtime, the job is stopped automatically and its
// processing is ended gracefully. The AutoML job identifies the best model whose
// training was completed and marks it as the best-performing model. Any unfinished
// steps of the job, such as automatic one-click Autopilot model deployment, are
// not completed.
MaxAutoMLJobRuntimeInSeconds *int32
// The maximum number of times a training job is allowed to run. For text and
// image classification, time-series forecasting, as well as text generation (LLMs
// fine-tuning) problem types, the supported value is 1. For tabular problem types,
// the maximum value is 750.
MaxCandidates *int32
// The maximum time, in seconds, that each training job executed inside
// hyperparameter tuning is allowed to run as part of a hyperparameter tuning job.
// For more information, see the StoppingCondition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html)
// used by the CreateHyperParameterTuningJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html)
// action. For job V2s (jobs created by calling CreateAutoMLJobV2 ), this field
// controls the runtime of the job candidate. For TextGenerationJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextClassificationJobConfig.html)
// problem types, the maximum time defaults to 72 hours (259200 seconds).
MaxRuntimePerTrainingJobInSeconds *int32
noSmithyDocumentSerde
}
// A collection of settings used for an AutoML job.
type AutoMLJobConfig struct {
// The configuration for generating a candidate for an AutoML job (optional).
CandidateGenerationConfig *AutoMLCandidateGenerationConfig
// How long an AutoML job is allowed to run, or how many candidates a job is
// allowed to generate.
CompletionCriteria *AutoMLJobCompletionCriteria
// The configuration for splitting the input training dataset. Type:
// AutoMLDataSplitConfig
DataSplitConfig *AutoMLDataSplitConfig
// The method that Autopilot uses to train the data. You can either specify the
// mode manually or let Autopilot choose for you based on the dataset size by
// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
// mode uses a multi-stack ensemble model to predict classification and regression
// tasks directly from your dataset. This machine learning mode combines several
// base models to produce an optimal predictive model. It then uses a stacking
// ensemble method to combine predictions from contributing members. A multi-stack
// ensemble model can provide better performance over a single model by combining
// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
// (HPO) mode uses the best hyperparameters to train the best version of a model.
// HPO automatically selects an algorithm for the type of problem you want to
// solve. Then HPO finds the best hyperparameters according to your objective
// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
Mode AutoMLMode
// The security configuration for traffic encryption or Amazon VPC settings.
SecurityConfig *AutoMLSecurityConfig
noSmithyDocumentSerde
}
// Specifies a metric to minimize or maximize as the objective of an AutoML job.
type AutoMLJobObjective struct {
// The name of the objective metric used to measure the predictive quality of a
// machine learning system. During training, the model's parameters are updated
// iteratively to optimize its performance based on the feedback provided by the
// objective metric when evaluating the model on the validation dataset. The list
// of available metrics supported by Autopilot and the default metric applied when
// you do not specify a metric name explicitly depend on the problem type.
// - For tabular problem types:
// - List of available metrics:
// - Regression: InferenceLatency , MAE , MSE , R2 , RMSE
// - Binary classification: Accuracy , AUC , BalancedAccuracy , F1 ,
// InferenceLatency , LogLoss , Precision , Recall
// - Multiclass classification: Accuracy , BalancedAccuracy , F1macro ,
// InferenceLatency , LogLoss , PrecisionMacro , RecallMacro For a description of
// each metric, see Autopilot metrics for classification and regression (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
// .
// - Default objective metrics:
// - Regression: MSE .
// - Binary classification: F1 .
// - Multiclass classification: Accuracy .
// - For image or text classification problem types:
// - List of available metrics: Accuracy For a description of each metric, see
// Autopilot metrics for text and image classification (https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html)
// .
// - Default objective metrics: Accuracy
// - For time-series forecasting problem types:
// - List of available metrics: RMSE , wQL , Average wQL , MASE , MAPE , WAPE For
// a description of each metric, see Autopilot metrics for time-series
// forecasting (https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html)
// .
// - Default objective metrics: AverageWeightedQuantileLoss
// - For text generation problem types (LLMs fine-tuning): Fine-tuning language
// models in Autopilot does not require setting the AutoMLJobObjective field.
// Autopilot fine-tunes LLMs without requiring multiple candidates to be trained
// and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your
// target model to enhance a default objective metric, the cross-entropy loss.
// After fine-tuning a language model, you can evaluate the quality of its
// generated text using different metrics. For a list of the available metrics, see
// Metrics for fine-tuning LLMs in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html)
// .
//
// This member is required.
MetricName AutoMLMetricEnum
noSmithyDocumentSerde
}
// Metadata for an AutoML job step.
type AutoMLJobStepMetadata struct {
// The Amazon Resource Name (ARN) of the AutoML job.
Arn *string
noSmithyDocumentSerde
}
// Provides a summary about an AutoML job.
type AutoMLJobSummary struct {
// The ARN of the AutoML job.
//
// This member is required.
AutoMLJobArn *string
// The name of the AutoML job you are requesting.
//
// This member is required.
AutoMLJobName *string
// The secondary status of the AutoML job.
//
// This member is required.
AutoMLJobSecondaryStatus AutoMLJobSecondaryStatus
// The status of the AutoML job.
//
// This member is required.
AutoMLJobStatus AutoMLJobStatus
// When the AutoML job was created.
//
// This member is required.
CreationTime *time.Time
// When the AutoML job was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// The end time of an AutoML job.
EndTime *time.Time
// The failure reason of an AutoML job.
FailureReason *string
// The list of reasons for partial failures within an AutoML job.
PartialFailureReasons []AutoMLPartialFailureReason
noSmithyDocumentSerde
}
// The output data configuration.
type AutoMLOutputDataConfig struct {
// The Amazon S3 output path. Must be 128 characters or less.
//
// This member is required.
S3OutputPath *string
// The Key Management Service (KMS) encryption key ID.
KmsKeyId *string
noSmithyDocumentSerde
}
// The reason for a partial failure of an AutoML job.
type AutoMLPartialFailureReason struct {
// The message containing the reason for a partial failure of an AutoML job.
PartialFailureMessage *string
noSmithyDocumentSerde
}
// A collection of settings specific to the problem type used to configure an
// AutoML job V2. There must be one and only one config of the following type.
//
// The following types satisfy this interface:
//
// AutoMLProblemTypeConfigMemberImageClassificationJobConfig
// AutoMLProblemTypeConfigMemberTabularJobConfig
// AutoMLProblemTypeConfigMemberTextClassificationJobConfig
// AutoMLProblemTypeConfigMemberTextGenerationJobConfig
// AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig
type AutoMLProblemTypeConfig interface {
isAutoMLProblemTypeConfig()
}
// Settings used to configure an AutoML job V2 for the image classification
// problem type.
type AutoMLProblemTypeConfigMemberImageClassificationJobConfig struct {
Value ImageClassificationJobConfig
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeConfigMemberImageClassificationJobConfig) isAutoMLProblemTypeConfig() {}
// Settings used to configure an AutoML job V2 for the tabular problem type
// (regression, classification).
type AutoMLProblemTypeConfigMemberTabularJobConfig struct {
Value TabularJobConfig
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeConfigMemberTabularJobConfig) isAutoMLProblemTypeConfig() {}
// Settings used to configure an AutoML job V2 for the text classification problem
// type.
type AutoMLProblemTypeConfigMemberTextClassificationJobConfig struct {
Value TextClassificationJobConfig
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeConfigMemberTextClassificationJobConfig) isAutoMLProblemTypeConfig() {}
// Settings used to configure an AutoML job V2 for the text generation (LLMs
// fine-tuning) problem type. The text generation models that support fine-tuning
// in Autopilot are currently accessible exclusively in regions supported by
// Canvas. Refer to the documentation of Canvas for the full list of its supported
// Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html) .
type AutoMLProblemTypeConfigMemberTextGenerationJobConfig struct {
Value TextGenerationJobConfig
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeConfigMemberTextGenerationJobConfig) isAutoMLProblemTypeConfig() {}
// Settings used to configure an AutoML job V2 for the time-series forecasting
// problem type.
type AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig struct {
Value TimeSeriesForecastingJobConfig
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig) isAutoMLProblemTypeConfig() {}
// Stores resolved attributes specific to the problem type of an AutoML job V2.
//
// The following types satisfy this interface:
//
// AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes
// AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes
type AutoMLProblemTypeResolvedAttributes interface {
isAutoMLProblemTypeResolvedAttributes()
}
// The resolved attributes for the tabular problem type.
type AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes struct {
Value TabularResolvedAttributes
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes) isAutoMLProblemTypeResolvedAttributes() {
}
// The resolved attributes for the text generation problem type.
type AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes struct {
Value TextGenerationResolvedAttributes
noSmithyDocumentSerde
}
func (*AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes) isAutoMLProblemTypeResolvedAttributes() {
}
// The resolved attributes used to configure an AutoML job V2.
type AutoMLResolvedAttributes struct {
// Specifies a metric to minimize or maximize as the objective of an AutoML job.
AutoMLJobObjective *AutoMLJobObjective
// Defines the resolved attributes specific to a problem type.
AutoMLProblemTypeResolvedAttributes AutoMLProblemTypeResolvedAttributes
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
noSmithyDocumentSerde
}
// Describes the Amazon S3 data source.
type AutoMLS3DataSource struct {
// The data type.
// - If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses
// all objects that match the specified key name prefix for model training. The
// S3Prefix should have the following format:
// s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
// - If you choose ManifestFile , S3Uri identifies an object that is a manifest
// file containing a list of object keys that you want SageMaker to use for model
// training. A ManifestFile should have the format shown below: [ {"prefix":
// "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
// "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
// "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ...
// "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]
// - If you choose AugmentedManifestFile , S3Uri identifies an object that is an
// augmented manifest file in JSON lines format. This file contains the data you
// want to use for model training. AugmentedManifestFile is available for V2 API
// jobs only (for example, for jobs created by calling CreateAutoMLJobV2 ). Here
// is a minimal, single-record example of an AugmentedManifestFile :
// {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
// "label-metadata": {"class-name": "cat" } For more information on
// AugmentedManifestFile , see Provide Dataset Metadata to Training Jobs with an
// Augmented Manifest File (https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html)
// .
//
// This member is required.
S3DataType AutoMLS3DataType
// The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or
// ManifestFile depending on the data type.
//
// This member is required.
S3Uri *string
noSmithyDocumentSerde
}
// Security options.
type AutoMLSecurityConfig struct {
// Whether to use traffic encryption between the container layers.
EnableInterContainerTrafficEncryption *bool
// The key used to encrypt stored data.
VolumeKmsKeyId *string
// The VPC configuration.
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// The name and an example value of the hyperparameter that you want to use in
// Autotune. If Automatic model tuning (AMT) determines that your hyperparameter is
// eligible for Autotune, an optimal hyperparameter range is selected for you.
type AutoParameter struct {
// The name of the hyperparameter to optimize using Autotune.
//
// This member is required.
Name *string
// An example value of the hyperparameter to optimize using Autotune.
//
// This member is required.
ValueHint *string
noSmithyDocumentSerde
}
// Automatic rollback configuration for handling endpoint deployment failures and
// recovery.
type AutoRollbackConfig struct {
// List of CloudWatch alarms in your account that are configured to monitor
// metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker
// rolls back the deployment.
Alarms []Alarm
noSmithyDocumentSerde
}
// A flag to indicate if you want to use Autotune to automatically find optimal
// values for the following fields:
// - ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges)
// : The names and ranges of parameters that a hyperparameter tuning job can
// optimize.
// - ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
// : The maximum resources that can be used for a training job. These resources
// include the maximum number of training jobs, the maximum runtime of a tuning
// job, and the maximum number of training jobs to run at the same time.
// - TrainingJobEarlyStoppingType (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType)
// : A flag that specifies whether or not to use early stopping for training jobs
// launched by a hyperparameter tuning job.
// - RetryStrategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy)
// : The number of times to retry a training job.
// - Strategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
// : Specifies how hyperparameter tuning chooses the combinations of hyperparameter
// values to use for the training jobs that it launches.
// - ConvergenceDetected (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html)
// : A flag to indicate that Automatic model tuning (AMT) has detected model
// convergence.
type Autotune struct {
// Set Mode to Enabled if you want to use Autotune.
//
// This member is required.
Mode AutotuneMode
noSmithyDocumentSerde
}
// Configuration to control how SageMaker captures inference data for batch
// transform jobs.
type BatchDataCaptureConfig struct {
// The Amazon S3 location being used to capture the data.
//
// This member is required.
DestinationS3Uri *string
// Flag that indicates whether to append inference id to the output.
GenerateInferenceId *bool
// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
// key that SageMaker uses to encrypt data on the storage volume attached to the ML
// compute instance that hosts the batch transform job. The KmsKeyId can be any of
// the following formats:
// - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
// - Key ARN:
// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
// - Alias name: alias/ExampleAlias
// - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
KmsKeyId *string
noSmithyDocumentSerde
}
// The error code and error description associated with the resource.
type BatchDescribeModelPackageError struct {
//
//
// This member is required.
ErrorCode *string
//
//
// This member is required.
ErrorResponse *string
noSmithyDocumentSerde
}
// Provides summary information about the model package.
type BatchDescribeModelPackageSummary struct {
// The creation time of the mortgage package summary.
//
// This member is required.
CreationTime *time.Time
// Defines how to perform inference generation after a training job is run.
//
// This member is required.
InferenceSpecification *InferenceSpecification
// The Amazon Resource Name (ARN) of the model package.
//
// This member is required.
ModelPackageArn *string
// The group name for the model package
//
// This member is required.
ModelPackageGroupName *string
// The status of the mortgage package.
//
// This member is required.
ModelPackageStatus ModelPackageStatus
// The approval status of the model.
ModelApprovalStatus ModelApprovalStatus
// The description of the model package.
ModelPackageDescription *string
// The version number of a versioned model.
ModelPackageVersion *int32
noSmithyDocumentSerde
}
// Input object for the batch transform job.
type BatchTransformInput struct {
// The Amazon S3 location being used to capture the data.
//
// This member is required.
DataCapturedDestinationS3Uri *string
// The dataset format for your batch transform job.
//
// This member is required.
DatasetFormat *MonitoringDatasetFormat
// Path to the filesystem where the batch transform data is available to the
// container.
//
// This member is required.
LocalPath *string
// If specified, monitoring jobs subtract this time from the end time. For
// information about using offsets for scheduling monitoring jobs, see Schedule
// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
// .
EndTimeOffset *string
// The attributes of the input data to exclude from the analysis.
ExcludeFeaturesAttribute *string
// The attributes of the input data that are the input features.
FeaturesAttribute *string
// The attribute of the input data that represents the ground truth label.
InferenceAttribute *string
// In a classification problem, the attribute that represents the class
// probability.
ProbabilityAttribute *string
// The threshold for the class probability to be evaluated as a positive result.
ProbabilityThresholdAttribute *float64
// Whether input data distributed in Amazon S3 is fully replicated or sharded by
// an S3 key. Defaults to FullyReplicated
S3DataDistributionType ProcessingS3DataDistributionType
// Whether the Pipe or File is used as the input mode for transferring data for
// the monitoring job. Pipe mode is recommended for large datasets. File mode is
// useful for small files that fit in memory. Defaults to File .
S3InputMode ProcessingS3InputMode
// If specified, monitoring jobs substract this time from the start time. For
// information about using offsets for scheduling monitoring jobs, see Schedule
// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
// .
StartTimeOffset *string
noSmithyDocumentSerde
}
// A structure that keeps track of which training jobs launched by your
// hyperparameter tuning job are not improving model performance as evaluated
// against an objective function.
type BestObjectiveNotImproving struct {
// The number of training jobs that have failed to improve model performance by 1%
// or greater over prior training jobs as evaluated against an objective function.
MaxNumberOfTrainingJobsNotImproving *int32
noSmithyDocumentSerde
}
// Contains bias metrics for a model.
type Bias struct {
// The post-training bias report for a model.
PostTrainingReport *MetricsSource
// The pre-training bias report for a model.
PreTrainingReport *MetricsSource
// The bias report for a model
Report *MetricsSource
noSmithyDocumentSerde
}
// Update policy for a blue/green deployment. If this update policy is specified,
// SageMaker creates a new fleet during the deployment while maintaining the old
// fleet. SageMaker flips traffic to the new fleet according to the specified
// traffic routing configuration. Only one update policy should be used in the
// deployment configuration. If no update policy is specified, SageMaker uses a
// blue/green deployment strategy with all at once traffic shifting by default.
type BlueGreenUpdatePolicy struct {
// Defines the traffic routing strategy to shift traffic from the old fleet to the
// new fleet during an endpoint deployment.
//
// This member is required.
TrafficRoutingConfiguration *TrafficRoutingConfig
// Maximum execution timeout for the deployment. Note that the timeout value
// should be larger than the total waiting time specified in
// TerminationWaitInSeconds and WaitIntervalInSeconds .
MaximumExecutionTimeoutInSeconds *int32
// Additional waiting time in seconds after the completion of an endpoint
// deployment before terminating the old endpoint fleet. Default is 0.
TerminationWaitInSeconds *int32
noSmithyDocumentSerde
}
// Details on the cache hit of a pipeline execution step.
type CacheHitResult struct {
// The Amazon Resource Name (ARN) of the pipeline execution.
SourcePipelineExecutionArn *string
noSmithyDocumentSerde
}
// Metadata about a callback step.
type CallbackStepMetadata struct {
// The pipeline generated token from the Amazon SQS queue.
CallbackToken *string
// A list of the output parameters of the callback step.
OutputParameters []OutputParameter
// The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the
// callback step.
SqsQueueUrl *string
noSmithyDocumentSerde
}
// The location of artifacts for an AutoML candidate job.
type CandidateArtifactLocations struct {
// The Amazon S3 prefix to the explainability artifacts generated for the AutoML
// candidate.
//
// This member is required.
Explainability *string
// The Amazon S3 prefix to the accuracy metrics and the inference results observed
// over the testing window. Available only for the time-series forecasting problem
// type.
BacktestResults *string
// The Amazon S3 prefix to the model insight artifacts generated for the AutoML
// candidate.
ModelInsights *string
noSmithyDocumentSerde
}
// Stores the configuration information for how model candidates are generated
// using an AutoML job V2.
type CandidateGenerationConfig struct {
// Stores the configuration information for the selection of algorithms used to
// train model candidates on tabular data. The list of available algorithms to
// choose from depends on the training mode set in TabularJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html)
// .
// - AlgorithmsConfig should not be set in AUTO training mode.
// - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
// set and one only. If the list of algorithms provided as values for
// AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of
// algorithms for the given training mode.
// - When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the
// full set of algorithms for the given training mode.
// For the list of all algorithms per problem type and training mode, see
// AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// section in Autopilot developer guide.
AlgorithmsConfig []AutoMLAlgorithmConfig
noSmithyDocumentSerde
}
// The properties of an AutoML candidate job.
type CandidateProperties struct {
// The Amazon S3 prefix to the artifacts generated for an AutoML candidate.
CandidateArtifactLocations *CandidateArtifactLocations
// Information about the candidate metrics for an AutoML job.
CandidateMetrics []MetricDatum
noSmithyDocumentSerde
}
// The SageMaker Canvas application settings.
type CanvasAppSettings struct {
// The model deployment settings for the SageMaker Canvas application.
DirectDeploySettings *DirectDeploySettings
// The settings for connecting to an external data source with OAuth.
IdentityProviderOAuthSettings []IdentityProviderOAuthSetting
// The settings for document querying.
KendraSettings *KendraSettings
// The model registry settings for the SageMaker Canvas application.
ModelRegisterSettings *ModelRegisterSettings
// Time series forecast settings for the SageMaker Canvas application.
TimeSeriesForecastingSettings *TimeSeriesForecastingSettings
// The workspace settings for the SageMaker Canvas application.
WorkspaceSettings *WorkspaceSettings
noSmithyDocumentSerde
}
// Specifies the type and size of the endpoint capacity to activate for a
// blue/green deployment, a rolling deployment, or a rollback strategy. You can
// specify your batches as either instance count or the overall percentage or your
// fleet. For a rollback strategy, if you don't specify the fields in this object,
// or if you set the Value to 100%, then SageMaker uses a blue/green rollback
// strategy and rolls all traffic back to the blue fleet.
type CapacitySize struct {
// Specifies the endpoint capacity type.
// - INSTANCE_COUNT : The endpoint activates based on the number of instances.
// - CAPACITY_PERCENT : The endpoint activates based on the specified percentage
// of capacity.
//
// This member is required.
Type CapacitySizeType
// Defines the capacity size, either as a number of instances or a capacity
// percentage.
//
// This member is required.
Value *int32
noSmithyDocumentSerde
}
// Configuration specifying how to treat different headers. If no headers are
// specified Amazon SageMaker will by default base64 encode when capturing the
// data.
type CaptureContentTypeHeader struct {
// The list of all content type headers that Amazon SageMaker will treat as CSV
// and capture accordingly.
CsvContentTypes []string
// The list of all content type headers that SageMaker will treat as JSON and
// capture accordingly.
JsonContentTypes []string
noSmithyDocumentSerde
}
// Specifies data Model Monitor will capture.
type CaptureOption struct {
// Specify the boundary of data to capture.
//
// This member is required.
CaptureMode CaptureMode
noSmithyDocumentSerde
}
// Environment parameters you want to benchmark your load test against.
type CategoricalParameter struct {
// The Name of the environment variable.
//
// This member is required.
Name *string
// The list of values you can pass.
//
// This member is required.
Value []string
noSmithyDocumentSerde
}
// A list of categorical hyperparameters to tune.
type CategoricalParameterRange struct {
// The name of the categorical hyperparameter to tune.
//
// This member is required.
Name *string
// A list of the categories for the hyperparameter.
//
// This member is required.
Values []string
noSmithyDocumentSerde
}
// Defines the possible values for a categorical hyperparameter.
type CategoricalParameterRangeSpecification struct {
// The allowed categories for the hyperparameter.
//
// This member is required.
Values []string
noSmithyDocumentSerde
}
// A channel is a named input source that training algorithms can consume.
type Channel struct {
// The name of the channel.
//
// This member is required.
ChannelName *string
// The location of the channel data.
//
// This member is required.
DataSource *DataSource
// If training data is compressed, the compression type. The default value is None
// . CompressionType is used only in Pipe input mode. In File mode, leave this
// field unset or set it to None.
CompressionType CompressionType
// The MIME type of the data.
ContentType *string
// (Optional) The input mode to use for the data channel in a training job. If you
// don't set a value for InputMode , SageMaker uses the value set for
// TrainingInputMode . Use this parameter to override the TrainingInputMode
// setting in a AlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html)
// request when you have a channel that needs a different input mode from the
// training job's general setting. To download the data from Amazon Simple Storage
// Service (Amazon S3) to the provisioned ML storage volume, and mount the
// directory to a Docker volume, use File input mode. To stream data directly from
// Amazon S3 to the container, choose Pipe input mode. To use a model for
// incremental training, choose File input model.
InputMode TrainingInputMode
// Specify RecordIO as the value when input data is in raw format but the training
// algorithm requires the RecordIO format. In this case, SageMaker wraps each
// individual S3 object in a RecordIO record. If the input data is already in
// RecordIO format, you don't need to set this attribute. For more information, see
// Create a Dataset Using RecordIO (https://mxnet.apache.org/api/architecture/note_data_loading#data-format)
// . In File mode, leave this field unset or set it to None.
RecordWrapperType RecordWrapper
// A configuration for a shuffle option for input data in a channel. If you use
// S3Prefix for S3DataType , this shuffles the results of the S3 key prefix
// matches. If you use ManifestFile , the order of the S3 object references in the
// ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the
// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
// determined using the Seed value. For Pipe input mode, shuffling is done at the
// start of every epoch. With large datasets this ensures that the order of the
// training data is different for each epoch, it helps reduce bias and possible
// overfitting. In a multi-node training job when ShuffleConfig is combined with
// S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so
// that the content sent to a particular node on the first epoch might be sent to a
// different node on the second epoch.
ShuffleConfig *ShuffleConfig
noSmithyDocumentSerde
}
// Defines a named input source, called a channel, to be used by an algorithm.
type ChannelSpecification struct {
// The name of the channel.
//
// This member is required.
Name *string
// The supported MIME types for the data.
//
// This member is required.
SupportedContentTypes []string
// The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker
// copies the data from the input source onto the local Amazon Elastic Block Store
// (Amazon EBS) volumes before starting your training algorithm. This is the most
// commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from
// the source directly to your algorithm without using the EBS volume.
//
// This member is required.
SupportedInputModes []TrainingInputMode
// A brief description of the channel.
Description *string
// Indicates whether the channel is required by the algorithm.
IsRequired *bool
// The allowed compression types, if data compression is used.
SupportedCompressionTypes []CompressionType
noSmithyDocumentSerde
}
// Contains information about the output location for managed spot training
// checkpoint data.
type CheckpointConfig struct {
// Identifies the S3 path where you want SageMaker to store checkpoints. For
// example, s3://bucket-name/key-name-prefix .
//
// This member is required.
S3Uri *string
// (Optional) The local directory where checkpoints are written. The default
// directory is /opt/ml/checkpoints/ .
LocalPath *string
noSmithyDocumentSerde
}
// The container for the metadata for the ClarifyCheck step. For more information,
// see the topic on ClarifyCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check)
// in the Amazon SageMaker Developer Guide.
type ClarifyCheckStepMetadata struct {
// The Amazon S3 URI of baseline constraints file to be used for the drift check.
BaselineUsedForDriftCheckConstraints *string
// The Amazon S3 URI of the newly calculated baseline constraints file.
CalculatedBaselineConstraints *string
// The Amazon Resource Name (ARN) of the check processing job that was run by this
// step's execution.
CheckJobArn *string
// The type of the Clarify Check step
CheckType *string
// The model package group name.
ModelPackageGroupName *string
// This flag indicates if a newly calculated baseline can be accessed through step
// properties BaselineUsedForDriftCheckConstraints and
// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
// baseline of the configured check type must also be available. These can be
// accessed through the BaselineUsedForDriftCheckConstraints property.
RegisterNewBaseline *bool
// This flag indicates if the drift check against the previous baseline will be
// skipped or not. If it is set to False , the previous baseline of the configured
// check type must be available.
SkipCheck *bool
// The Amazon S3 URI of the violation report if violations are detected.
ViolationReport *string
noSmithyDocumentSerde
}
// The configuration parameters for the SageMaker Clarify explainer.
type ClarifyExplainerConfig struct {
// The configuration for SHAP analysis.
//
// This member is required.
ShapConfig *ClarifyShapConfig
// A JMESPath boolean expression used to filter which records to explain.
// Explanations are activated by default. See EnableExplanations (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable)
// for additional information.
EnableExplanations *string
// The inference configuration parameter for the model container.
InferenceConfig *ClarifyInferenceConfig
noSmithyDocumentSerde
}
// The inference configuration parameter for the model container.
type ClarifyInferenceConfig struct {
// A template string used to format a JSON record into an acceptable model
// container input. For example, a ContentTemplate string
// '{"myfeatures":$features}' will format a list of features [1,2,3] into the
// record string '{"myfeatures":[1,2,3]}' . Required only when the model container
// input is in JSON Lines format.
ContentTemplate *string
// The names of the features. If provided, these are included in the endpoint
// response payload to help readability of the InvokeEndpoint output. See the
// Response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
// section under Invoke the endpoint in the Developer Guide for more information.
FeatureHeaders []string
// A list of data types of the features (optional). Applicable only to NLP
// explainability. If provided, FeatureTypes must have at least one 'text' string
// (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers
// the feature types based on the baseline data. The feature types are included in
// the endpoint response payload. For additional information see the response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
// section under Invoke the endpoint in the Developer Guide for more information.
FeatureTypes []ClarifyFeatureType
// Provides the JMESPath expression to extract the features from a model container
// input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath
// expression 'myfeatures' , it extracts a list of features [1,2,3] from request
// data '{"myfeatures":[1,2,3]}' .
FeaturesAttribute *string
// A JMESPath expression used to locate the list of label headers in the model
// container output. Example: If the model container output of a batch request is
// '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set
// LabelAttribute to 'labels' to extract the list of label headers
// ["cat","dog","fish"]
LabelAttribute *string
// For multiclass classification problems, the label headers are the names of the
// classes. Otherwise, the label header is the name of the predicted label. These
// are used to help readability for the output of the InvokeEndpoint API. See the
// response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
// section under Invoke the endpoint in the Developer Guide for more information.
// If there are no label headers in the model container output, provide them
// manually using this parameter.
LabelHeaders []string
// A zero-based index used to extract a label header or list of label headers from
// model container output in CSV format. Example for a multiclass model: If the
// model container output consists of label headers followed by probabilities:
// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select
// the label headers ['cat','dog','fish'] .
LabelIndex *int32
// The maximum payload size (MB) allowed of a request from the explainer to the
// model container. Defaults to 6 MB.
MaxPayloadInMB *int32
// The maximum number of records in a request that the model container can process
// when querying the model container for the predictions of a synthetic dataset (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-synthetic)
// . A record is a unit of input data that inference can be made on, for example, a
// single line in CSV data. If MaxRecordCount is 1 , the model container expects
// one record per request. A value of 2 or greater means that the model expects
// batch requests, which can reduce overhead and speed up the inferencing process.
// If this parameter is not provided, the explainer will tune the record count per
// request according to the model container's capacity at runtime.
MaxRecordCount *int32
// A JMESPath expression used to extract the probability (or score) from the model
// container output if the model container is in JSON Lines format. Example: If the
// model container output of a single request is
// '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to
// 'probability' .
ProbabilityAttribute *string
// A zero-based index used to extract a probability value (score) or list from
// model container output in CSV format. If this value is not provided, the entire
// model container output will be treated as a probability value (score) or list.
// Example for a single class model: If the model container output consists of a
// string-formatted prediction label followed by its probability: '1,0.6' , set
// ProbabilityIndex to 1 to select the probability value 0.6 . Example for a
// multiclass model: If the model container output consists of a string-formatted
// prediction label followed by its probability:
// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to
// select the probability values [0.1,0.6,0.3] .
ProbabilityIndex *int32
noSmithyDocumentSerde
}
// The configuration for the SHAP baseline (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html)
// (also called the background or reference dataset) of the Kernal SHAP algorithm.
// - The number of records in the baseline data determines the size of the
// synthetic dataset, which has an impact on latency of explainability requests.
// For more information, see the Synthetic data of Configure and create an
// endpoint (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html)
// .
// - ShapBaseline and ShapBaselineUri are mutually exclusive parameters. One or
// the either is required to configure a SHAP baseline.
type ClarifyShapBaselineConfig struct {
// The MIME type of the baseline data. Choose from 'text/csv' or
// 'application/jsonlines' . Defaults to 'text/csv' .
MimeType *string
// The inline SHAP baseline data in string format. ShapBaseline can have one or
// multiple records to be used as the baseline dataset. The format of the SHAP
// baseline file should be the same format as the training dataset. For example, if
// the training dataset is in CSV format and each record contains four features,
// and all features are numerical, then the format of the baseline data should also
// share these characteristics. For natural language processing (NLP) of text
// columns, the baseline value should be the value used to replace the unit of text
// specified by the Granularity of the TextConfig parameter. The size limit for
// ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide
// more than 4 KB of baseline data.
ShapBaseline *string
// The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline
// file is stored. The format of the SHAP baseline file should be the same format
// as the format of the training dataset. For example, if the training dataset is
// in CSV format, and each record in the training dataset has four features, and
// all features are numerical, then the baseline file should also have this same
// format. Each record should contain only the features. If you are using a virtual
// private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For
// more information about setting up endpoints with Amazon Virtual Private Cloud,
// see Give SageMaker access to Resources in your Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
ShapBaselineUri *string
noSmithyDocumentSerde
}
// The configuration for SHAP analysis using SageMaker Clarify Explainer.
type ClarifyShapConfig struct {
// The configuration for the SHAP baseline of the Kernal SHAP algorithm.
//
// This member is required.
ShapBaselineConfig *ClarifyShapBaselineConfig
// The number of samples to be used for analysis by the Kernal SHAP algorithm. The
// number of samples determines the size of the synthetic dataset, which has an
// impact on latency of explainability requests. For more information, see the
// Synthetic data of Configure and create an endpoint (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html)
// .
NumberOfSamples *int32
// The starting value used to initialize the random number generator in the
// explainer. Provide a value for this parameter to obtain a deterministic SHAP
// result.
Seed *int32
// A parameter that indicates if text features are treated as text and
// explanations are provided for individual units of text. Required for natural
// language processing (NLP) explainability only.
TextConfig *ClarifyTextConfig
// A Boolean toggle to indicate if you want to use the logit function (true) or
// log-odds units (false) for model predictions. Defaults to false.
UseLogit *bool
noSmithyDocumentSerde
}
// A parameter used to configure the SageMaker Clarify explainer to treat text
// features as text so that explanations are provided for individual units of text.
// Required only for natural language processing (NLP) explainability.
type ClarifyTextConfig struct {
// The unit of granularity for the analysis of text features. For example, if the
// unit is 'token' , then each token (like a word in English) of the text is
// treated as a feature. SHAP values are computed for each unit/feature.
//
// This member is required.
Granularity ClarifyTextGranularity
// Specifies the language of the text features in ISO 639-1 (https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)
// or ISO 639-3 (https://en.wikipedia.org/wiki/ISO_639-3) code of a supported
// language. For a mix of multiple languages, use code 'xx' .
//
// This member is required.
Language ClarifyTextLanguage
noSmithyDocumentSerde
}
// Details of an instance group in a SageMaker HyperPod cluster.
type ClusterInstanceGroupDetails struct {
// The number of instances that are currently in the instance group of a SageMaker
// HyperPod cluster.
CurrentCount *int32
// The execution role for the instance group to assume.
ExecutionRole *string
// The name of the instance group of a SageMaker HyperPod cluster.
InstanceGroupName *string
// The instance type of the instance group of a SageMaker HyperPod cluster.
InstanceType ClusterInstanceType
// Details of LifeCycle configuration for the instance group.
LifeCycleConfig *ClusterLifeCycleConfig
// The number of instances you specified to add to the instance group of a
// SageMaker HyperPod cluster.
TargetCount *int32
// The number you specified to TreadsPerCore in CreateCluster for enabling or
// disabling multithreading. For instance types that support multithreading, you
// can specify 1 for disabling multithreading and 2 for enabling multithreading.
// For more information, see the reference table of CPU cores and threads per CPU
// core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
// in the Amazon Elastic Compute Cloud User Guide.
ThreadsPerCore *int32
noSmithyDocumentSerde
}
// The specifications of an instance group that you need to define.
type ClusterInstanceGroupSpecification struct {
// Specifies an IAM execution role to be assumed by the instance group.
//
// This member is required.
ExecutionRole *string
// Specifies the number of instances to add to the instance group of a SageMaker
// HyperPod cluster.
//
// This member is required.
InstanceCount *int32
// Specifies the name of the instance group.
//
// This member is required.
InstanceGroupName *string
// Specifies the instance type of the instance group.
//
// This member is required.
InstanceType ClusterInstanceType
// Specifies the LifeCycle configuration for the instance group.
//
// This member is required.
LifeCycleConfig *ClusterLifeCycleConfig
// Specifies the value for Threads per core. For instance types that support
// multithreading, you can specify 1 for disabling multithreading and 2 for
// enabling multithreading. For instance types that doesn't support multithreading,
// specify 1 . For more information, see the reference table of CPU cores and
// threads per CPU core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
// in the Amazon Elastic Compute Cloud User Guide.
ThreadsPerCore *int32
noSmithyDocumentSerde
}
// Details of an instance in a SageMaker HyperPod cluster.
type ClusterInstanceStatusDetails struct {
// The status of an instance in a SageMaker HyperPod cluster.
//
// This member is required.
Status ClusterInstanceStatus
// The message from an instance in a SageMaker HyperPod cluster.
Message *string
noSmithyDocumentSerde
}
// The LifeCycle configuration for a SageMaker HyperPod cluster.
type ClusterLifeCycleConfig struct {
// The directory of the LifeCycle script under SourceS3Uri . This LifeCycle script
// runs during cluster creation.
//
// This member is required.
OnCreate *string
// An Amazon S3 bucket path where your LifeCycle scripts are stored.
//
// This member is required.
SourceS3Uri *string
noSmithyDocumentSerde
}
// Details of an instance (also called a node interchangeably) in a SageMaker
// HyperPod cluster.
type ClusterNodeDetails struct {
// The instance group name in which the instance is.
InstanceGroupName *string
// The ID of the instance.
InstanceId *string
// The status of the instance.
InstanceStatus *ClusterInstanceStatusDetails
// The type of the instance.
InstanceType ClusterInstanceType
// The time when the instance is launched.
LaunchTime *time.Time
// The LifeCycle configuration applied to the instance.
LifeCycleConfig *ClusterLifeCycleConfig
// The number of threads per CPU core you specified under CreateCluster .
ThreadsPerCore *int32
noSmithyDocumentSerde
}
// Lists a summary of the properties of an instance (also called a node
// interchangeably) of a SageMaker HyperPod cluster.
type ClusterNodeSummary struct {
// The name of the instance group in which the instance is.
//
// This member is required.
InstanceGroupName *string
// The ID of the instance.
//
// This member is required.
InstanceId *string
// The status of the instance.
//
// This member is required.
InstanceStatus *ClusterInstanceStatusDetails
// The type of the instance.
//
// This member is required.
InstanceType ClusterInstanceType
// The time when the instance is launched.
//
// This member is required.
LaunchTime *time.Time
noSmithyDocumentSerde
}
// Lists a summary of the properties of a SageMaker HyperPod cluster.
type ClusterSummary struct {
// The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
//
// This member is required.
ClusterArn *string
// The name of the SageMaker HyperPod cluster.
//
// This member is required.
ClusterName *string
// The status of the SageMaker HyperPod cluster.
//
// This member is required.
ClusterStatus ClusterStatus
// The time when the SageMaker HyperPod cluster is created.
//
// This member is required.
CreationTime *time.Time
noSmithyDocumentSerde
}
// The Code Editor application settings. For more information about Code Editor,
// see Get started with Code Editor in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html)
// .
type CodeEditorAppSettings struct {
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
// The Amazon Resource Name (ARN) of the Code Editor application lifecycle
// configuration.
LifecycleConfigArns []string
noSmithyDocumentSerde
}
// A Git repository that SageMaker automatically displays to users for cloning in
// the JupyterServer application.
type CodeRepository struct {
// The URL of the Git repository.
//
// This member is required.
RepositoryUrl *string
noSmithyDocumentSerde
}
// Specifies summary information about a Git repository.
type CodeRepositorySummary struct {
// The Amazon Resource Name (ARN) of the Git repository.
//
// This member is required.
CodeRepositoryArn *string
// The name of the Git repository.
//
// This member is required.
CodeRepositoryName *string
// The date and time that the Git repository was created.
//
// This member is required.
CreationTime *time.Time
// The date and time that the Git repository was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// Configuration details for the Git repository, including the URL where it is
// located and the ARN of the Amazon Web Services Secrets Manager secret that
// contains the credentials used to access the repository.
GitConfig *GitConfig
noSmithyDocumentSerde
}
// Use this parameter to configure your Amazon Cognito workforce. A single Cognito
// workforce is created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
// .
type CognitoConfig struct {
// The client ID for your Amazon Cognito user pool.
//
// This member is required.
ClientId *string
// A user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
// is a user directory in Amazon Cognito. With a user pool, your users can sign in
// to your web or mobile app through Amazon Cognito. Your users can also sign in
// through social identity providers like Google, Facebook, Amazon, or Apple, and
// through SAML identity providers.
//
// This member is required.
UserPool *string
noSmithyDocumentSerde
}
// Identifies a Amazon Cognito user group. A user group can be used in on or more
// work teams.
type CognitoMemberDefinition struct {
// An identifier for an application client. You must create the app client ID
// using Amazon Cognito.
//
// This member is required.
ClientId *string
// An identifier for a user group.
//
// This member is required.
UserGroup *string
// An identifier for a user pool. The user pool must be in the same region as the
// service that you are calling.
//
// This member is required.
UserPool *string
noSmithyDocumentSerde
}
// Configuration for your collection.
//
// The following types satisfy this interface:
//
// CollectionConfigMemberVectorConfig
type CollectionConfig interface {
isCollectionConfig()
}
// Configuration for your vector collection type.
// - Dimension : The number of elements in your vector.
type CollectionConfigMemberVectorConfig struct {
Value VectorConfig
noSmithyDocumentSerde
}
func (*CollectionConfigMemberVectorConfig) isCollectionConfig() {}
// Configuration information for the Amazon SageMaker Debugger output tensor
// collections.
type CollectionConfiguration struct {
// The name of the tensor collection. The name must be unique relative to other
// rule configuration names.
CollectionName *string
// Parameter values for the tensor collection. The allowed parameters are "name" ,
// "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and
// "save_histogram" .
CollectionParameters map[string]string
noSmithyDocumentSerde
}
// A summary of a model compilation job.
type CompilationJobSummary struct {
// The Amazon Resource Name (ARN) of the model compilation job.
//
// This member is required.
CompilationJobArn *string
// The name of the model compilation job that you want a summary for.
//
// This member is required.
CompilationJobName *string
// The status of the model compilation job.
//
// This member is required.
CompilationJobStatus CompilationJobStatus
// The time when the model compilation job was created.
//
// This member is required.
CreationTime *time.Time
// The time when the model compilation job completed.
CompilationEndTime *time.Time
// The time when the model compilation job started.
CompilationStartTime *time.Time
// The type of device that the model will run on after the compilation job has
// completed.
CompilationTargetDevice TargetDevice
// The type of accelerator that the model will run on after the compilation job
// has completed.
CompilationTargetPlatformAccelerator TargetPlatformAccelerator
// The type of architecture that the model will run on after the compilation job
// has completed.
CompilationTargetPlatformArch TargetPlatformArch
// The type of OS that the model will run on after the compilation job has
// completed.
CompilationTargetPlatformOs TargetPlatformOs
// The time when the model compilation job was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Metadata for a Condition step.
type ConditionStepMetadata struct {
// The outcome of the Condition step evaluation.
Outcome ConditionOutcome
noSmithyDocumentSerde
}
// The configuration used to run the application image container.
type ContainerConfig struct {
// The arguments for the container when you're running the application.
ContainerArguments []string
// The entrypoint used to run the application in the container.
ContainerEntrypoint []string
// The environment variables to set in the container
ContainerEnvironmentVariables map[string]string
noSmithyDocumentSerde
}
// Describes the container, as part of model definition.
type ContainerDefinition struct {
// This parameter is ignored for models that contain only a PrimaryContainer . When
// a ContainerDefinition is part of an inference pipeline, the value of the
// parameter uniquely identifies the container for the purposes of logging and
// metrics. For information, see Use Logs and Metrics to Monitor an Inference
// Pipeline (https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html)
// . If you don't specify a value for this parameter for a ContainerDefinition
// that is part of an inference pipeline, a unique name is automatically assigned
// based on the position of the ContainerDefinition in the pipeline. If you
// specify a value for the ContainerHostName for any ContainerDefinition that is
// part of an inference pipeline, you must specify a value for the
// ContainerHostName parameter of every ContainerDefinition in that pipeline.
ContainerHostname *string
// The environment variables to set in the Docker container. Each key and value in
// the Environment string to string map can have length of up to 1024. We support
// up to 16 entries in the map.
Environment map[string]string
// The path where inference code is stored. This can be either in Amazon EC2
// Container Registry or in a Docker registry that is accessible from the same VPC
// that you configure for your endpoint. If you are using your own custom algorithm
// instead of an algorithm provided by SageMaker, the inference code must meet
// SageMaker requirements. SageMaker supports both registry/repository[:tag] and
// registry/repository[@digest] image path formats. For more information, see
// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
// container in Amazon EC2 Container Registry must be in the same region as the
// model or endpoint you are creating.
Image *string
// Specifies whether the model container is in Amazon ECR or a private Docker
// registry accessible from your Amazon Virtual Private Cloud (VPC). For
// information about storing containers in a private Docker registry, see Use a
// Private Docker Registry for Real-Time Inference Containers (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html)
// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
// container in Amazon EC2 Container Registry must be in the same region as the
// model or endpoint you are creating.
ImageConfig *ImageConfig
// The inference specification name in the model package version.
InferenceSpecificationName *string
// Whether the container hosts a single model or multiple models.
Mode ContainerMode
// Specifies the location of ML model data to deploy. Currently you cannot use
// ModelDataSource in conjunction with SageMaker batch transform, SageMaker
// serverless endpoints, SageMaker multi-model endpoints, and SageMaker
// Marketplace.
ModelDataSource *ModelDataSource
// The S3 path where the model artifacts, which result from model training, are
// stored. This path must point to a single gzip compressed tar archive (.tar.gz
// suffix). The S3 path is required for SageMaker built-in algorithms, but not if
// you use your own algorithms. For more information on built-in algorithms, see
// Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
// . The model artifacts must be in an S3 bucket that is in the same region as the
// model or endpoint you are creating. If you provide a value for this parameter,
// SageMaker uses Amazon Web Services Security Token Service to download model
// artifacts from the S3 path you provide. Amazon Web Services STS is activated in
// your Amazon Web Services account by default. If you previously deactivated
// Amazon Web Services STS for a region, you need to reactivate Amazon Web Services
// STS for that region. For more information, see Activating and Deactivating
// Amazon Web Services STS in an Amazon Web Services Region (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html)
// in the Amazon Web Services Identity and Access Management User Guide. If you use
// a built-in algorithm to create a model, SageMaker requires that you provide a S3
// path to the model artifacts in ModelDataUrl .
ModelDataUrl *string
// The name or Amazon Resource Name (ARN) of the model package to use to create
// the model.
ModelPackageName *string
// Specifies additional configuration for multi-model endpoints.
MultiModelConfig *MultiModelConfig
noSmithyDocumentSerde
}
// A structure describing the source of a context.
type ContextSource struct {
// The URI of the source.
//
// This member is required.
SourceUri *string
// The ID of the source.
SourceId *string
// The type of the source.
SourceType *string
noSmithyDocumentSerde
}
// Lists a summary of the properties of a context. A context provides a logical
// grouping of other entities.
type ContextSummary struct {
// The Amazon Resource Name (ARN) of the context.
ContextArn *string
// The name of the context.
ContextName *string
// The type of the context.
ContextType *string
// When the context was created.
CreationTime *time.Time
// When the context was last modified.
LastModifiedTime *time.Time
// The source of the context.
Source *ContextSource
noSmithyDocumentSerde
}
// A list of continuous hyperparameters to tune.
type ContinuousParameterRange struct {
// The maximum value for the hyperparameter. The tuning job uses floating-point
// values between MinValue value and this value for tuning.
//
// This member is required.
MaxValue *string
// The minimum value for the hyperparameter. The tuning job uses floating-point
// values between this value and MaxValue for tuning.
//
// This member is required.
MinValue *string
// The name of the continuous hyperparameter to tune.
//
// This member is required.
Name *string
// The scale that hyperparameter tuning uses to search the hyperparameter range.
// For information about choosing a hyperparameter scale, see Hyperparameter
// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
// values in the hyperparameter range by using a linear scale. Logarithmic
// Hyperparameter tuning searches the values in the hyperparameter range by using a
// logarithmic scale. Logarithmic scaling works only for ranges that have only
// values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the
// values in the hyperparameter range by using a reverse logarithmic scale. Reverse
// logarithmic scaling works only for ranges that are entirely within the range
// 0<=x<1.0.
ScalingType HyperParameterScalingType
noSmithyDocumentSerde
}
// Defines the possible values for a continuous hyperparameter.
type ContinuousParameterRangeSpecification struct {
// The maximum floating-point value allowed.
//
// This member is required.
MaxValue *string
// The minimum floating-point value allowed.
//
// This member is required.
MinValue *string
noSmithyDocumentSerde
}
// A flag to indicating that automatic model tuning (AMT) has detected model
// convergence, defined as a lack of significant improvement (1% or less) against
// an objective metric.
type ConvergenceDetected struct {
// A flag to stop a tuning job once AMT has detected that the job has converged.
CompleteOnConvergence CompleteOnConvergence
noSmithyDocumentSerde
}
// A file system, created by you, that you assign to a user profile or space for
// an Amazon SageMaker Domain. Permitted users can access this file system in
// Amazon SageMaker Studio.
//
// The following types satisfy this interface:
//
// CustomFileSystemMemberEFSFileSystem
type CustomFileSystem interface {
isCustomFileSystem()
}
// A custom file system in Amazon EFS.
type CustomFileSystemMemberEFSFileSystem struct {
Value EFSFileSystem
noSmithyDocumentSerde
}
func (*CustomFileSystemMemberEFSFileSystem) isCustomFileSystem() {}
// The settings for assigning a custom file system to a user profile or space for
// an Amazon SageMaker Domain. Permitted users can access this file system in
// Amazon SageMaker Studio.
//
// The following types satisfy this interface:
//
// CustomFileSystemConfigMemberEFSFileSystemConfig
type CustomFileSystemConfig interface {
isCustomFileSystemConfig()
}
// The settings for a custom Amazon EFS file system.
type CustomFileSystemConfigMemberEFSFileSystemConfig struct {
Value EFSFileSystemConfig
noSmithyDocumentSerde
}
func (*CustomFileSystemConfigMemberEFSFileSystemConfig) isCustomFileSystemConfig() {}
// A custom SageMaker image. For more information, see Bring your own SageMaker
// image (https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html) .
type CustomImage struct {
// The name of the AppImageConfig.
//
// This member is required.
AppImageConfigName *string
// The name of the CustomImage. Must be unique to your account.
//
// This member is required.
ImageName *string
// The version number of the CustomImage.
ImageVersionNumber *int32
noSmithyDocumentSerde
}
// A customized metric.
type CustomizedMetricSpecification struct {
// The name of the customized metric.
MetricName *string
// The namespace of the customized metric.
Namespace *string
// The statistic of the customized metric.
Statistic Statistic
noSmithyDocumentSerde
}
// Details about the POSIX identity that is used for file system operations.
type CustomPosixUserConfig struct {
// The POSIX group ID.
//
// This member is required.
Gid *int64
// The POSIX user ID.
//
// This member is required.
Uid *int64
noSmithyDocumentSerde
}
// Configuration to control how SageMaker captures inference data.
type DataCaptureConfig struct {
// Specifies data Model Monitor will capture. You can configure whether to collect
// only input, only output, or both
//
// This member is required.
CaptureOptions []CaptureOption
// The Amazon S3 location used to capture the data.
//
// This member is required.
DestinationS3Uri *string
// The percentage of requests SageMaker will capture. A lower value is recommended
// for Endpoints with high traffic.
//
// This member is required.
InitialSamplingPercentage *int32
// Configuration specifying how to treat different headers. If no headers are
// specified SageMaker will by default base64 encode when capturing the data.
CaptureContentTypeHeader *CaptureContentTypeHeader
// Whether data capture should be enabled or disabled (defaults to enabled).
EnableCapture *bool
// The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker
// uses to encrypt the captured data at rest using Amazon S3 server-side
// encryption. The KmsKeyId can be any of the following formats:
// - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
// - Key ARN:
// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
// - Alias name: alias/ExampleAlias
// - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
KmsKeyId *string
noSmithyDocumentSerde
}
// The currently active data capture configuration used by your Endpoint.
type DataCaptureConfigSummary struct {
// Whether data capture is currently functional.
//
// This member is required.
CaptureStatus CaptureStatus
// The percentage of requests being captured by your Endpoint.
//
// This member is required.
CurrentSamplingPercentage *int32
// The Amazon S3 location being used to capture the data.
//
// This member is required.
DestinationS3Uri *string
// Whether data capture is enabled or disabled.
//
// This member is required.
EnableCapture *bool
// The KMS key being used to encrypt the data in Amazon S3.
//
// This member is required.
KmsKeyId *string
noSmithyDocumentSerde
}
// The meta data of the Glue table which serves as data catalog for the
// OfflineStore .
type DataCatalogConfig struct {
// The name of the Glue table catalog.
//
// This member is required.
Catalog *string
// The name of the Glue table database.
//
// This member is required.
Database *string
// The name of the Glue table.
//
// This member is required.
TableName *string
noSmithyDocumentSerde
}
// The data structure used to specify the data to be used for inference in a batch
// transform job and to associate the data that is relevant to the prediction
// results in the output. The input filter provided allows you to exclude input
// data that is not needed for inference in a batch transform job. The output
// filter provided allows you to include input data relevant to interpreting the
// predictions in the output from the job. For more information, see Associate
// Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html)
// .
type DataProcessing struct {
// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
// expression used to select a portion of the input data to pass to the algorithm.
// Use the InputFilter parameter to exclude fields, such as an ID column, from the
// input. If you want SageMaker to pass the entire input dataset to the algorithm,
// accept the default value $ . Examples: "$" , "$[1:]" , "$.features"
InputFilter *string
// Specifies the source of the data to join with the transformed data. The valid
// values are None and Input . The default value is None , which specifies not to
// join the input with the transformed data. If you want the batch transform job to
// join the original input data with the transformed data, set JoinSource to Input
// . You can specify OutputFilter as an additional filter to select a portion of
// the joined dataset and store it in the output file. For JSON or JSONLines
// objects, such as a JSON array, SageMaker adds the transformed data to the input
// JSON object in an attribute called SageMakerOutput . The joined result for JSON
// must be a key-value pair object. If the input is not a key-value pair object,
// SageMaker creates a new JSON file. In the new JSON file, and the input data is
// stored under the SageMakerInput key and the results are stored in
// SageMakerOutput . For CSV data, SageMaker takes each row as a JSON array and
// joins the transformed data with the input by appending each transformed row to
// the end of the input. The joined data has the original input data followed by
// the transformed data and the output is a CSV file. For information on how
// joining in applied, see Workflow for Associating Inferences with Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow)
// .
JoinSource JoinSource
// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
// expression used to select a portion of the joined dataset to save in the output
// file for a batch transform job. If you want SageMaker to store the entire input
// dataset in the output file, leave the default value, $ . If you specify indexes
// that aren't within the dimension size of the joined dataset, you get an error.
// Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"
OutputFilter *string
noSmithyDocumentSerde
}
// Information about the container that a data quality monitoring job runs.
type DataQualityAppSpecification struct {
// The container image that the data quality monitoring job runs.
//
// This member is required.
ImageUri *string
// The arguments to send to the container that the monitoring job runs.
ContainerArguments []string
// The entrypoint for a container used to run a monitoring job.
ContainerEntrypoint []string
// Sets the environment variables in the container that the monitoring job runs.
Environment map[string]string
// An Amazon S3 URI to a script that is called after analysis has been performed.
// Applicable only for the built-in (first party) containers.
PostAnalyticsProcessorSourceUri *string
// An Amazon S3 URI to a script that is called per row prior to running analysis.
// It can base64 decode the payload and convert it into a flattened JSON so that
// the built-in container can use the converted data. Applicable only for the
// built-in (first party) containers.
RecordPreprocessorSourceUri *string
noSmithyDocumentSerde
}
// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type DataQualityBaselineConfig struct {
// The name of the job that performs baselining for the data quality monitoring
// job.
BaseliningJobName *string
// The constraints resource for a monitoring job.
ConstraintsResource *MonitoringConstraintsResource
// The statistics resource for a monitoring job.
StatisticsResource *MonitoringStatisticsResource
noSmithyDocumentSerde
}
// The input for the data quality monitoring job. Currently endpoints are
// supported for input.
type DataQualityJobInput struct {
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// Input object for the endpoint
EndpointInput *EndpointInput
noSmithyDocumentSerde
}
// Configuration for Dataset Definition inputs. The Dataset Definition input must
// specify exactly one of either AthenaDatasetDefinition or
// RedshiftDatasetDefinition types.
type DatasetDefinition struct {
// Configuration for Athena Dataset Definition input.
AthenaDatasetDefinition *AthenaDatasetDefinition
// Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
DataDistributionType DataDistributionType
// Whether to use File or Pipe input mode. In File (default) mode, Amazon
// SageMaker copies the data from the input source onto the local Amazon Elastic
// Block Store (Amazon EBS) volumes before starting your training algorithm. This
// is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams
// input data from the source directly to your algorithm without using the EBS
// volume.
InputMode InputMode
// The local path where you want Amazon SageMaker to download the Dataset
// Definition inputs to run a processing job. LocalPath is an absolute path to the
// input data. This is a required parameter when AppManaged is False (default).
LocalPath *string
// Configuration for Redshift Dataset Definition input.
RedshiftDatasetDefinition *RedshiftDatasetDefinition
noSmithyDocumentSerde
}
// Describes the location of the channel data.
type DataSource struct {
// The file system that is associated with a channel.
FileSystemDataSource *FileSystemDataSource
// The S3 location of the data source that is associated with a channel.
S3DataSource *S3DataSource
noSmithyDocumentSerde
}
// Configuration information for the Amazon SageMaker Debugger hook parameters,
// metric and tensor collections, and storage paths. To learn more about how to
// configure the DebugHookConfig parameter, see Use the SageMaker and Debugger
// Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
type DebugHookConfig struct {
// Path to Amazon S3 storage location for metrics and tensors.
//
// This member is required.
S3OutputPath *string
// Configuration information for Amazon SageMaker Debugger tensor collections. To
// learn more about how to configure the CollectionConfiguration parameter, see
// Use the SageMaker and Debugger Configuration API Operations to Create, Update,
// and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
CollectionConfigurations []CollectionConfiguration
// Configuration information for the Amazon SageMaker Debugger hook parameters.
HookParameters map[string]string
// Path to local storage location for metrics and tensors. Defaults to
// /opt/ml/output/tensors/ .
LocalPath *string
noSmithyDocumentSerde
}
// Configuration information for SageMaker Debugger rules for debugging. To learn
// more about how to configure the DebugRuleConfiguration parameter, see Use the
// SageMaker and Debugger Configuration API Operations to Create, Update, and Debug
// Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
type DebugRuleConfiguration struct {
// The name of the rule configuration. It must be unique relative to other rule
// configuration names.
//
// This member is required.
RuleConfigurationName *string
// The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
//
// This member is required.
RuleEvaluatorImage *string
// The instance type to deploy a custom rule for debugging a training job.
InstanceType ProcessingInstanceType
// Path to local storage location for output of rules. Defaults to
// /opt/ml/processing/output/rule/ .
LocalPath *string
// Runtime configuration for rule container.
RuleParameters map[string]string
// Path to Amazon S3 storage location for rules.
S3OutputPath *string
// The size, in GB, of the ML storage volume attached to the processing instance.
VolumeSizeInGB *int32
noSmithyDocumentSerde
}
// Information about the status of the rule evaluation.
type DebugRuleEvaluationStatus struct {
// Timestamp when the rule evaluation status was last modified.
LastModifiedTime *time.Time
// The name of the rule configuration.
RuleConfigurationName *string
// The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationJobArn *string
// Status of the rule evaluation.
RuleEvaluationStatus RuleEvaluationStatus
// Details from the rule evaluation.
StatusDetails *string
noSmithyDocumentSerde
}
// A collection of default EBS storage settings that applies to private spaces
// created within a domain or user profile.
type DefaultEbsStorageSettings struct {
// The default size of the EBS storage volume for a private space.
//
// This member is required.
DefaultEbsVolumeSizeInGb *int32
// The maximum size of the EBS storage volume for a private space.
//
// This member is required.
MaximumEbsVolumeSizeInGb *int32
noSmithyDocumentSerde
}
// A collection of settings that apply to spaces created in the Domain.
type DefaultSpaceSettings struct {
// The ARN of the execution role for the space.
ExecutionRole *string
// The JupyterServer app settings.
JupyterServerAppSettings *JupyterServerAppSettings
// The KernelGateway app settings.
KernelGatewayAppSettings *KernelGatewayAppSettings
// The security group IDs for the Amazon Virtual Private Cloud that the space uses
// for communication.
SecurityGroups []string
noSmithyDocumentSerde
}
// The default storage settings for a private space.
type DefaultSpaceStorageSettings struct {
// The default EBS storage settings for a private space.
DefaultEbsStorageSettings *DefaultEbsStorageSettings
noSmithyDocumentSerde
}
// Gets the Amazon EC2 Container Registry path of the docker image of the model
// that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html)
// . If you used the registry/repository[:tag] form to specify the image path of
// the primary container when you created the model hosted in this
// ProductionVariant , the path resolves to a path of the form
// registry/repository[@digest] . A digest is a hash value that identifies a
// specific version of an image. For information about Amazon ECR paths, see
// Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html)
// in the Amazon ECR User Guide.
type DeployedImage struct {
// The date and time when the image path for the model resolved to the
// ResolvedImage
ResolutionTime *time.Time
// The specific digest path of the image hosted in this ProductionVariant .
ResolvedImage *string
// The image path you specified when you created the model.
SpecifiedImage *string
noSmithyDocumentSerde
}
// The deployment configuration for an endpoint, which contains the desired
// deployment strategy and rollback configurations.
type DeploymentConfig struct {
// Automatic rollback configuration for handling endpoint deployment failures and
// recovery.
AutoRollbackConfiguration *AutoRollbackConfig
// Update policy for a blue/green deployment. If this update policy is specified,
// SageMaker creates a new fleet during the deployment while maintaining the old
// fleet. SageMaker flips traffic to the new fleet according to the specified
// traffic routing configuration. Only one update policy should be used in the
// deployment configuration. If no update policy is specified, SageMaker uses a
// blue/green deployment strategy with all at once traffic shifting by default.
BlueGreenUpdatePolicy *BlueGreenUpdatePolicy
// Specifies a rolling deployment strategy for updating a SageMaker endpoint.
RollingUpdatePolicy *RollingUpdatePolicy
noSmithyDocumentSerde
}
// A set of recommended deployment configurations for the model. To get more
// advanced recommendations, see CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
// to create an inference recommendation job.
type DeploymentRecommendation struct {
// Status of the deployment recommendation. The status NOT_APPLICABLE means that
// SageMaker is unable to provide a default recommendation for the model using the
// information provided. If the deployment status is IN_PROGRESS , retry your API
// call after a few seconds to get a COMPLETED deployment recommendation.
//
// This member is required.
RecommendationStatus RecommendationStatus
// A list of RealTimeInferenceRecommendation (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RealTimeInferenceRecommendation.html)
// items.
RealTimeInferenceRecommendations []RealTimeInferenceRecommendation
noSmithyDocumentSerde
}
// Contains information about a stage in an edge deployment plan.
type DeploymentStage struct {
// Configuration of the devices in the stage.
//
// This member is required.
DeviceSelectionConfig *DeviceSelectionConfig
// The name of the stage.
//
// This member is required.
StageName *string
// Configuration of the deployment details.
DeploymentConfig *EdgeDeploymentConfig
noSmithyDocumentSerde
}
// Contains information summarizing the deployment stage results.
type DeploymentStageStatusSummary struct {
// Configuration of the deployment details.
//
// This member is required.
DeploymentConfig *EdgeDeploymentConfig
// General status of the current state.
//
// This member is required.
DeploymentStatus *EdgeDeploymentStatus
// Configuration of the devices in the stage.
//
// This member is required.
DeviceSelectionConfig *DeviceSelectionConfig
// The name of the stage.
//
// This member is required.
StageName *string
noSmithyDocumentSerde
}
// Information that SageMaker Neo automatically derived about the model.
type DerivedInformation struct {
// The data input configuration that SageMaker Neo automatically derived for the
// model. When SageMaker Neo derives this information, you don't need to specify
// the data input configuration when you create a compilation job.
DerivedDataInputConfig *string
noSmithyDocumentSerde
}
// Specifies weight and capacity values for a production variant.
type DesiredWeightAndCapacity struct {
// The name of the variant to update.
//
// This member is required.
VariantName *string
// The variant's capacity.
DesiredInstanceCount *int32
// The variant's weight.
DesiredWeight *float32
// Specifies the serverless update concurrency configuration for an endpoint
// variant.
ServerlessUpdateConfig *ProductionVariantServerlessUpdateConfig
noSmithyDocumentSerde
}
// Information of a particular device.
type Device struct {
// The name of the device.
//
// This member is required.
DeviceName *string
// Description of the device.
Description *string
// Amazon Web Services Internet of Things (IoT) object name.
IotThingName *string
noSmithyDocumentSerde
}
// Contains information summarizing device details and deployment status.
type DeviceDeploymentSummary struct {
// The ARN of the device.
//
// This member is required.
DeviceArn *string
// The name of the device.
//
// This member is required.
DeviceName *string
// The ARN of the edge deployment plan.
//
// This member is required.
EdgeDeploymentPlanArn *string
// The name of the edge deployment plan.
//
// This member is required.
EdgeDeploymentPlanName *string
// The name of the stage in the edge deployment plan.
//
// This member is required.
StageName *string
// The name of the deployed stage.
DeployedStageName *string
// The time when the deployment on the device started.
DeploymentStartTime *time.Time
// The description of the device.
Description *string
// The deployment status of the device.
DeviceDeploymentStatus DeviceDeploymentStatus
// The detailed error message for the deployoment status result.
DeviceDeploymentStatusMessage *string
// The name of the fleet to which the device belongs to.
DeviceFleetName *string
noSmithyDocumentSerde
}
// Summary of the device fleet.
type DeviceFleetSummary struct {
// Amazon Resource Name (ARN) of the device fleet.
//
// This member is required.
DeviceFleetArn *string
// Name of the device fleet.
//
// This member is required.
DeviceFleetName *string
// Timestamp of when the device fleet was created.
CreationTime *time.Time
// Timestamp of when the device fleet was last updated.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Contains information about the configurations of selected devices.
type DeviceSelectionConfig struct {
// Type of device subsets to deploy to the current stage.
//
// This member is required.
DeviceSubsetType DeviceSubsetType
// A filter to select devices with names containing this name.
DeviceNameContains *string
// List of devices chosen to deploy.
DeviceNames []string
// Percentage of devices in the fleet to deploy to the current stage.
Percentage *int32
noSmithyDocumentSerde
}
// Status of devices.
type DeviceStats struct {
// The number of devices connected with a heartbeat.
//
// This member is required.
ConnectedDeviceCount *int64
// The number of registered devices.
//
// This member is required.
RegisteredDeviceCount *int64
noSmithyDocumentSerde
}
// Summary of the device.
type DeviceSummary struct {
// Amazon Resource Name (ARN) of the device.
//
// This member is required.
DeviceArn *string
// The unique identifier of the device.
//
// This member is required.
DeviceName *string
// Edge Manager agent version.
AgentVersion *string
// A description of the device.
Description *string
// The name of the fleet the device belongs to.
DeviceFleetName *string
// The Amazon Web Services Internet of Things (IoT) object thing name associated
// with the device..
IotThingName *string
// The last heartbeat received from the device.
LatestHeartbeat *time.Time
// Models on the device.
Models []EdgeModelSummary
// The timestamp of the last registration or de-reregistration.
RegistrationTime *time.Time
noSmithyDocumentSerde
}
// The model deployment settings for the SageMaker Canvas application. In order to
// enable model deployment for Canvas, the SageMaker Domain's or user profile's
// Amazon Web Services IAM execution role must have the
// AmazonSageMakerCanvasDirectDeployAccess policy attached. You can also turn on
// model deployment permissions through the SageMaker Domain's or user profile's
// settings in the SageMaker console.
type DirectDeploySettings struct {
// Describes whether model deployment permissions are enabled or disabled in the
// Canvas application.
Status FeatureStatus
noSmithyDocumentSerde
}
// A collection of settings that configure the domain's Docker interaction.
type DockerSettings struct {
// Indicates whether the domain can access Docker.
EnableDockerAccess FeatureStatus
// The list of Amazon Web Services accounts that are trusted when the domain is
// created in VPC-only mode.
VpcOnlyTrustedAccounts []string
noSmithyDocumentSerde
}
// The domain's details.
type DomainDetails struct {
// The creation time.
CreationTime *time.Time
// The domain's Amazon Resource Name (ARN).
DomainArn *string
// The domain ID.
DomainId *string
// The domain name.
DomainName *string
// The last modified time.
LastModifiedTime *time.Time
// The status.
Status DomainStatus
// The domain's URL.
Url *string
noSmithyDocumentSerde
}
// A collection of settings that apply to the SageMaker Domain . These settings are
// specified through the CreateDomain API call.
type DomainSettings struct {
// A collection of settings that configure the domain's Docker interaction.
DockerSettings *DockerSettings
// The configuration for attaching a SageMaker user profile name to the execution
// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
// .
ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig
// A collection of settings that configure the RStudioServerPro Domain-level app.
RStudioServerProDomainSettings *RStudioServerProDomainSettings
// The security groups for the Amazon Virtual Private Cloud that the Domain uses
// for communication between Domain-level apps and user apps.
SecurityGroupIds []string
noSmithyDocumentSerde
}
// A collection of Domain configuration settings to update.
type DomainSettingsForUpdate struct {
// A collection of settings that configure the domain's Docker interaction.
DockerSettings *DockerSettings
// The configuration for attaching a SageMaker user profile name to the execution
// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
// . This configuration can only be modified if there are no apps in the InService
// or Pending state.
ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig
// A collection of RStudioServerPro Domain-level app settings to update. A single
// RStudioServerPro application is created for a domain.
RStudioServerProDomainSettingsForUpdate *RStudioServerProDomainSettingsForUpdate
// The security groups for the Amazon Virtual Private Cloud that the Domain uses
// for communication between Domain-level apps and user apps.
SecurityGroupIds []string
noSmithyDocumentSerde
}
// Represents the drift check baselines that can be used when the model monitor is
// set using the model package.
type DriftCheckBaselines struct {
// Represents the drift check bias baselines that can be used when the model
// monitor is set using the model package.
Bias *DriftCheckBias
// Represents the drift check explainability baselines that can be used when the
// model monitor is set using the model package.
Explainability *DriftCheckExplainability
// Represents the drift check model data quality baselines that can be used when
// the model monitor is set using the model package.
ModelDataQuality *DriftCheckModelDataQuality
// Represents the drift check model quality baselines that can be used when the
// model monitor is set using the model package.
ModelQuality *DriftCheckModelQuality
noSmithyDocumentSerde
}
// Represents the drift check bias baselines that can be used when the model
// monitor is set using the model package.
type DriftCheckBias struct {
// The bias config file for a model.
ConfigFile *FileSource
// The post-training constraints.
PostTrainingConstraints *MetricsSource
// The pre-training constraints.
PreTrainingConstraints *MetricsSource
noSmithyDocumentSerde
}
// Represents the drift check explainability baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckExplainability struct {
// The explainability config file for the model.
ConfigFile *FileSource
// The drift check explainability constraints.
Constraints *MetricsSource
noSmithyDocumentSerde
}
// Represents the drift check data quality baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckModelDataQuality struct {
// The drift check model data quality constraints.
Constraints *MetricsSource
// The drift check model data quality statistics.
Statistics *MetricsSource
noSmithyDocumentSerde
}
// Represents the drift check model quality baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckModelQuality struct {
// The drift check model quality constraints.
Constraints *MetricsSource
// The drift check model quality statistics.
Statistics *MetricsSource
noSmithyDocumentSerde
}
// An object with the recommended values for you to specify when creating an
// autoscaling policy.
type DynamicScalingConfiguration struct {
// The recommended maximum capacity to specify for your autoscaling policy.
MaxCapacity *int32
// The recommended minimum capacity to specify for your autoscaling policy.
MinCapacity *int32
// The recommended scale in cooldown time for your autoscaling policy.
ScaleInCooldown *int32
// The recommended scale out cooldown time for your autoscaling policy.
ScaleOutCooldown *int32
// An object of the scaling policies for each metric.
ScalingPolicies []ScalingPolicy
noSmithyDocumentSerde
}
// A collection of EBS storage settings that applies to private spaces.
type EbsStorageSettings struct {
// The size of an EBS storage volume for a private space.
//
// This member is required.
EbsVolumeSizeInGb *int32
noSmithyDocumentSerde
}
// A directed edge connecting two lineage entities.
type Edge struct {
// The type of the Association(Edge) between the source and destination. For
// example ContributedTo , Produced , or DerivedFrom .
AssociationType AssociationEdgeType
// The Amazon Resource Name (ARN) of the destination lineage entity of the
// directed edge.
DestinationArn *string
// The Amazon Resource Name (ARN) of the source lineage entity of the directed
// edge.
SourceArn *string
noSmithyDocumentSerde
}
// Contains information about the configuration of a deployment.
type EdgeDeploymentConfig struct {
// Toggle that determines whether to rollback to previous configuration if the
// current deployment fails. By default this is turned on. You may turn this off if
// you want to investigate the errors yourself.
//
// This member is required.
FailureHandlingPolicy FailureHandlingPolicy
noSmithyDocumentSerde
}
// Contains information about the configuration of a model in a deployment.
type EdgeDeploymentModelConfig struct {
// The edge packaging job associated with this deployment.
//
// This member is required.
EdgePackagingJobName *string
// The name the device application uses to reference this model.
//
// This member is required.
ModelHandle *string
noSmithyDocumentSerde
}
// Contains information summarizing an edge deployment plan.
type EdgeDeploymentPlanSummary struct {
// The name of the device fleet used for the deployment.
//
// This member is required.
DeviceFleetName *string
// The number of edge devices that failed the deployment.
//
// This member is required.
EdgeDeploymentFailed *int32
// The number of edge devices yet to pick up the deployment, or in progress.
//
// This member is required.
EdgeDeploymentPending *int32
// The ARN of the edge deployment plan.
//
// This member is required.
EdgeDeploymentPlanArn *string
// The name of the edge deployment plan.
//
// This member is required.
EdgeDeploymentPlanName *string
// The number of edge devices with the successful deployment.
//
// This member is required.
EdgeDeploymentSuccess *int32
// The time when the edge deployment plan was created.
CreationTime *time.Time
// The time when the edge deployment plan was last updated.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Contains information summarizing the deployment stage results.
type EdgeDeploymentStatus struct {
// The number of edge devices that failed the deployment in current stage.
//
// This member is required.
EdgeDeploymentFailedInStage *int32
// The number of edge devices yet to pick up the deployment in current stage, or
// in progress.
//
// This member is required.
EdgeDeploymentPendingInStage *int32
// The number of edge devices with the successful deployment in the current stage.
//
// This member is required.
EdgeDeploymentSuccessInStage *int32
// The general status of the current stage.
//
// This member is required.
StageStatus StageStatus
// The time when the deployment API started.
EdgeDeploymentStageStartTime *time.Time
// A detailed message about deployment status in current stage.
EdgeDeploymentStatusMessage *string
noSmithyDocumentSerde
}
// The model on the edge device.
type EdgeModel struct {
// The name of the model.
//
// This member is required.
ModelName *string
// The model version.
//
// This member is required.
ModelVersion *string
// The timestamp of the last inference that was made.
LatestInference *time.Time
// The timestamp of the last data sample taken.
LatestSampleTime *time.Time
noSmithyDocumentSerde
}
// Status of edge devices with this model.
type EdgeModelStat struct {
// The number of devices that have this model version, a heart beat, and are
// currently running.
//
// This member is required.
ActiveDeviceCount *int64
// The number of devices that have this model version and have a heart beat.
//
// This member is required.
ConnectedDeviceCount *int64
// The name of the model.
//
// This member is required.
ModelName *string
// The model version.
//
// This member is required.
ModelVersion *string
// The number of devices that have this model version and do not have a heart beat.
//
// This member is required.
OfflineDeviceCount *int64
// The number of devices with this model version and are producing sample data.
//
// This member is required.
SamplingDeviceCount *int64
noSmithyDocumentSerde
}
// Summary of model on edge device.
type EdgeModelSummary struct {
// The name of the model.
//
// This member is required.
ModelName *string
// The version model.
//
// This member is required.
ModelVersion *string
noSmithyDocumentSerde
}
// The output configuration.
type EdgeOutputConfig struct {
// The Amazon Simple Storage (S3) bucker URI.
//
// This member is required.
S3OutputLocation *string
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data on the storage volume after
// compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the
// default KMS key for Amazon S3 for your role's account.
KmsKeyId *string
// The configuration used to create deployment artifacts. Specify configuration
// options with a JSON string. The available configuration options for each type
// are:
// - ComponentName (optional) - Name of the GreenGrass V2 component. If not
// specified, the default name generated consists of "SagemakerEdgeManager" and the
// name of your SageMaker Edge Manager packaging job.
// - ComponentDescription (optional) - Description of the component.
// - ComponentVersion (optional) - The version of the component. Amazon Web
// Services IoT Greengrass uses semantic versions for components. Semantic versions
// follow a major.minor.patch number system. For example, version 1.0.0 represents
// the first major release for a component. For more information, see the
// semantic version specification (https://semver.org/) .
// - PlatformOS (optional) - The name of the operating system for the platform.
// Supported platforms include Windows and Linux.
// - PlatformArchitecture (optional) - The processor architecture for the
// platform. Supported architectures Windows include: Windows32_x86, Windows64_x64.
// Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
PresetDeploymentConfig *string
// The deployment type SageMaker Edge Manager will create. Currently only supports
// Amazon Web Services IoT Greengrass Version 2 components.
PresetDeploymentType EdgePresetDeploymentType
noSmithyDocumentSerde
}
// Summary of edge packaging job.
type EdgePackagingJobSummary struct {
// The Amazon Resource Name (ARN) of the edge packaging job.
//
// This member is required.
EdgePackagingJobArn *string
// The name of the edge packaging job.
//
// This member is required.
EdgePackagingJobName *string
// The status of the edge packaging job.
//
// This member is required.
EdgePackagingJobStatus EdgePackagingJobStatus
// The name of the SageMaker Neo compilation job.
CompilationJobName *string
// The timestamp of when the job was created.
CreationTime *time.Time
// The timestamp of when the edge packaging job was last updated.
LastModifiedTime *time.Time
// The name of the model.
ModelName *string
// The version of the model.
ModelVersion *string
noSmithyDocumentSerde
}
// The output of a SageMaker Edge Manager deployable resource.
type EdgePresetDeploymentOutput struct {
// The deployment type created by SageMaker Edge Manager. Currently only supports
// Amazon Web Services IoT Greengrass Version 2 components.
//
// This member is required.
Type EdgePresetDeploymentType
// The Amazon Resource Name (ARN) of the generated deployable resource.
Artifact *string
// The status of the deployable resource.
Status EdgePresetDeploymentStatus
// Returns a message describing the status of the deployed resource.
StatusMessage *string
noSmithyDocumentSerde
}
// A file system, created by you in Amazon EFS, that you assign to a user profile
// or space for an Amazon SageMaker Domain. Permitted users can access this file
// system in Amazon SageMaker Studio.
type EFSFileSystem struct {
// The ID of your Amazon EFS file system.
//
// This member is required.
FileSystemId *string
noSmithyDocumentSerde
}
// The settings for assigning a custom Amazon EFS file system to a user profile or
// space for an Amazon SageMaker Domain.
type EFSFileSystemConfig struct {
// The ID of your Amazon EFS file system.
//
// This member is required.
FileSystemId *string
// The path to the file system directory that is accessible in Amazon SageMaker
// Studio. Permitted users can access only this directory and below.
FileSystemPath *string
noSmithyDocumentSerde
}
// The configurations and outcomes of an Amazon EMR step execution.
type EMRStepMetadata struct {
// The identifier of the EMR cluster.
ClusterId *string
// The path to the log file where the cluster step's failure root cause is
// recorded.
LogFilePath *string
// The identifier of the EMR cluster step.
StepId *string
// The name of the EMR cluster step.
StepName *string
noSmithyDocumentSerde
}
// A hosted endpoint for real-time inference.
type Endpoint struct {
// The time that the endpoint was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the endpoint.
//
// This member is required.
EndpointArn *string
// The endpoint configuration associated with the endpoint.
//
// This member is required.
EndpointConfigName *string
// The name of the endpoint.
//
// This member is required.
EndpointName *string
// The status of the endpoint.
//
// This member is required.
EndpointStatus EndpointStatus
// The last time the endpoint was modified.
//
// This member is required.
LastModifiedTime *time.Time
// The currently active data capture configuration used by your Endpoint.
DataCaptureConfig *DataCaptureConfigSummary
// If the endpoint failed, the reason it failed.
FailureReason *string
// A list of monitoring schedules for the endpoint. For information about model
// monitoring, see Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
// .
MonitoringSchedules []MonitoringSchedule
// A list of the production variants hosted on the endpoint. Each production
// variant is a model.
ProductionVariants []ProductionVariantSummary
// A list of the shadow variants hosted on the endpoint. Each shadow variant is a
// model in shadow mode with production traffic replicated from the production
// variant.
ShadowProductionVariants []ProductionVariantSummary
// A list of the tags associated with the endpoint. For more information, see
// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// in the Amazon Web Services General Reference Guide.
Tags []Tag
noSmithyDocumentSerde
}
// Provides summary information for an endpoint configuration.
type EndpointConfigSummary struct {
// A timestamp that shows when the endpoint configuration was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the endpoint configuration.
//
// This member is required.
EndpointConfigArn *string
// The name of the endpoint configuration.
//
// This member is required.
EndpointConfigName *string
noSmithyDocumentSerde
}
// Details about a customer endpoint that was compared in an Inference Recommender
// job.
type EndpointInfo struct {
// The name of a customer's endpoint.
EndpointName *string
noSmithyDocumentSerde
}
// Input object for the endpoint
type EndpointInput struct {
// An endpoint in customer's account which has enabled DataCaptureConfig enabled.
//
// This member is required.
EndpointName *string
// Path to the filesystem where the endpoint data is available to the container.
//
// This member is required.
LocalPath *string
// If specified, monitoring jobs substract this time from the end time. For
// information about using offsets for scheduling monitoring jobs, see Schedule
// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
// .
EndTimeOffset *string
// The attributes of the input data to exclude from the analysis.
ExcludeFeaturesAttribute *string
// The attributes of the input data that are the input features.
FeaturesAttribute *string
// The attribute of the input data that represents the ground truth label.
InferenceAttribute *string
// In a classification problem, the attribute that represents the class
// probability.
ProbabilityAttribute *string
// The threshold for the class probability to be evaluated as a positive result.
ProbabilityThresholdAttribute *float64
// Whether input data distributed in Amazon S3 is fully replicated or sharded by
// an Amazon S3 key. Defaults to FullyReplicated
S3DataDistributionType ProcessingS3DataDistributionType
// Whether the Pipe or File is used as the input mode for transferring data for
// the monitoring job. Pipe mode is recommended for large datasets. File mode is
// useful for small files that fit in memory. Defaults to File .
S3InputMode ProcessingS3InputMode
// If specified, monitoring jobs substract this time from the start time. For
// information about using offsets for scheduling monitoring jobs, see Schedule
// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
// .
StartTimeOffset *string
noSmithyDocumentSerde
}
// The endpoint configuration for the load test.
type EndpointInputConfiguration struct {
// The parameter you want to benchmark against.
EnvironmentParameterRanges *EnvironmentParameterRanges
// The inference specification name in the model package version.
InferenceSpecificationName *string
// The instance types to use for the load test.
InstanceType ProductionVariantInstanceType
// Specifies the serverless configuration for an endpoint variant.
ServerlessConfig *ProductionVariantServerlessConfig
noSmithyDocumentSerde
}
// The metadata of the endpoint.
type EndpointMetadata struct {
// The name of the endpoint.
//
// This member is required.
EndpointName *string
// The name of the endpoint configuration.
EndpointConfigName *string
// The status of the endpoint. For possible values of the status of an endpoint,
// see EndpointSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_EndpointSummary.html)
// .
EndpointStatus EndpointStatus
// If the status of the endpoint is Failed , or the status is InService but update
// operation fails, this provides the reason why it failed.
FailureReason *string
noSmithyDocumentSerde
}
// The endpoint configuration made by Inference Recommender during a
// recommendation job.
type EndpointOutputConfiguration struct {
// The name of the endpoint made during a recommendation job.
//
// This member is required.
EndpointName *string
// The name of the production variant (deployed model) made during a
// recommendation job.
//
// This member is required.
VariantName *string
// The number of instances recommended to launch initially.
InitialInstanceCount *int32
// The instance type recommended by Amazon SageMaker Inference Recommender.
InstanceType ProductionVariantInstanceType
// Specifies the serverless configuration for an endpoint variant.
ServerlessConfig *ProductionVariantServerlessConfig
noSmithyDocumentSerde
}
// The performance results from running an Inference Recommender job on an
// existing endpoint.
type EndpointPerformance struct {
// Details about a customer endpoint that was compared in an Inference Recommender
// job.
//
// This member is required.
EndpointInfo *EndpointInfo
// The metrics for an existing endpoint.
//
// This member is required.
Metrics *InferenceMetrics
noSmithyDocumentSerde
}
// Provides summary information for an endpoint.
type EndpointSummary struct {
// A timestamp that shows when the endpoint was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the endpoint.
//
// This member is required.
EndpointArn *string
// The name of the endpoint.
//
// This member is required.
EndpointName *string
// The status of the endpoint.
// - OutOfService : Endpoint is not available to take incoming requests.
// - Creating : CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html)
// is executing.
// - Updating : UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// or UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
// is executing.
// - SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or
// deleted or re-scaled until it has completed. This maintenance operation does not
// change any customer-specified values such as VPC config, KMS encryption, model,
// instance type, or instance count.
// - RollingBack : Endpoint fails to scale up or down or change its variant
// weight and is in the process of rolling back to its previous configuration. Once
// the rollback completes, endpoint returns to an InService status. This
// transitional status only applies to an endpoint that has autoscaling enabled and
// is undergoing variant weight or capacity changes as part of an
// UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
// call or when the UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
// operation is called explicitly.
// - InService : Endpoint is available to process incoming requests.
// - Deleting : DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
// is executing.
// - Failed : Endpoint could not be created, updated, or re-scaled. Use
// DescribeEndpointOutput$FailureReason for information about the failure.
// DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
// is the only operation that can be performed on a failed endpoint.
// To get a list of endpoints with a specified status, use the StatusEquals filter
// with a call to ListEndpoints (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html)
// .
//
// This member is required.
EndpointStatus EndpointStatus
// A timestamp that shows when the endpoint was last modified.
//
// This member is required.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// A list of environment parameters suggested by the Amazon SageMaker Inference
// Recommender.
type EnvironmentParameter struct {
// The environment key suggested by the Amazon SageMaker Inference Recommender.
//
// This member is required.
Key *string
// The value suggested by the Amazon SageMaker Inference Recommender.
//
// This member is required.
Value *string
// The value type suggested by the Amazon SageMaker Inference Recommender.
//
// This member is required.
ValueType *string
noSmithyDocumentSerde
}
// Specifies the range of environment parameters
type EnvironmentParameterRanges struct {
// Specified a list of parameters for each category.
CategoricalParameterRanges []CategoricalParameter
noSmithyDocumentSerde
}
// The properties of an experiment as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Experiment struct {
// Who created the experiment.
CreatedBy *UserContext
// When the experiment was created.
CreationTime *time.Time
// The description of the experiment.
Description *string
// The name of the experiment as displayed. If DisplayName isn't specified,
// ExperimentName is displayed.
DisplayName *string
// The Amazon Resource Name (ARN) of the experiment.
ExperimentArn *string
// The name of the experiment.
ExperimentName *string
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// When the experiment was last modified.
LastModifiedTime *time.Time
// The source of the experiment.
Source *ExperimentSource
// The list of tags that are associated with the experiment. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API to search on the tags.
Tags []Tag
noSmithyDocumentSerde
}
// Associates a SageMaker job as a trial component with an experiment and trial.
// Specified when you call the following APIs:
// - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
// - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
type ExperimentConfig struct {
// The name of an existing experiment to associate with the trial component.
ExperimentName *string
// The name of the experiment run to associate with the trial component.
RunName *string
// The display name for the trial component. If this key isn't specified, the
// display name is the trial component name.
TrialComponentDisplayName *string
// The name of an existing trial to associate the trial component with. If not
// specified, a new trial is created.
TrialName *string
noSmithyDocumentSerde
}
// The source of the experiment.
type ExperimentSource struct {
// The Amazon Resource Name (ARN) of the source.
//
// This member is required.
SourceArn *string
// The source type.
SourceType *string
noSmithyDocumentSerde
}
// A summary of the properties of an experiment. To get the complete set of
// properties, call the DescribeExperiment (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html)
// API and provide the ExperimentName .
type ExperimentSummary struct {
// When the experiment was created.
CreationTime *time.Time
// The name of the experiment as displayed. If DisplayName isn't specified,
// ExperimentName is displayed.
DisplayName *string
// The Amazon Resource Name (ARN) of the experiment.
ExperimentArn *string
// The name of the experiment.
ExperimentName *string
// The source of the experiment.
ExperimentSource *ExperimentSource
// When the experiment was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Contains explainability metrics for a model.
type Explainability struct {
// The explainability report for a model.
Report *MetricsSource
noSmithyDocumentSerde
}
// A parameter to activate explainers.
type ExplainerConfig struct {
// A member of ExplainerConfig that contains configuration parameters for the
// SageMaker Clarify explainer.
ClarifyExplainerConfig *ClarifyExplainerConfig
noSmithyDocumentSerde
}
// The container for the metadata for Fail step.
type FailStepMetadata struct {
// A message that you define and then is processed and rendered by the Fail step
// when the error occurs.
ErrorMessage *string
noSmithyDocumentSerde
}
// A list of features. You must include FeatureName and FeatureType . Valid feature
// FeatureType s are Integral , Fractional and String .
type FeatureDefinition struct {
// The name of a feature. The type must be a string. FeatureName cannot be any of
// the following: is_deleted , write_time , api_invocation_time .
//
// This member is required.
FeatureName *string
// The value type of a feature. Valid values are Integral, Fractional, or String.
//
// This member is required.
FeatureType FeatureType
// Configuration for your collection.
CollectionConfig CollectionConfig
// A grouping of elements where each element within the collection must have the
// same feature type ( String , Integral , or Fractional ).
// - List : An ordered collection of elements.
// - Set : An unordered collection of unique elements.
// - Vector : A specialized list that represents a fixed-size array of elements.
// The vector dimension is determined by you. Must have elements with fractional
// feature types.
CollectionType CollectionType
noSmithyDocumentSerde
}
// Amazon SageMaker Feature Store stores features in a collection called Feature
// Group. A Feature Group can be visualized as a table which has rows, with a
// unique identifier for each row where each column in the table is a feature. In
// principle, a Feature Group is composed of features and values per features.
type FeatureGroup struct {
// The time a FeatureGroup was created.
CreationTime *time.Time
// A free form description of a FeatureGroup .
Description *string
// The name of the feature that stores the EventTime of a Record in a FeatureGroup
// . A EventTime is point in time when a new event occurs that corresponds to the
// creation or update of a Record in FeatureGroup . All Records in the FeatureGroup
// must have a corresponding EventTime .
EventTimeFeatureName *string
// The reason that the FeatureGroup failed to be replicated in the OfflineStore .
// This is failure may be due to a failure to create a FeatureGroup in or delete a
// FeatureGroup from the OfflineStore .
FailureReason *string
// A list of Feature s. Each Feature must include a FeatureName and a FeatureType .
// Valid FeatureType s are Integral , Fractional and String . FeatureName s cannot
// be any of the following: is_deleted , write_time , api_invocation_time . You can
// create up to 2,500 FeatureDefinition s per FeatureGroup .
FeatureDefinitions []FeatureDefinition
// The Amazon Resource Name (ARN) of a FeatureGroup .
FeatureGroupArn *string
// The name of the FeatureGroup .
FeatureGroupName *string
// A FeatureGroup status.
FeatureGroupStatus FeatureGroupStatus
// A timestamp indicating the last time you updated the feature group.
LastModifiedTime *time.Time
// A value that indicates whether the feature group was updated successfully.
LastUpdateStatus *LastUpdateStatus
// The configuration of an OfflineStore . Provide an OfflineStoreConfig in a
// request to CreateFeatureGroup to create an OfflineStore . To encrypt an
// OfflineStore using at rest data encryption, specify Amazon Web Services Key
// Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .
OfflineStoreConfig *OfflineStoreConfig
// The status of OfflineStore .
OfflineStoreStatus *OfflineStoreStatus
// Use this to specify the Amazon Web Services Key Management Service (KMS) Key
// ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or
// off by specifying the EnableOnlineStore flag at General Assembly. The default
// value is False .
OnlineStoreConfig *OnlineStoreConfig
// The name of the Feature whose value uniquely identifies a Record defined in the
// FeatureGroup FeatureDefinitions .
RecordIdentifierFeatureName *string
// The Amazon Resource Name (ARN) of the IAM execution role used to create the
// feature group.
RoleArn *string
// Tags used to define a FeatureGroup .
Tags []Tag
noSmithyDocumentSerde
}
// The name, ARN, CreationTime , FeatureGroup values, LastUpdatedTime and
// EnableOnlineStorage status of a FeatureGroup .
type FeatureGroupSummary struct {
// A timestamp indicating the time of creation time of the FeatureGroup .
//
// This member is required.
CreationTime *time.Time
// Unique identifier for the FeatureGroup .
//
// This member is required.
FeatureGroupArn *string
// The name of FeatureGroup .
//
// This member is required.
FeatureGroupName *string
// The status of a FeatureGroup. The status can be any of the following: Creating ,
// Created , CreateFail , Deleting or DetailFail .
FeatureGroupStatus FeatureGroupStatus
// Notifies you if replicating data into the OfflineStore has failed. Returns
// either: Active or Blocked .
OfflineStoreStatus *OfflineStoreStatus
noSmithyDocumentSerde
}
// The metadata for a feature. It can either be metadata that you specify, or
// metadata that is updated automatically.
type FeatureMetadata struct {
// A timestamp indicating when the feature was created.
CreationTime *time.Time
// An optional description that you specify to better describe the feature.
Description *string
// The Amazon Resource Number (ARN) of the feature group.
FeatureGroupArn *string
// The name of the feature group containing the feature.
FeatureGroupName *string
// The name of feature.
FeatureName *string
// The data type of the feature.
FeatureType FeatureType
// A timestamp indicating when the feature was last modified.
LastModifiedTime *time.Time
// Optional key-value pairs that you specify to better describe the feature.
Parameters []FeatureParameter
noSmithyDocumentSerde
}
// A key-value pair that you specify to describe the feature.
type FeatureParameter struct {
// A key that must contain a value to describe the feature.
Key *string
// The value that belongs to a key.
Value *string
noSmithyDocumentSerde
}
// Contains details regarding the file source.
type FileSource struct {
// The Amazon S3 URI for the file source.
//
// This member is required.
S3Uri *string
// The digest of the file source.
ContentDigest *string
// The type of content stored in the file source.
ContentType *string
noSmithyDocumentSerde
}
// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
// image.
type FileSystemConfig struct {
// The default POSIX group ID (GID). If not specified, defaults to 100 .
DefaultGid *int32
// The default POSIX user ID (UID). If not specified, defaults to 1000 .
DefaultUid *int32
// The path within the image to mount the user's EFS home directory. The directory
// should be empty. If not specified, defaults to /home/sagemaker-user.
MountPath *string
noSmithyDocumentSerde
}
// Specifies a file system data source for a channel.
type FileSystemDataSource struct {
// The full path to the directory to associate with the channel.
//
// This member is required.
DirectoryPath *string
// The access mode of the mount of the directory associated with the channel. A
// directory can be mounted either in ro (read-only) or rw (read-write) mode.
//
// This member is required.
FileSystemAccessMode FileSystemAccessMode
// The file system id.
//
// This member is required.
FileSystemId *string
// The file system type.
//
// This member is required.
FileSystemType FileSystemType
noSmithyDocumentSerde
}
// A conditional statement for a search expression that includes a resource
// property, a Boolean operator, and a value. Resources that match the statement
// are returned in the results from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API. If you specify a Value , but not an Operator , SageMaker uses the equals
// operator. In search, there are several property types: Metrics To define a
// metric filter, enter a value using the form "Metrics." , where is a metric
// name. For example, the following filter searches for training jobs with an
//
// "accuracy" metric greater than "0.9" : {
// "Name": "Metrics.accuracy",
//
// "Operator": "GreaterThan",
//
// "Value": "0.9"
// } HyperParameters To define a hyperparameter filter, enter a value with the
//
// form "HyperParameters." . Decimal hyperparameter values are treated as a decimal
// in a comparison if the specified Value is also a decimal value. If the
// specified Value is an integer, the decimal hyperparameter values are treated as
// integers. For example, the following filter is satisfied by training jobs with a
//
// "learning_rate" hyperparameter that is less than "0.5" : {
// "Name": "HyperParameters.learning_rate",
//
// "Operator": "LessThan",
//
// "Value": "0.5"
// } Tags To define a tag filter, enter a value with the form Tags. .
type Filter struct {
// A resource property name. For example, TrainingJobName . For valid property
// names, see SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html)
// . You must specify a valid property for the resource.
//
// This member is required.
Name *string
// A Boolean binary operator that is used to evaluate the filter. The operator
// field contains one of the following values: Equals The value of Name equals
// Value . NotEquals The value of Name doesn't equal Value . Exists The Name
// property exists. NotExists The Name property does not exist. GreaterThan The
// value of Name is greater than Value . Not supported for text properties.
// GreaterThanOrEqualTo The value of Name is greater than or equal to Value . Not
// supported for text properties. LessThan The value of Name is less than Value .
// Not supported for text properties. LessThanOrEqualTo The value of Name is less
// than or equal to Value . Not supported for text properties. In The value of Name
// is one of the comma delimited strings in Value . Only supported for text
// properties. Contains The value of Name contains the string Value . Only
// supported for text properties. A SearchExpression can include the Contains
// operator multiple times when the value of Name is one of the following:
// - Experiment.DisplayName
// - Experiment.ExperimentName
// - Experiment.Tags
// - Trial.DisplayName
// - Trial.TrialName
// - Trial.Tags
// - TrialComponent.DisplayName
// - TrialComponent.TrialComponentName
// - TrialComponent.Tags
// - TrialComponent.InputArtifacts
// - TrialComponent.OutputArtifacts
// A SearchExpression can include only one Contains operator for all other values
// of Name . In these cases, if you include multiple Contains operators in the
// SearchExpression , the result is the following error message: " 'CONTAINS'
// operator usage limit of 1 exceeded. "
Operator Operator
// A value used with Name and Operator to determine which resources satisfy the
// filter's condition. For numerical properties, Value must be an integer or
// floating-point decimal. For timestamp properties, Value must be an ISO 8601
// date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
Value *string
noSmithyDocumentSerde
}
// The best candidate result from an AutoML training job.
type FinalAutoMLJobObjectiveMetric struct {
// The name of the metric with the best result. For a description of the possible
// objective metrics, see AutoMLJobObjective$MetricName (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html)
// .
//
// This member is required.
MetricName AutoMLMetricEnum
// The value of the metric with the best result.
//
// This member is required.
Value *float32
// The name of the standard metric. For a description of the standard metrics, see
// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
// .
StandardMetricName AutoMLMetricEnum
// The type of metric with the best result.
Type AutoMLJobObjectiveType
noSmithyDocumentSerde
}
// Shows the latest objective metric emitted by a training job that was launched
// by a hyperparameter tuning job. You define the objective metric in the
// HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
// .
type FinalHyperParameterTuningJobObjectiveMetric struct {
// The name of the objective metric. For SageMaker built-in algorithms, metrics
// are defined per algorithm. See the metrics for XGBoost (https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-tuning.html)
// as an example. You can also use a custom algorithm for training and define your
// own metrics. For more information, see Define metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// .
//
// This member is required.
MetricName *string
// The value of the objective metric.
//
// This member is required.
Value *float32
// Select if you want to minimize or maximize the objective metric during
// hyperparameter tuning.
Type HyperParameterTuningJobObjectiveType
noSmithyDocumentSerde
}
// Contains information about where human output will be stored.
type FlowDefinitionOutputConfig struct {
// The Amazon S3 path where the object containing human output will be made
// available. To learn more about the format of Amazon A2I output data, see Amazon
// A2I Output Data (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html)
// .
//
// This member is required.
S3OutputPath *string
// The Amazon Key Management Service (KMS) key ID for server-side encryption.
KmsKeyId *string
noSmithyDocumentSerde
}
// Contains summary information about the flow definition.
type FlowDefinitionSummary struct {
// The timestamp when SageMaker created the flow definition.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the flow definition.
//
// This member is required.
FlowDefinitionArn *string
// The name of the flow definition.
//
// This member is required.
FlowDefinitionName *string
// The status of the flow definition. Valid values:
//
// This member is required.
FlowDefinitionStatus FlowDefinitionStatus
// The reason why the flow definition creation failed. A failure reason is
// returned only when the flow definition status is Failed .
FailureReason *string
noSmithyDocumentSerde
}
// Specifies configuration details for a Git repository in your Amazon Web
// Services account.
type GitConfig struct {
// The URL where the Git repository is located.
//
// This member is required.
RepositoryUrl *string
// The default branch for the Git repository.
Branch *string
// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
// secret that contains the credentials used to access the git repository. The
// secret must have a staging label of AWSCURRENT and must be in the following
// format: {"username": UserName, "password": Password}
SecretArn *string
noSmithyDocumentSerde
}
// Specifies configuration details for a Git repository when the repository is
// updated.
type GitConfigForUpdate struct {
// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
// secret that contains the credentials used to access the git repository. The
// secret must have a staging label of AWSCURRENT and must be in the following
// format: {"username": UserName, "password": Password}
SecretArn *string
noSmithyDocumentSerde
}
// Stores the holiday featurization attributes applicable to each item of
// time-series datasets during the training of a forecasting model. This allows the
// model to identify patterns associated with specific holidays.
type HolidayConfigAttributes struct {
// The country code for the holiday calendar. For the list of public holiday
// calendars supported by AutoML job V2, see Country Codes (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-timeseries-forecasting-holiday-calendars.html#holiday-country-codes)
// . Use the country code corresponding to the country of your choice.
CountryCode *string
noSmithyDocumentSerde
}
// Any dependencies related to hub content, such as scripts, model artifacts,
// datasets, or notebooks.
type HubContentDependency struct {
// The hub content dependency copy path.
DependencyCopyPath *string
// The hub content dependency origin path.
DependencyOriginPath *string
noSmithyDocumentSerde
}
// Information about hub content.
type HubContentInfo struct {
// The date and time that the hub content was created.
//
// This member is required.
CreationTime *time.Time
// The version of the hub content document schema.
//
// This member is required.
DocumentSchemaVersion *string
// The Amazon Resource Name (ARN) of the hub content.
//
// This member is required.
HubContentArn *string
// The name of the hub content.
//
// This member is required.
HubContentName *string
// The status of the hub content.
//
// This member is required.
HubContentStatus HubContentStatus
// The type of hub content.
//
// This member is required.
HubContentType HubContentType
// The version of the hub content.
//
// This member is required.
HubContentVersion *string
// A description of the hub content.
HubContentDescription *string
// The display name of the hub content.
HubContentDisplayName *string
// The searchable keywords for the hub content.
HubContentSearchKeywords []string
noSmithyDocumentSerde
}
// Information about a hub.
type HubInfo struct {
// The date and time that the hub was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the hub.
//
// This member is required.
HubArn *string
// The name of the hub.
//
// This member is required.
HubName *string
// The status of the hub.
//
// This member is required.
HubStatus HubStatus
// The date and time that the hub was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// A description of the hub.
HubDescription *string
// The display name of the hub.
HubDisplayName *string
// The searchable keywords for the hub.
HubSearchKeywords []string
noSmithyDocumentSerde
}
// The Amazon S3 storage configuration of a hub.
type HubS3StorageConfig struct {
// The Amazon S3 bucket prefix for hosting hub content.
S3OutputPath *string
noSmithyDocumentSerde
}
// Defines under what conditions SageMaker creates a human loop. Used within
// CreateFlowDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html)
// . See HumanLoopActivationConditionsConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopActivationConditionsConfig.html)
// for the required format of activation conditions.
type HumanLoopActivationConditionsConfig struct {
// JSON expressing use-case specific conditions declaratively. If any condition is
// matched, atomic tasks are created against the configured work team. The set of
// conditions is different for Rekognition and Textract. For more information about
// how to structure the JSON, see JSON Schema for Human Loop Activation Conditions
// in Amazon Augmented AI (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html)
// in the Amazon SageMaker Developer Guide.
//
// This value conforms to the media type: application/json
//
// This member is required.
HumanLoopActivationConditions *string
noSmithyDocumentSerde
}
// Provides information about how and under what conditions SageMaker creates a
// human loop. If HumanLoopActivationConfig is not given, then all requests go to
// humans.
type HumanLoopActivationConfig struct {
// Container structure for defining under what conditions SageMaker creates a
// human loop.
//
// This member is required.
HumanLoopActivationConditionsConfig *HumanLoopActivationConditionsConfig
noSmithyDocumentSerde
}
// Describes the work to be performed by human workers.
type HumanLoopConfig struct {
// The Amazon Resource Name (ARN) of the human task user interface. You can use
// standard HTML and Crowd HTML Elements to create a custom worker task template.
// You use this template to create a human task UI. To learn how to create a custom
// HTML template, see Create Custom Worker Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html)
// . To learn how to create a human task UI, which is a worker task template that
// can be used in a flow definition, see Create and Delete a Worker Task Templates (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html)
// .
//
// This member is required.
HumanTaskUiArn *string
// The number of distinct workers who will perform the same task on each object.
// For example, if TaskCount is set to 3 for an image classification labeling job,
// three workers will classify each input image. Increasing TaskCount can improve
// label accuracy.
//
// This member is required.
TaskCount *int32
// A description for the human worker task.
//
// This member is required.
TaskDescription *string
// A title for the human worker task.
//
// This member is required.
TaskTitle *string
// Amazon Resource Name (ARN) of a team of workers. To learn more about the types
// of workforces and work teams you can create and use with Amazon A2I, see Create
// and Manage Workforces (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html)
// .
//
// This member is required.
WorkteamArn *string
// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
// task performed. Use one of the following prices for bounding box tasks. Prices
// are in US dollars and should be based on the complexity of the task; the longer
// it takes in your initial testing, the more you should offer.
// - 0.036
// - 0.048
// - 0.060
// - 0.072
// - 0.120
// - 0.240
// - 0.360
// - 0.480
// - 0.600
// - 0.720
// - 0.840
// - 0.960
// - 1.080
// - 1.200
// Use one of the following prices for image classification, text classification,
// and custom tasks. Prices are in US dollars.
// - 0.012
// - 0.024
// - 0.036
// - 0.048
// - 0.060
// - 0.072
// - 0.120
// - 0.240
// - 0.360
// - 0.480
// - 0.600
// - 0.720
// - 0.840
// - 0.960
// - 1.080
// - 1.200
// Use one of the following prices for semantic segmentation tasks. Prices are in
// US dollars.
// - 0.840
// - 0.960
// - 1.080
// - 1.200
// Use one of the following prices for Textract AnalyzeDocument Important Form Key
// Amazon Augmented AI review tasks. Prices are in US dollars.
// - 2.400
// - 2.280
// - 2.160
// - 2.040
// - 1.920
// - 1.800
// - 1.680
// - 1.560
// - 1.440
// - 1.320
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
// Use one of the following prices for Rekognition DetectModerationLabels Amazon
// Augmented AI review tasks. Prices are in US dollars.
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
// Use one of the following prices for Amazon Augmented AI custom human review
// tasks. Prices are in US dollars.
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
PublicWorkforceTaskPrice *PublicWorkforceTaskPrice
// The length of time that a task remains available for review by human workers.
TaskAvailabilityLifetimeInSeconds *int32
// Keywords used to describe the task so that workers can discover the task.
TaskKeywords []string
// The amount of time that a worker has to complete a task. The default value is
// 3,600 seconds (1 hour).
TaskTimeLimitInSeconds *int32
noSmithyDocumentSerde
}
// Container for configuring the source of human task requests.
type HumanLoopRequestSource struct {
// Specifies whether Amazon Rekognition or Amazon Textract are used as the
// integration source. The default field settings and JSON parsing rules are
// different based on the integration source. Valid values:
//
// This member is required.
AwsManagedHumanLoopRequestSource AwsManagedHumanLoopRequestSource
noSmithyDocumentSerde
}
// Information required for human workers to complete a labeling task.
type HumanTaskConfig struct {
// Configures how labels are consolidated across human workers.
//
// This member is required.
AnnotationConsolidationConfig *AnnotationConsolidationConfig
// The number of human workers that will label an object.
//
// This member is required.
NumberOfHumanWorkersPerDataObject *int32
// The Amazon Resource Name (ARN) of a Lambda function that is run before a data
// object is sent to a human worker. Use this function to provide input to a custom
// labeling job. For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
// for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation
// Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda)
// . Bounding box - Finds the most similar boxes from different workers based on
// the Jaccard index of the boxes.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
// Image classification - Uses a variant of the Expectation Maximization approach
// to estimate the true class of an image based on annotations from individual
// workers.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
// Multi-label image classification - Uses a variant of the Expectation
// Maximization approach to estimate the true classes of an image based on
// annotations from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
// Semantic segmentation - Treats each pixel in an image as a multi-class
// classification and treats pixel annotations from workers as "votes" for the
// correct label.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
// Text classification - Uses a variant of the Expectation Maximization approach
// to estimate the true class of text based on annotations from individual workers.
//
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
// Multi-label text classification - Uses a variant of the Expectation
// Maximization approach to estimate the true classes of text based on annotations
// from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
// Named entity recognition - Groups similar selections and calculates aggregate
// boundaries, resolving to most-assigned label.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
// Video Classification - Use this task type when you need workers to classify
// videos using predefined labels that you specify. Workers are shown videos and
// are asked to choose one label for each video.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
// Video Frame Object Detection - Use this task type to have workers identify and
// locate objects in a sequence of video frames (images extracted from a video)
// using bounding boxes. For example, you can use this task to ask workers to
// identify and localize various objects in a series of video frames, such as cars,
// bikes, and pedestrians.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
// Video Frame Object Tracking - Use this task type to have workers track the
// movement of objects in a sequence of video frames (images extracted from a
// video) using bounding boxes. For example, you can use this task to ask workers
// to track the movement of objects, such as cars, bikes, and pedestrians.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
// 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point
// cloud labeling modality tasks. See 3D Point Cloud Task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html)
// to learn more. 3D Point Cloud Object Detection - Use this task type when you
// want workers to classify objects in a 3D point cloud by drawing 3D cuboids
// around objects. For example, you can use this task type to ask workers to
// identify different types of objects in a point cloud, such as cars, bikes, and
// pedestrians.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
// 3D Point Cloud Object Tracking - Use this task type when you want workers to
// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
// frames. For example, you can use this task type to ask workers to track the
// movement of vehicles across multiple point cloud frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
// to create a point-level semantic segmentation masks by painting objects in a 3D
// point cloud using different colors where each color is assigned to one of the
// classes you specify.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
// Use the following ARNs for Label Verification and Adjustment Jobs Use label
// verification and adjustment jobs to review and adjust labels. To learn more, see
// Verify and Adjust Labels (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
// . Bounding box verification - Uses a variant of the Expectation Maximization
// approach to estimate the true class of verification judgement for bounding box
// labels based on annotations from individual workers.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
// Bounding box adjustment - Finds the most similar boxes from different workers
// based on the Jaccard index of the adjusted annotations.
// - arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
// - arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
// Semantic segmentation verification - Uses a variant of the Expectation
// Maximization approach to estimate the true class of verification judgment for
// semantic segmentation labels based on annotations from individual workers.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
// Semantic segmentation adjustment - Treats each pixel in an image as a
// multi-class classification and treats pixel adjusted annotations from workers as
// "votes" for the correct label.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
// Video Frame Object Detection Adjustment - Use this task type when you want
// workers to adjust bounding boxes that workers have added to video frames to
// classify and localize objects in a sequence of video frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
// Video Frame Object Tracking Adjustment - Use this task type when you want
// workers to adjust bounding boxes that workers have added to video frames to
// track object movement across a sequence of video frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
// 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud
// frame.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
// 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence
// of point cloud frames.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
// 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation
// masks in a 3D point cloud.
// -
// arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
// -
// arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
//
// This member is required.
PreHumanTaskLambdaArn *string
// A description of the task for your human workers.
//
// This member is required.
TaskDescription *string
// The amount of time that a worker has to complete a task. If you create a custom
// labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
// If you create a labeling job using a built-in task type (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
// the maximum for this parameter depends on the task type you use:
// - For image (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html)
// and text (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html)
// labeling jobs, the maximum is 8 hours (28,800 seconds).
// - For 3D point cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html)
// and video frame (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html)
// labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For
// most users, the maximum is also 30 days.
//
// This member is required.
TaskTimeLimitInSeconds *int32
// A title for the task for your human workers.
//
// This member is required.
TaskTitle *string
// Information about the user interface that workers use to complete the labeling
// task.
//
// This member is required.
UiConfig *UiConfig
// The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
//
// This member is required.
WorkteamArn *string
// Defines the maximum number of data objects that can be labeled by human workers
// at the same time. Also referred to as batch size. Each object may have more than
// one worker at one time. The default value is 1000 objects. To increase the
// maximum value to 5000 objects, contact Amazon Web Services Support.
MaxConcurrentTaskCount *int32
// The price that you pay for each task performed by an Amazon Mechanical Turk
// worker.
PublicWorkforceTaskPrice *PublicWorkforceTaskPrice
// The length of time that a task remains available for labeling by human workers.
// The default and maximum values for this parameter depend on the type of
// workforce you use.
// - If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours
// (43,200 seconds). The default is 6 hours (21,600 seconds).
// - If you choose a private or vendor workforce, the default value is 30 days
// (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
TaskAvailabilityLifetimeInSeconds *int32
// Keywords used to describe the task so that workers on Amazon Mechanical Turk
// can discover the task.
TaskKeywords []string
noSmithyDocumentSerde
}
// Container for human task user interface information.
type HumanTaskUiSummary struct {
// A timestamp when SageMaker created the human task user interface.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the human task user interface.
//
// This member is required.
HumanTaskUiArn *string
// The name of the human task user interface.
//
// This member is required.
HumanTaskUiName *string
noSmithyDocumentSerde
}
// The configuration for Hyperband , a multi-fidelity based hyperparameter tuning
// strategy. Hyperband uses the final and intermediate results of a training job
// to dynamically allocate resources to utilized hyperparameter configurations
// while automatically stopping under-performing configurations. This parameter
// should be provided only if Hyperband is selected as the StrategyConfig under
// the HyperParameterTuningJobConfig API.
type HyperbandStrategyConfig struct {
// The maximum number of resources (such as epochs) that can be used by a training
// job launched by a hyperparameter tuning job. Once a job reaches the MaxResource
// value, it is stopped. If a value for MaxResource is not provided, and Hyperband
// is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts
// to infer MaxResource from the following keys (if present) in
// StaticsHyperParameters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters)
// :
// - epochs
// - numepochs
// - n-epochs
// - n_epochs
// - num_epochs
// If HyperbandStrategyConfig is unable to infer a value for MaxResource , it
// generates a validation error. The maximum value is 20,000 epochs. All metrics
// that correspond to an objective metric are used to derive early stopping
// decisions (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
// . For distributive (https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html)
// training jobs, ensure that duplicate metrics are not printed in the logs across
// the individual nodes in a training job. If multiple nodes are publishing
// duplicate or incorrect metrics, training jobs may make an incorrect stopping
// decision and stop the job prematurely.
MaxResource *int32
// The minimum number of resources (such as epochs) that can be used by a training
// job launched by a hyperparameter tuning job. If the value for MinResource has
// not been reached, the training job is not stopped by Hyperband .
MinResource *int32
noSmithyDocumentSerde
}
// Specifies which training algorithm to use for training jobs that a
// hyperparameter tuning job launches and the metrics to monitor.
type HyperParameterAlgorithmSpecification struct {
// The training input mode that the algorithm supports. For more information about
// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
// directly from Amazon S3 to the container. File mode If an algorithm supports
// File mode, SageMaker downloads the training data from S3 to the provisioned ML
// storage volume, and mounts the directory to the Docker volume for the training
// container. You must provision the ML storage volume with sufficient capacity to
// accommodate the data downloaded from S3. In addition to the training data, the
// ML storage volume also stores the output model. The algorithm container uses the
// ML storage volume to also store intermediate information, if any. For
// distributed algorithms, training data is distributed uniformly. Your training
// duration is predictable if the input data objects sizes are approximately the
// same. SageMaker does not split the files any further for model training. If the
// object sizes are skewed, training won't be optimal as the data distribution is
// also skewed when one host in a training cluster is overloaded, thus becoming a
// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
// SageMaker streams data directly from S3 to the container with no code changes,
// and provides file system access to the data. Users can author their training
// script to interact with these files as if they were stored on disk. FastFile
// mode works best when the data is read sequentially. Augmented manifest files
// aren't supported. The startup time is lower when there are fewer files in the S3
// bucket provided.
//
// This member is required.
TrainingInputMode TrainingInputMode
// The name of the resource algorithm to use for the hyperparameter tuning job. If
// you specify a value for this parameter, do not specify a value for TrainingImage
// .
AlgorithmName *string
// An array of MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
// objects that specify the metrics that the algorithm emits.
MetricDefinitions []MetricDefinition
// The registry path of the Docker image that contains the training algorithm. For
// information about Docker registry paths for built-in algorithms, see Algorithms
// Provided by Amazon SageMaker: Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
// . SageMaker supports both registry/repository[:tag] and
// registry/repository[@digest] image path formats. For more information, see
// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// .
TrainingImage *string
noSmithyDocumentSerde
}
// Defines a hyperparameter to be used by an algorithm.
type HyperParameterSpecification struct {
// The name of this hyperparameter. The name must be unique.
//
// This member is required.
Name *string
// The type of this hyperparameter. The valid types are Integer , Continuous ,
// Categorical , and FreeText .
//
// This member is required.
Type ParameterType
// The default value for this hyperparameter. If a default value is specified, a
// hyperparameter cannot be required.
DefaultValue *string
// A brief description of the hyperparameter.
Description *string
// Indicates whether this hyperparameter is required.
IsRequired *bool
// Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
IsTunable *bool
// The allowed range for this hyperparameter.
Range *ParameterRange
noSmithyDocumentSerde
}
// Defines the training jobs launched by a hyperparameter tuning job.
type HyperParameterTrainingJobDefinition struct {
// The HyperParameterAlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html)
// object that specifies the resource algorithm to use for the training jobs that
// the tuning job launches.
//
// This member is required.
AlgorithmSpecification *HyperParameterAlgorithmSpecification
// Specifies the path to the Amazon S3 bucket where you store model artifacts from
// the training jobs that the tuning job launches.
//
// This member is required.
OutputDataConfig *OutputDataConfig
// The Amazon Resource Name (ARN) of the IAM role associated with the training
// jobs that the tuning job launches.
//
// This member is required.
RoleArn *string
// Specifies a limit to how long a model hyperparameter training job can run. It
// also specifies how long a managed spot training job has to complete. When the
// job reaches the time limit, SageMaker ends the training job. Use this API to cap
// model training costs.
//
// This member is required.
StoppingCondition *StoppingCondition
// Contains information about the output location for managed spot training
// checkpoint data.
CheckpointConfig *CheckpointConfig
// The job definition name.
DefinitionName *string
// To encrypt all communications between ML compute instances in distributed
// training, choose True . Encryption provides greater security for distributed
// training, but training might take longer. How long it takes depends on the
// amount of communication between compute instances, especially if you use a deep
// learning algorithm in distributed training.
EnableInterContainerTrafficEncryption *bool
// A Boolean indicating whether managed spot training is enabled ( True ) or not (
// False ).
EnableManagedSpotTraining *bool
// Isolates the training container. No inbound or outbound network calls can be
// made, except for calls between peers within a training cluster for distributed
// training. If network isolation is used for training jobs that are configured to
// use a VPC, SageMaker downloads and uploads customer data and model artifacts
// through the specified VPC, but the training container does not have network
// access.
EnableNetworkIsolation *bool
// An environment variable that you can pass into the SageMaker CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// API. You can use an existing environment variable from the training container (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment)
// or use your own. See Define metrics and variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// for more information. The maximum number of items specified for Map Entries
// refers to the maximum number of environment variables for each
// TrainingJobDefinition and also the maximum for the hyperparameter tuning job
// itself. That is, the sum of the number of environment variables for all the
// training job definitions can't exceed the maximum number specified.
Environment map[string]string
// Specifies ranges of integer, continuous, and categorical hyperparameters that a
// hyperparameter tuning job searches. The hyperparameter tuning job launches
// training jobs with hyperparameter values within these ranges to find the
// combination of values that result in the training job with the best performance
// as measured by the objective metric of the hyperparameter tuning job. The
// maximum number of items specified for Array Members refers to the maximum
// number of hyperparameters for each range and also the maximum for the
// hyperparameter tuning job itself. That is, the sum of the number of
// hyperparameters for all the ranges can't exceed the maximum number specified.
HyperParameterRanges *ParameterRanges
// The configuration for the hyperparameter tuning resources, including the
// compute instances and storage volumes, used for training jobs launched by the
// tuning job. By default, storage volumes hold model artifacts and incremental
// states. Choose File for TrainingInputMode in the AlgorithmSpecification
// parameter to additionally store training data in the storage volume (optional).
HyperParameterTuningResourceConfig *HyperParameterTuningResourceConfig
// An array of Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html)
// objects that specify the input for the training jobs that the tuning job
// launches.
InputDataConfig []Channel
// The resources, including the compute instances and storage volumes, to use for
// the training jobs that the tuning job launches. Storage volumes store model
// artifacts and incremental states. Training algorithms might also use storage
// volumes for scratch space. If you want SageMaker to use the storage volume to
// store the training data, choose File as the TrainingInputMode in the algorithm
// specification. For distributed training algorithms, specify an instance count
// greater than 1. If you want to use hyperparameter optimization with instance
// type flexibility, use HyperParameterTuningResourceConfig instead.
ResourceConfig *ResourceConfig
// The number of times to retry the job when the job fails due to an
// InternalServerError .
RetryStrategy *RetryStrategy
// Specifies the values of hyperparameters that do not change for the tuning job.
StaticHyperParameters map[string]string
// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
// tuning uses the value of this metric to evaluate the training jobs it launches,
// and returns the training job that results in either the highest or lowest value
// for this metric, depending on the value you specify for the Type parameter. If
// you want to define a custom objective metric, see Define metrics and
// environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// .
TuningObjective *HyperParameterTuningJobObjective
// The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
// object that specifies the VPC that you want the training jobs that this
// hyperparameter tuning job launches to connect to. Control access to and from
// your training container by configuring the VPC. For more information, see
// Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// The container for the summary information about a training job.
type HyperParameterTrainingJobSummary struct {
// The date and time that the training job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the training job.
//
// This member is required.
TrainingJobArn *string
// The name of the training job.
//
// This member is required.
TrainingJobName *string
// The status of the training job.
//
// This member is required.
TrainingJobStatus TrainingJobStatus
// A list of the hyperparameters for which you specified ranges to search.
//
// This member is required.
TunedHyperParameters map[string]string
// The reason that the training job failed.
FailureReason *string
// The FinalHyperParameterTuningJobObjectiveMetric (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FinalHyperParameterTuningJobObjectiveMetric.html)
// object that specifies the value of the objective metric of the tuning job that
// launched this training job.
FinalHyperParameterTuningJobObjectiveMetric *FinalHyperParameterTuningJobObjectiveMetric
// The status of the objective metric for the training job:
// - Succeeded: The final objective metric for the training job was evaluated by
// the hyperparameter tuning job and used in the hyperparameter tuning process.
//
// - Pending: The training job is in progress and evaluation of its final
// objective metric is pending.
//
// - Failed: The final objective metric for the training job was not evaluated,
// and was not used in the hyperparameter tuning process. This typically occurs
// when the training job failed or did not emit an objective metric.
ObjectiveStatus ObjectiveStatus
// Specifies the time when the training job ends on training instances. You are
// billed for the time interval between the value of TrainingStartTime and this
// time. For successful jobs and stopped jobs, this is the time after model
// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
// a job failure.
TrainingEndTime *time.Time
// The training job definition name.
TrainingJobDefinitionName *string
// The date and time that the training job started.
TrainingStartTime *time.Time
// The HyperParameter tuning job that launched the training job.
TuningJobName *string
noSmithyDocumentSerde
}
// The configuration for hyperparameter tuning resources for use in training jobs
// launched by the tuning job. These resources include compute instances and
// storage volumes. Specify one or more compute instance configurations and
// allocation strategies to select resources (optional).
type HyperParameterTuningInstanceConfig struct {
// The number of instances of the type specified by InstanceType . Choose an
// instance count larger than 1 for distributed training algorithms. See Step 2:
// Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
// for more information.
//
// This member is required.
InstanceCount *int32
// The instance type used for processing of hyperparameter optimization jobs.
// Choose from general purpose (no GPUs) instance types: ml.m5.xlarge,
// ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types:
// ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see
// instance type descriptions (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
// .
//
// This member is required.
InstanceType TrainingInstanceType
// The volume size in GB of the data to be processed for hyperparameter
// optimization (optional).
//
// This member is required.
VolumeSizeInGB *int32
noSmithyDocumentSerde
}
// A structure that contains runtime information about both current and completed
// hyperparameter tuning jobs.
type HyperParameterTuningJobCompletionDetails struct {
// The time in timestamp format that AMT detected model convergence, as defined by
// a lack of significant improvement over time based on criteria developed over a
// wide range of diverse benchmarking tests.
ConvergenceDetectedTime *time.Time
// The number of training jobs launched by a tuning job that are not improving (1%
// or less) as measured by model performance evaluated against an objective
// function.
NumberOfTrainingJobsObjectiveNotImproving *int32
noSmithyDocumentSerde
}
// Configures a hyperparameter tuning job.
type HyperParameterTuningJobConfig struct {
// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
// object that specifies the maximum number of training and parallel training jobs
// that can be used for this hyperparameter tuning job.
//
// This member is required.
ResourceLimits *ResourceLimits
// Specifies how hyperparameter tuning chooses the combinations of hyperparameter
// values to use for the training job it launches. For information about search
// strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
// .
//
// This member is required.
Strategy HyperParameterTuningJobStrategyType
// The HyperParameterTuningJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html)
// specifies the objective metric used to evaluate the performance of training jobs
// launched by this tuning job.
HyperParameterTuningJobObjective *HyperParameterTuningJobObjective
// The ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html)
// object that specifies the ranges of hyperparameters that this tuning job
// searches over to find the optimal configuration for the highest model
// performance against your chosen objective metric.
ParameterRanges *ParameterRanges
// A value used to initialize a pseudo-random number generator. Setting a random
// seed and using the same seed later for the same tuning job will allow
// hyperparameter optimization to find more a consistent hyperparameter
// configuration between the two runs.
RandomSeed *int32
// The configuration for the Hyperband optimization strategy. This parameter
// should be provided only if Hyperband is selected as the strategy for
// HyperParameterTuningJobConfig .
StrategyConfig *HyperParameterTuningJobStrategyConfig
// Specifies whether to use early stopping for training jobs launched by the
// hyperparameter tuning job. Because the Hyperband strategy has its own advanced
// internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to
// use Hyperband . This parameter can take on one of the following values (the
// default value is OFF ): OFF Training jobs launched by the hyperparameter tuning
// job do not use early stopping. AUTO SageMaker stops training jobs launched by
// the hyperparameter tuning job when they are unlikely to perform better than
// previously completed training jobs. For more information, see Stop Training
// Jobs Early (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
// .
TrainingJobEarlyStoppingType TrainingJobEarlyStoppingType
// The tuning job's completion criteria.
TuningJobCompletionCriteria *TuningJobCompletionCriteria
noSmithyDocumentSerde
}
// The total resources consumed by your hyperparameter tuning job.
type HyperParameterTuningJobConsumedResources struct {
// The wall clock runtime in seconds used by your hyperparameter tuning job.
RuntimeInSeconds *int32
noSmithyDocumentSerde
}
// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
// tuning uses the value of this metric to evaluate the training jobs it launches,
// and returns the training job that results in either the highest or lowest value
// for this metric, depending on the value you specify for the Type parameter. If
// you want to define a custom objective metric, see Define metrics and
// environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// .
type HyperParameterTuningJobObjective struct {
// The name of the metric to use for the objective metric.
//
// This member is required.
MetricName *string
// Whether to minimize or maximize the objective metric.
//
// This member is required.
Type HyperParameterTuningJobObjectiveType
noSmithyDocumentSerde
}
// An entity returned by the SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html)
// API containing the properties of a hyperparameter tuning job.
type HyperParameterTuningJobSearchEntity struct {
// The container for the summary information about a training job.
BestTrainingJob *HyperParameterTrainingJobSummary
// The total amount of resources consumed by a hyperparameter tuning job.
ConsumedResources *HyperParameterTuningJobConsumedResources
// The time that a hyperparameter tuning job was created.
CreationTime *time.Time
// The error that was created when a hyperparameter tuning job failed.
FailureReason *string
// The time that a hyperparameter tuning job ended.
HyperParameterTuningEndTime *time.Time
// The Amazon Resource Name (ARN) of a hyperparameter tuning job.
HyperParameterTuningJobArn *string
// Configures a hyperparameter tuning job.
HyperParameterTuningJobConfig *HyperParameterTuningJobConfig
// The name of a hyperparameter tuning job.
HyperParameterTuningJobName *string
// The status of a hyperparameter tuning job.
HyperParameterTuningJobStatus HyperParameterTuningJobStatus
// The time that a hyperparameter tuning job was last modified.
LastModifiedTime *time.Time
// Specifies the number of training jobs that this hyperparameter tuning job
// launched, categorized by the status of their objective metric. The objective
// metric status shows whether the final objective metric for the training job has
// been evaluated by the tuning job and used in the hyperparameter tuning process.
ObjectiveStatusCounters *ObjectiveStatusCounters
// The container for the summary information about a training job.
OverallBestTrainingJob *HyperParameterTrainingJobSummary
// The tags associated with a hyperparameter tuning job. For more information see
// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// .
Tags []Tag
// Defines the training jobs launched by a hyperparameter tuning job.
TrainingJobDefinition *HyperParameterTrainingJobDefinition
// The job definitions included in a hyperparameter tuning job.
TrainingJobDefinitions []HyperParameterTrainingJobDefinition
// The numbers of training jobs launched by a hyperparameter tuning job,
// categorized by status.
TrainingJobStatusCounters *TrainingJobStatusCounters
// Information about either a current or completed hyperparameter tuning job.
TuningJobCompletionDetails *HyperParameterTuningJobCompletionDetails
// Specifies the configuration for a hyperparameter tuning job that uses one or
// more previous hyperparameter tuning jobs as a starting point. The results of
// previous tuning jobs are used to inform which combinations of hyperparameters to
// search over in the new tuning job. All training jobs launched by the new
// hyperparameter tuning job are evaluated by using the objective metric, and the
// training job that performs the best is compared to the best training jobs from
// the parent tuning jobs. From these, the training job that performs the best as
// measured by the objective metric is returned as the overall best training job.
// All training jobs launched by parent hyperparameter tuning jobs and the new
// hyperparameter tuning jobs count against the limit of training jobs for the
// tuning job.
WarmStartConfig *HyperParameterTuningJobWarmStartConfig
noSmithyDocumentSerde
}
// The configuration for a training job launched by a hyperparameter tuning job.
// Choose Bayesian for Bayesian optimization, and Random for random search
// optimization. For more advanced use cases, use Hyperband , which evaluates
// objective metrics for training jobs after every epoch. For more information
// about strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
// .
type HyperParameterTuningJobStrategyConfig struct {
// The configuration for the object that specifies the Hyperband strategy. This
// parameter is only supported for the Hyperband selection for Strategy within the
// HyperParameterTuningJobConfig API.
HyperbandStrategyConfig *HyperbandStrategyConfig
noSmithyDocumentSerde
}
// Provides summary information about a hyperparameter tuning job.
type HyperParameterTuningJobSummary struct {
// The date and time that the tuning job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the tuning job.
//
// This member is required.
HyperParameterTuningJobArn *string
// The name of the tuning job.
//
// This member is required.
HyperParameterTuningJobName *string
// The status of the tuning job.
//
// This member is required.
HyperParameterTuningJobStatus HyperParameterTuningJobStatus
// The ObjectiveStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ObjectiveStatusCounters.html)
// object that specifies the numbers of training jobs, categorized by objective
// metric status, that this tuning job launched.
//
// This member is required.
ObjectiveStatusCounters *ObjectiveStatusCounters
// Specifies the search strategy hyperparameter tuning uses to choose which
// hyperparameters to evaluate at each iteration.
//
// This member is required.
Strategy HyperParameterTuningJobStrategyType
// The TrainingJobStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobStatusCounters.html)
// object that specifies the numbers of training jobs, categorized by status, that
// this tuning job launched.
//
// This member is required.
TrainingJobStatusCounters *TrainingJobStatusCounters
// The date and time that the tuning job ended.
HyperParameterTuningEndTime *time.Time
// The date and time that the tuning job was modified.
LastModifiedTime *time.Time
// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
// object that specifies the maximum number of training jobs and parallel training
// jobs allowed for this tuning job.
ResourceLimits *ResourceLimits
noSmithyDocumentSerde
}
// Specifies the configuration for a hyperparameter tuning job that uses one or
// more previous hyperparameter tuning jobs as a starting point. The results of
// previous tuning jobs are used to inform which combinations of hyperparameters to
// search over in the new tuning job. All training jobs launched by the new
// hyperparameter tuning job are evaluated by using the objective metric, and the
// training job that performs the best is compared to the best training jobs from
// the parent tuning jobs. From these, the training job that performs the best as
// measured by the objective metric is returned as the overall best training job.
// All training jobs launched by parent hyperparameter tuning jobs and the new
// hyperparameter tuning jobs count against the limit of training jobs for the
// tuning job.
type HyperParameterTuningJobWarmStartConfig struct {
// An array of hyperparameter tuning jobs that are used as the starting point for
// the new hyperparameter tuning job. For more information about warm starting a
// hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a
// Starting Point (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html)
// . Hyperparameter tuning jobs created before October 1, 2018 cannot be used as
// parent jobs for warm start tuning jobs.
//
// This member is required.
ParentHyperParameterTuningJobs []ParentHyperParameterTuningJob
// Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new
// hyperparameter tuning job uses the same input data and training image as the
// parent tuning jobs. You can change the hyperparameter ranges to search and the
// maximum number of training jobs that the hyperparameter tuning job launches. You
// cannot use a new version of the training algorithm, unless the changes in the
// new version do not affect the algorithm itself. For example, changes that
// improve logging or adding support for a different data format are allowed. You
// can also change hyperparameters from tunable to static, and from static to
// tunable, but the total number of static plus tunable hyperparameters must remain
// the same as it is in all parent jobs. The objective metric for the new tuning
// job must be the same as for all parent jobs. TRANSFER_LEARNING The new
// hyperparameter tuning job can include input data, hyperparameter ranges, maximum
// number of concurrent training jobs, and maximum number of training jobs that are
// different than those of its parent hyperparameter tuning jobs. The training
// image can also be a different version from the version used in the parent
// hyperparameter tuning job. You can also change hyperparameters from tunable to
// static, and from static to tunable, but the total number of static plus tunable
// hyperparameters must remain the same as it is in all parent jobs. The objective
// metric for the new tuning job must be the same as for all parent jobs.
//
// This member is required.
WarmStartType HyperParameterTuningJobWarmStartType
noSmithyDocumentSerde
}
// The configuration of resources, including compute instances and storage volumes
// for use in training jobs launched by hyperparameter tuning jobs.
// HyperParameterTuningResourceConfig is similar to ResourceConfig , but has the
// additional InstanceConfigs and AllocationStrategy fields to allow for flexible
// instance management. Specify one or more instance types, count, and the
// allocation strategy for instance selection. HyperParameterTuningResourceConfig
// supports the capabilities of ResourceConfig with the exception of
// KeepAlivePeriodInSeconds . Hyperparameter tuning jobs use warm pools by default,
// which reuse clusters between training jobs.
type HyperParameterTuningResourceConfig struct {
// The strategy that determines the order of preference for resources specified in
// InstanceConfigs used in hyperparameter optimization.
AllocationStrategy HyperParameterTuningAllocationStrategy
// A list containing the configuration(s) for one or more resources for processing
// hyperparameter jobs. These resources include compute instances and storage
// volumes to use in model training jobs launched by hyperparameter tuning jobs.
// The AllocationStrategy controls the order in which multiple configurations
// provided in InstanceConfigs are used. If you only want to use a single instance
// configuration inside the HyperParameterTuningResourceConfig API, do not provide
// a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and
// InstanceCount . If you use InstanceConfigs , do not provide values for
// InstanceType , VolumeSizeInGB or InstanceCount .
InstanceConfigs []HyperParameterTuningInstanceConfig
// The number of compute instances of type InstanceType to use. For distributed
// training (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
// , select a value greater than 1.
InstanceCount *int32
// The instance type used to run hyperparameter optimization tuning jobs. See
// descriptions of instance types (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
// for more information.
InstanceType TrainingInstanceType
// A key used by Amazon Web Services Key Management Service to encrypt data on the
// storage volume attached to the compute instances used to run the training job.
// You can use either of the following formats to specify a key. KMS Key ID:
// "1234abcd-12ab-34cd-56ef-1234567890ab" Amazon Resource Name (ARN) of a KMS key:
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// Some instances use local storage, which use a hardware module to encrypt (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
// storage volumes. If you choose one of these instance types, you cannot request a
// VolumeKmsKeyId . For a list of instance types that use local storage, see
// instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
// . For more information about Amazon Web Services Key Management Service, see
// KMS encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-kms-permissions.html)
// for more information.
VolumeKmsKeyId *string
// The volume size in GB for the storage volume to be used in processing
// hyperparameter optimization jobs (optional). These volumes store model
// artifacts, incremental states and optionally, scratch space for training
// algorithms. Do not provide a value for this parameter if a value for
// InstanceConfigs is also specified. Some instance types have a fixed total local
// storage size. If you select one of these instances for training, VolumeSizeInGB
// cannot be greater than this total size. For a list of instance types with local
// instance storage and their sizes, see instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
// . SageMaker supports only the General Purpose SSD (gp2) (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html)
// storage volume type.
VolumeSizeInGB *int32
noSmithyDocumentSerde
}
// The IAM Identity details associated with the user. These details are associated
// with model package groups, model packages and project entities only.
type IamIdentity struct {
// The Amazon Resource Name (ARN) of the IAM identity.
Arn *string
// The ID of the principal that assumes the IAM identity.
PrincipalId *string
// The person or application which assumes the IAM identity.
SourceIdentity *string
noSmithyDocumentSerde
}
// The Amazon SageMaker Canvas application setting where you configure OAuth for
// connecting to an external data source, such as Snowflake.
type IdentityProviderOAuthSetting struct {
// The name of the data source that you're connecting to. Canvas currently
// supports OAuth for Snowflake and Salesforce Data Cloud.
DataSourceName DataSourceName
// The ARN of an Amazon Web Services Secrets Manager secret that stores the
// credentials from your identity provider, such as the client ID and secret,
// authorization URL, and token URL.
SecretArn *string
// Describes whether OAuth for a data source is enabled or disabled in the Canvas
// application.
Status FeatureStatus
noSmithyDocumentSerde
}
// A SageMaker image. A SageMaker image represents a set of container images that
// are derived from a common base container image. Each of these container images
// is represented by a SageMaker ImageVersion .
type Image struct {
// When the image was created.
//
// This member is required.
CreationTime *time.Time
// The ARN of the image.
//
// This member is required.
ImageArn *string
// The name of the image.
//
// This member is required.
ImageName *string
// The status of the image.
//
// This member is required.
ImageStatus ImageStatus
// When the image was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// The description of the image.
Description *string
// The name of the image as displayed.
DisplayName *string
// When a create, update, or delete operation fails, the reason for the failure.
FailureReason *string
noSmithyDocumentSerde
}
// The collection of settings used by an AutoML job V2 for the image
// classification problem type.
type ImageClassificationJobConfig struct {
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
noSmithyDocumentSerde
}
// Specifies whether the model container is in Amazon ECR or a private Docker
// registry accessible from your Amazon Virtual Private Cloud (VPC).
type ImageConfig struct {
// Set this to one of the following values:
// - Platform - The model image is hosted in Amazon ECR.
// - Vpc - The model image is hosted in a private Docker registry in your VPC.
//
// This member is required.
RepositoryAccessMode RepositoryAccessMode
// (Optional) Specifies an authentication configuration for the private docker
// registry where your model image is hosted. Specify a value for this property
// only if you specified Vpc as the value for the RepositoryAccessMode field, and
// the private Docker registry where the model image is hosted requires
// authentication.
RepositoryAuthConfig *RepositoryAuthConfig
noSmithyDocumentSerde
}
// A version of a SageMaker Image . A version represents an existing container
// image.
type ImageVersion struct {
// When the version was created.
//
// This member is required.
CreationTime *time.Time
// The ARN of the image the version is based on.
//
// This member is required.
ImageArn *string
// The ARN of the version.
//
// This member is required.
ImageVersionArn *string
// The status of the version.
//
// This member is required.
ImageVersionStatus ImageVersionStatus
// When the version was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// The version number.
//
// This member is required.
Version *int32
// When a create or delete operation fails, the reason for the failure.
FailureReason *string
noSmithyDocumentSerde
}
// Defines the compute resources to allocate to run a model that you assign to an
// inference component. These resources include CPU cores, accelerators, and
// memory.
type InferenceComponentComputeResourceRequirements struct {
// The minimum MB of memory to allocate to run a model that you assign to an
// inference component.
//
// This member is required.
MinMemoryRequiredInMb *int32
// The maximum MB of memory to allocate to run a model that you assign to an
// inference component.
MaxMemoryRequiredInMb *int32
// The number of accelerators to allocate to run a model that you assign to an
// inference component. Accelerators include GPUs and Amazon Web Services
// Inferentia.
NumberOfAcceleratorDevicesRequired *float32
// The number of CPU cores to allocate to run a model that you assign to an
// inference component.
NumberOfCpuCoresRequired *float32
noSmithyDocumentSerde
}
// Defines a container that provides the runtime environment for a model that you
// deploy with an inference component.
type InferenceComponentContainerSpecification struct {
// The Amazon S3 path where the model artifacts, which result from model training,
// are stored. This path must point to a single gzip compressed tar archive
// (.tar.gz suffix).
ArtifactUrl *string
// The environment variables to set in the Docker container. Each key and value in
// the Environment string-to-string map can have length of up to 1024. We support
// up to 16 entries in the map.
Environment map[string]string
// The Amazon Elastic Container Registry (Amazon ECR) path where the Docker image
// for the model is stored.
Image *string
noSmithyDocumentSerde
}
// Details about the resources that are deployed with this inference component.
type InferenceComponentContainerSpecificationSummary struct {
// The Amazon S3 path where the model artifacts are stored.
ArtifactUrl *string
// Gets the Amazon EC2 Container Registry path of the docker image of the model
// that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html)
// . If you used the registry/repository[:tag] form to specify the image path of
// the primary container when you created the model hosted in this
// ProductionVariant , the path resolves to a path of the form
// registry/repository[@digest] . A digest is a hash value that identifies a
// specific version of an image. For information about Amazon ECR paths, see
// Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html)
// in the Amazon ECR User Guide.
DeployedImage *DeployedImage
// The environment variables to set in the Docker container.
Environment map[string]string
noSmithyDocumentSerde
}
// Runtime settings for a model that is deployed with an inference component.
type InferenceComponentRuntimeConfig struct {
// The number of runtime copies of the model container to deploy with the
// inference component. Each copy can serve inference requests.
//
// This member is required.
CopyCount *int32
noSmithyDocumentSerde
}
// Details about the runtime settings for the model that is deployed with the
// inference component.
type InferenceComponentRuntimeConfigSummary struct {
// The number of runtime copies of the model container that are currently deployed.
CurrentCopyCount *int32
// The number of runtime copies of the model container that you requested to
// deploy with the inference component.
DesiredCopyCount *int32
noSmithyDocumentSerde
}
// Details about the resources to deploy with this inference component, including
// the model, container, and compute resources.
type InferenceComponentSpecification struct {
// The compute resources allocated to run the model assigned to the inference
// component.
//
// This member is required.
ComputeResourceRequirements *InferenceComponentComputeResourceRequirements
// Defines a container that provides the runtime environment for a model that you
// deploy with an inference component.
Container *InferenceComponentContainerSpecification
// The name of an existing SageMaker model object in your account that you want to
// deploy with the inference component.
ModelName *string
// Settings that take effect while the model container starts up.
StartupParameters *InferenceComponentStartupParameters
noSmithyDocumentSerde
}
// Details about the resources that are deployed with this inference component.
type InferenceComponentSpecificationSummary struct {
// The compute resources allocated to run the model assigned to the inference
// component.
ComputeResourceRequirements *InferenceComponentComputeResourceRequirements
// Details about the container that provides the runtime environment for the model
// that is deployed with the inference component.
Container *InferenceComponentContainerSpecificationSummary
// The name of the SageMaker model object that is deployed with the inference
// component.
ModelName *string
// Settings that take effect while the model container starts up.
StartupParameters *InferenceComponentStartupParameters
noSmithyDocumentSerde
}
// Settings that take effect while the model container starts up.
type InferenceComponentStartupParameters struct {
// The timeout value, in seconds, for your inference container to pass health
// check by Amazon S3 Hosting. For more information about health check, see How
// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
// .
ContainerStartupHealthCheckTimeoutInSeconds *int32
// The timeout value, in seconds, to download and extract the model that you want
// to host from Amazon S3 to the individual inference instance associated with this
// inference component.
ModelDataDownloadTimeoutInSeconds *int32
noSmithyDocumentSerde
}
// A summary of the properties of an inference component.
type InferenceComponentSummary struct {
// The time when the inference component was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the endpoint that hosts the inference
// component.
//
// This member is required.
EndpointArn *string
// The name of the endpoint that hosts the inference component.
//
// This member is required.
EndpointName *string
// The Amazon Resource Name (ARN) of the inference component.
//
// This member is required.
InferenceComponentArn *string
// The name of the inference component.
//
// This member is required.
InferenceComponentName *string
// The time when the inference component was last updated.
//
// This member is required.
LastModifiedTime *time.Time
// The name of the production variant that hosts the inference component.
//
// This member is required.
VariantName *string
// The status of the inference component.
InferenceComponentStatus InferenceComponentStatus
noSmithyDocumentSerde
}
// Specifies details about how containers in a multi-container endpoint are run.
type InferenceExecutionConfig struct {
// How containers in a multi-container are run. The following values are valid.
// - SERIAL - Containers run as a serial pipeline.
// - DIRECT - Only the individual container that you specify is run.
//
// This member is required.
Mode InferenceExecutionMode
noSmithyDocumentSerde
}
// The Amazon S3 location and configuration for storing inference request and
// response data.
type InferenceExperimentDataStorageConfig struct {
// The Amazon S3 bucket where the inference request and response data is stored.
//
// This member is required.
Destination *string
// Configuration specifying how to treat different headers. If no headers are
// specified Amazon SageMaker will by default base64 encode when capturing the
// data.
ContentType *CaptureContentTypeHeader
// The Amazon Web Services Key Management Service key that Amazon SageMaker uses
// to encrypt captured data at rest using Amazon S3 server-side encryption.
KmsKey *string
noSmithyDocumentSerde
}
// The start and end times of an inference experiment. The maximum duration that
// you can set for an inference experiment is 30 days.
type InferenceExperimentSchedule struct {
// The timestamp at which the inference experiment ended or will end.
EndTime *time.Time
// The timestamp at which the inference experiment started or will start.
StartTime *time.Time
noSmithyDocumentSerde
}
// Lists a summary of properties of an inference experiment.
type InferenceExperimentSummary struct {
// The timestamp at which the inference experiment was created.
//
// This member is required.
CreationTime *time.Time
// The timestamp when you last modified the inference experiment.
//
// This member is required.
LastModifiedTime *time.Time
// The name of the inference experiment.
//
// This member is required.
Name *string
// The status of the inference experiment.
//
// This member is required.
Status InferenceExperimentStatus
// The type of the inference experiment.
//
// This member is required.
Type InferenceExperimentType
// The timestamp at which the inference experiment was completed.
CompletionTime *time.Time
// The description of the inference experiment.
Description *string
// The ARN of the IAM role that Amazon SageMaker can assume to access model
// artifacts and container images, and manage Amazon SageMaker Inference endpoints
// for model deployment.
RoleArn *string
// The duration for which the inference experiment ran or will run. The maximum
// duration that you can set for an inference experiment is 30 days.
Schedule *InferenceExperimentSchedule
// The error message for the inference experiment status result.
StatusReason *string
noSmithyDocumentSerde
}
// The metrics for an existing endpoint compared in an Inference Recommender job.
type InferenceMetrics struct {
// The expected maximum number of requests per minute for the instance.
//
// This member is required.
MaxInvocations *int32
// The expected model latency at maximum invocations per minute for the instance.
//
// This member is required.
ModelLatency *int32
noSmithyDocumentSerde
}
// A list of recommendations made by Amazon SageMaker Inference Recommender.
type InferenceRecommendation struct {
// Defines the endpoint configuration parameters.
//
// This member is required.
EndpointConfiguration *EndpointOutputConfiguration
// The metrics used to decide what recommendation to make.
//
// This member is required.
Metrics *RecommendationMetrics
// Defines the model configuration.
//
// This member is required.
ModelConfiguration *ModelConfiguration
// A timestamp that shows when the benchmark completed.
InvocationEndTime *time.Time
// A timestamp that shows when the benchmark started.
InvocationStartTime *time.Time
// The recommendation ID which uniquely identifies each recommendation.
RecommendationId *string
noSmithyDocumentSerde
}
// A structure that contains a list of recommendation jobs.
type InferenceRecommendationsJob struct {
// A timestamp that shows when the job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the recommendation job.
//
// This member is required.
JobArn *string
// The job description.
//
// This member is required.
JobDescription *string
// The name of the job.
//
// This member is required.
JobName *string
// The recommendation job type.
//
// This member is required.
JobType RecommendationJobType
// A timestamp that shows when the job was last modified.
//
// This member is required.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to
// perform tasks on your behalf.
//
// This member is required.
RoleArn *string
// The status of the job.
//
// This member is required.
Status RecommendationJobStatus
// A timestamp that shows when the job completed.
CompletionTime *time.Time
// If the job fails, provides information why the job failed.
FailureReason *string
// The name of the created model.
ModelName *string
// The Amazon Resource Name (ARN) of a versioned model package.
ModelPackageVersionArn *string
// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
// stored. This path must point to a single gzip compressed tar archive (.tar.gz
// suffix).
SamplePayloadUrl *string
noSmithyDocumentSerde
}
// A returned array object for the Steps response field in the
// ListInferenceRecommendationsJobSteps (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html)
// API command.
type InferenceRecommendationsJobStep struct {
// The name of the Inference Recommender job.
//
// This member is required.
JobName *string
// The current status of the benchmark.
//
// This member is required.
Status RecommendationJobStatus
// The type of the subtask. BENCHMARK : Evaluate the performance of your model on
// different instance types.
//
// This member is required.
StepType RecommendationStepType
// The details for a specific benchmark.
InferenceBenchmark *RecommendationJobInferenceBenchmark
noSmithyDocumentSerde
}
// Defines how to perform inference generation after a training job is run.
type InferenceSpecification struct {
// The Amazon ECR registry path of the Docker image that contains the inference
// code.
//
// This member is required.
Containers []ModelPackageContainerDefinition
// The supported MIME types for the input data.
SupportedContentTypes []string
// A list of the instance types that are used to generate inferences in real-time.
// This parameter is required for unversioned models, and optional for versioned
// models.
SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType
// The supported MIME types for the output data.
SupportedResponseMIMETypes []string
// A list of the instance types on which a transformation job can be run or on
// which an endpoint can be deployed. This parameter is required for unversioned
// models, and optional for versioned models.
SupportedTransformInstanceTypes []TransformInstanceType
noSmithyDocumentSerde
}
// Configuration information for the infrastructure health check of a training
// job. A SageMaker-provided health check tests the health of instance hardware and
// cluster network connectivity.
type InfraCheckConfig struct {
// Enables an infrastructure health check.
EnableInfraCheck *bool
noSmithyDocumentSerde
}
// Contains information about the location of input model artifacts, the name and
// shape of the expected data inputs, and the framework in which the model was
// trained.
type InputConfig struct {
// Identifies the framework in which the model was trained. For example:
// TENSORFLOW.
//
// This member is required.
Framework Framework
// The S3 path where the model artifacts, which result from model training, are
// stored. This path must point to a single gzip compressed tar archive (.tar.gz
// suffix).
//
// This member is required.
S3Uri *string
// Specifies the name and shape of the expected data inputs for your trained model
// with a JSON dictionary form. The data inputs are Framework specific.
// - TensorFlow : You must specify the name and shape (NHWC format) of the
// expected data inputs using a dictionary format for your trained model. The
// dictionary formats required for the console and CLI are different.
// - Examples for one input:
// - If using the console, {"input":[1,1024,1024,3]}
// - If using the CLI, {\"input\":[1,1024,1024,3]}
// - Examples for two inputs:
// - If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
// - If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
// - KERAS : You must specify the name and shape (NCHW format) of expected data
// inputs using a dictionary format for your trained model. Note that while Keras
// model artifacts should be uploaded in NHWC (channel-last) format,
// DataInputConfig should be specified in NCHW (channel-first) format. The
// dictionary formats required for the console and CLI are different.
// - Examples for one input:
// - If using the console, {"input_1":[1,3,224,224]}
// - If using the CLI, {\"input_1\":[1,3,224,224]}
// - Examples for two inputs:
// - If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
// - If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
// - MXNET/ONNX/DARKNET : You must specify the name and shape (NCHW format) of
// the expected data inputs in order using a dictionary format for your trained
// model. The dictionary formats required for the console and CLI are different.
// - Examples for one input:
// - If using the console, {"data":[1,3,1024,1024]}
// - If using the CLI, {\"data\":[1,3,1024,1024]}
// - Examples for two inputs:
// - If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
// - If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
// - PyTorch : You can either specify the name and shape (NCHW format) of
// expected data inputs in order using a dictionary format for your trained model
// or you can specify the shape only using a list format. The dictionary formats
// required for the console and CLI are different. The list formats for the console
// and CLI are the same.
// - Examples for one input in dictionary format:
// - If using the console, {"input0":[1,3,224,224]}
// - If using the CLI, {\"input0\":[1,3,224,224]}
// - Example for one input in list format: [[1,3,224,224]]
// - Examples for two inputs in dictionary format:
// - If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
// - If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
// - Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
// - XGBOOST : input data name and shape are not needed.
// DataInputConfig supports the following parameters for CoreML TargetDevice (ML
// Model format):
// - shape : Input shape, for example {"input_1": {"shape": [1,224,224,3]}} . In
// addition to static input shapes, CoreML converter supports Flexible input
// shapes:
// - Range Dimension. You can use the Range Dimension feature if you know the
// input shape will be within some specific interval in that dimension, for
// example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
// - Enumerated shapes. Sometimes, the models are trained to work only on a
// select set of inputs. You can enumerate all supported input shapes, for example:
// {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
// - default_shape : Default input shape. You can set a default shape during
// conversion for both Range Dimension and Enumerated Shapes. For example
// {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224,
// 3]}}
// - type : Input type. Allowed values: Image and Tensor . By default, the
// converter generates an ML Model with inputs of type Tensor (MultiArray). User
// can set input type to be Image. Image input type requires additional input
// parameters such as bias and scale .
// - bias : If the input type is an Image, you need to provide the bias vector.
// - scale : If the input type is an Image, you need to provide a scale factor.
// CoreML ClassifierConfig parameters can be specified using OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
// CompilerOptions . CoreML converter supports Tensorflow and PyTorch models.
// CoreML conversion examples:
// - Tensor type input:
// - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
// "default_shape": [1,224,224,3]}}
// - Tensor type input without input name (PyTorch):
// - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
// "default_shape": [1,3,224,224]}]
// - Image type input:
// - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
// "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale":
// 0.007843137255}}
// - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
// - Image type input without input name (PyTorch):
// - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
// "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale":
// 0.007843137255}]
// - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
// Depending on the model format, DataInputConfig requires the following
// parameters for ml_eia2 OutputConfig:TargetDevice (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice)
// .
// - For TensorFlow models saved in the SavedModel format, specify the input
// names from signature_def_key and the input model shapes for DataInputConfig .
// Specify the signature_def_key in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
// if the model does not use TensorFlow's default signature def key. For example:
// - "DataInputConfig": {"inputs": [1, 224, 224, 3]}
// - "CompilerOptions": {"signature_def_key": "serving_custom"}
// - For TensorFlow models saved as a frozen graph, specify the input tensor
// names and shapes in DataInputConfig and the output tensor names for
// output_names in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
// . For example:
// - "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
// - "CompilerOptions": {"output_names": ["output_tensor:0"]}
DataInputConfig *string
// Specifies the framework version to use. This API field is only supported for
// the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks. For information
// about framework versions supported for cloud targets and edge devices, see
// Cloud Supported Instance Types and Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html)
// and Edge Supported Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html)
// .
FrameworkVersion *string
noSmithyDocumentSerde
}
// Defines an instance group for heterogeneous cluster training. When requesting a
// training job using the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// API, you can configure multiple instance groups .
type InstanceGroup struct {
// Specifies the number of instances of the instance group.
//
// This member is required.
InstanceCount *int32
// Specifies the name of the instance group.
//
// This member is required.
InstanceGroupName *string
// Specifies the instance type of the instance group.
//
// This member is required.
InstanceType TrainingInstanceType
noSmithyDocumentSerde
}
// Information on the IMDS configuration of the notebook instance
type InstanceMetadataServiceConfiguration struct {
// Indicates the minimum IMDS version that the notebook instance supports. When
// passed as part of CreateNotebookInstance , if no value is selected, then it
// defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If
// passed as part of UpdateNotebookInstance , there is no default.
//
// This member is required.
MinimumInstanceMetadataServiceVersion *string
noSmithyDocumentSerde
}
// For a hyperparameter of the integer type, specifies the range that a
// hyperparameter tuning job searches.
type IntegerParameterRange struct {
// The maximum value of the hyperparameter to search.
//
// This member is required.
MaxValue *string
// The minimum value of the hyperparameter to search.
//
// This member is required.
MinValue *string
// The name of the hyperparameter to search.
//
// This member is required.
Name *string
// The scale that hyperparameter tuning uses to search the hyperparameter range.
// For information about choosing a hyperparameter scale, see Hyperparameter
// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
// values in the hyperparameter range by using a linear scale. Logarithmic
// Hyperparameter tuning searches the values in the hyperparameter range by using a
// logarithmic scale. Logarithmic scaling works only for ranges that have only
// values greater than 0.
ScalingType HyperParameterScalingType
noSmithyDocumentSerde
}
// Defines the possible values for an integer hyperparameter.
type IntegerParameterRangeSpecification struct {
// The maximum integer value allowed.
//
// This member is required.
MaxValue *string
// The minimum integer value allowed.
//
// This member is required.
MinValue *string
noSmithyDocumentSerde
}
// The configuration for the file system and kernels in a SageMaker image running
// as a JupyterLab app.
type JupyterLabAppImageConfig struct {
// The configuration used to run the application image container.
ContainerConfig *ContainerConfig
// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
// image.
FileSystemConfig *FileSystemConfig
noSmithyDocumentSerde
}
// The settings for the JupyterLab application.
type JupyterLabAppSettings struct {
// A list of Git repositories that SageMaker automatically displays to users for
// cloning in the JupyterLab application.
CodeRepositories []CodeRepository
// A list of custom SageMaker images that are configured to run as a JupyterLab
// app.
CustomImages []CustomImage
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
// The Amazon Resource Name (ARN) of the lifecycle configurations attached to the
// user profile or domain. To remove a lifecycle config, you must set
// LifecycleConfigArns to an empty list.
LifecycleConfigArns []string
noSmithyDocumentSerde
}
// The JupyterServer app settings.
type JupyterServerAppSettings struct {
// A list of Git repositories that SageMaker automatically displays to users for
// cloning in the JupyterServer application.
CodeRepositories []CodeRepository
// The default instance type and the Amazon Resource Name (ARN) of the default
// SageMaker image used by the JupyterServer app. If you use the
// LifecycleConfigArns parameter, then this parameter is also required.
DefaultResourceSpec *ResourceSpec
// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
// JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter
// is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns
// to an empty list.
LifecycleConfigArns []string
noSmithyDocumentSerde
}
// The Amazon SageMaker Canvas application setting where you configure document
// querying.
type KendraSettings struct {
// Describes whether the document querying feature is enabled or disabled in the
// Canvas application.
Status FeatureStatus
noSmithyDocumentSerde
}
// The KernelGateway app settings.
type KernelGatewayAppSettings struct {
// A list of custom SageMaker images that are configured to run as a KernelGateway
// app.
CustomImages []CustomImage
// The default instance type and the Amazon Resource Name (ARN) of the default
// SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI
// does not use the default instance type value set here. The default instance type
// set here is used when Apps are created using the Amazon Web Services Command
// Line Interface or Amazon Web Services CloudFormation and the instance type
// parameter value is not passed.
DefaultResourceSpec *ResourceSpec
// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
// the user profile or domain. To remove a Lifecycle Config, you must set
// LifecycleConfigArns to an empty list.
LifecycleConfigArns []string
noSmithyDocumentSerde
}
// The configuration for the file system and kernels in a SageMaker image running
// as a KernelGateway app.
type KernelGatewayImageConfig struct {
// The specification of the Jupyter kernels in the image.
//
// This member is required.
KernelSpecs []KernelSpec
// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
// image.
FileSystemConfig *FileSystemConfig
noSmithyDocumentSerde
}
// The specification of a Jupyter kernel.
type KernelSpec struct {
// The name of the Jupyter kernel in the image. This value is case sensitive.
//
// This member is required.
Name *string
// The display name of the kernel.
DisplayName *string
noSmithyDocumentSerde
}
// Provides a breakdown of the number of objects labeled.
type LabelCounters struct {
// The total number of objects that could not be labeled due to an error.
FailedNonRetryableError *int32
// The total number of objects labeled by a human worker.
HumanLabeled *int32
// The total number of objects labeled by automated data labeling.
MachineLabeled *int32
// The total number of objects labeled.
TotalLabeled *int32
// The total number of objects not yet labeled.
Unlabeled *int32
noSmithyDocumentSerde
}
// Provides counts for human-labeled tasks in the labeling job.
type LabelCountersForWorkteam struct {
// The total number of data objects labeled by a human worker.
HumanLabeled *int32
// The total number of data objects that need to be labeled by a human worker.
PendingHuman *int32
// The total number of tasks in the labeling job.
Total *int32
noSmithyDocumentSerde
}
// Provides configuration information for auto-labeling of your data objects. A
// LabelingJobAlgorithmsConfig object must be supplied in order to use
// auto-labeling.
type LabelingJobAlgorithmsConfig struct {
// Specifies the Amazon Resource Name (ARN) of the algorithm used for
// auto-labeling. You must select one of the following ARNs:
// - Image classification
// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
// - Text classification
// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
// - Object detection
// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
// - Semantic Segmentation
// arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
//
// This member is required.
LabelingJobAlgorithmSpecificationArn *string
// At the end of an auto-label job Ground Truth sends the Amazon Resource Name
// (ARN) of the final model used for auto-labeling. You can use this model as the
// starting point for subsequent similar jobs by providing the ARN of the model
// here.
InitialActiveLearningModelArn *string
// Provides configuration information for a labeling job.
LabelingJobResourceConfig *LabelingJobResourceConfig
noSmithyDocumentSerde
}
// Attributes of the data specified by the customer. Use these to describe the
// data to be labeled.
type LabelingJobDataAttributes struct {
// Declares that your content is free of personally identifiable information or
// adult content. SageMaker may restrict the Amazon Mechanical Turk workers that
// can view your task based on this information.
ContentClassifiers []ContentClassifier
noSmithyDocumentSerde
}
// Provides information about the location of input data. You must specify at
// least one of the following: S3DataSource or SnsDataSource . Use SnsDataSource
// to specify an SNS input topic for a streaming labeling job. If you do not
// specify and SNS input topic ARN, Ground Truth will create a one-time labeling
// job. Use S3DataSource to specify an input manifest file for both streaming and
// one-time labeling jobs. Adding an S3DataSource is optional if you use
// SnsDataSource to create a streaming labeling job.
type LabelingJobDataSource struct {
// The Amazon S3 location of the input data objects.
S3DataSource *LabelingJobS3DataSource
// An Amazon SNS data source used for streaming labeling jobs. To learn more, see
// Send Data to a Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data)
// .
SnsDataSource *LabelingJobSnsDataSource
noSmithyDocumentSerde
}
// Provides summary information for a work team.
type LabelingJobForWorkteamSummary struct {
// The date and time that the labeling job was created.
//
// This member is required.
CreationTime *time.Time
// A unique identifier for a labeling job. You can use this to refer to a specific
// labeling job.
//
// This member is required.
JobReferenceCode *string
// The Amazon Web Services account ID of the account used to start the labeling
// job.
//
// This member is required.
WorkRequesterAccountId *string
// Provides information about the progress of a labeling job.
LabelCounters *LabelCountersForWorkteam
// The name of the labeling job that the work team is assigned to.
LabelingJobName *string
// The configured number of workers per data object.
NumberOfHumanWorkersPerDataObject *int32
noSmithyDocumentSerde
}
// Input configuration information for a labeling job.
type LabelingJobInputConfig struct {
// The location of the input data.
//
// This member is required.
DataSource *LabelingJobDataSource
// Attributes of the data specified by the customer.
DataAttributes *LabelingJobDataAttributes
noSmithyDocumentSerde
}
// Specifies the location of the output produced by the labeling job.
type LabelingJobOutput struct {
// The Amazon S3 bucket location of the manifest file for labeled data.
//
// This member is required.
OutputDatasetS3Uri *string
// The Amazon Resource Name (ARN) for the most recent SageMaker model trained as
// part of automated data labeling.
FinalActiveLearningModelArn *string
noSmithyDocumentSerde
}
// Output configuration information for a labeling job.
type LabelingJobOutputConfig struct {
// The Amazon S3 location to write output data.
//
// This member is required.
S3OutputPath *string
// The Amazon Web Services Key Management Service ID of the key used to encrypt
// the output data, if any. If you provide your own KMS key ID, you must add the
// required permissions to your KMS key described in Encrypt Output Data and
// Storage Volume with Amazon Web Services KMS (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions)
// . If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon
// Web Services KMS key for Amazon S3 for your role's account to encrypt your
// output data. If you use a bucket policy with an s3:PutObject permission that
// only allows objects with server-side encryption, set the condition key of
// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide.
KmsKeyId *string
// An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a
// SnsTopicArn if you want to do real time chaining to another streaming job and
// receive an Amazon SNS notifications each time a data object is submitted by a
// worker. If you provide an SnsTopicArn in OutputConfig , when workers complete
// labeling tasks, Ground Truth will send labeling task output data to the SNS
// output topic you specify here. To learn more, see Receive Output Data from a
// Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data)
// .
SnsTopicArn *string
noSmithyDocumentSerde
}
// Configure encryption on the storage volume attached to the ML compute instance
// used to run automated data labeling model training and inference.
type LabelingJobResourceConfig struct {
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
// ML compute instance(s) that run the training and inference jobs used for
// automated data labeling. You can only specify a VolumeKmsKeyId when you create
// a labeling job with automated data labeling enabled using the API operation
// CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt
// the storage volume used for automated data labeling model training and inference
// when you create a labeling job using the console. To learn more, see Output
// Data and Storage Volume Encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html)
// . The VolumeKmsKeyId can be any of the following formats:
// - KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - Amazon Resource Name (ARN) of a KMS Key
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
VolumeKmsKeyId *string
// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// The Amazon S3 location of the input data objects.
type LabelingJobS3DataSource struct {
// The Amazon S3 location of the manifest file that describes the input data
// objects. The input manifest file referenced in ManifestS3Uri must contain one
// of the following keys: source-ref or source . The value of the keys are
// interpreted as follows:
// - source-ref : The source of the object is the Amazon S3 object specified in
// the value. Use this value when the object is a binary object, such as an image.
// - source : The source of the object is the value. Use this value when the
// object is a text value.
// If you are a new user of Ground Truth, it is recommended you review Use an
// Input Manifest File (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html)
// in the Amazon SageMaker Developer Guide to learn how to create an input manifest
// file.
//
// This member is required.
ManifestS3Uri *string
noSmithyDocumentSerde
}
// An Amazon SNS data source used for streaming labeling jobs.
type LabelingJobSnsDataSource struct {
// The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the
// input topic you will use to send new data objects to a streaming labeling job.
//
// This member is required.
SnsTopicArn *string
noSmithyDocumentSerde
}
// A set of conditions for stopping a labeling job. If any of the conditions are
// met, the job is automatically stopped. You can use these conditions to control
// the cost of data labeling. Labeling jobs fail after 30 days with an appropriate
// client error message.
type LabelingJobStoppingConditions struct {
// The maximum number of objects that can be labeled by human workers.
MaxHumanLabeledObjectCount *int32
// The maximum number of input data objects that should be labeled.
MaxPercentageOfInputDatasetLabeled *int32
noSmithyDocumentSerde
}
// Provides summary information about a labeling job.
type LabelingJobSummary struct {
// The date and time that the job was created (timestamp).
//
// This member is required.
CreationTime *time.Time
// Counts showing the progress of the labeling job.
//
// This member is required.
LabelCounters *LabelCounters
// The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
//
// This member is required.
LabelingJobArn *string
// The name of the labeling job.
//
// This member is required.
LabelingJobName *string
// The current status of the labeling job.
//
// This member is required.
LabelingJobStatus LabelingJobStatus
// The date and time that the job was last modified (timestamp).
//
// This member is required.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of a Lambda function. The function is run before
// each data object is sent to a worker.
//
// This member is required.
PreHumanTaskLambdaArn *string
// The Amazon Resource Name (ARN) of the work team assigned to the job.
//
// This member is required.
WorkteamArn *string
// The Amazon Resource Name (ARN) of the Lambda function used to consolidate the
// annotations from individual workers into a label for a data object. For more
// information, see Annotation Consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
// .
AnnotationConsolidationLambdaArn *string
// If the LabelingJobStatus field is Failed , this field contains a description of
// the error.
FailureReason *string
// Input configuration for the labeling job.
InputConfig *LabelingJobInputConfig
// The location of the output produced by the labeling job.
LabelingJobOutput *LabelingJobOutput
noSmithyDocumentSerde
}
// Metadata for a Lambda step.
type LambdaStepMetadata struct {
// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
// execution.
Arn *string
// A list of the output parameters of the Lambda step.
OutputParameters []OutputParameter
noSmithyDocumentSerde
}
// A value that indicates whether the update was successful.
type LastUpdateStatus struct {
// A value that indicates whether the update was made successful.
//
// This member is required.
Status LastUpdateStatusValue
// If the update wasn't successful, indicates the reason why it failed.
FailureReason *string
noSmithyDocumentSerde
}
// Lists a summary of the properties of a lineage group. A lineage group provides
// a group of shareable lineage entity resources.
type LineageGroupSummary struct {
// The creation time of the lineage group summary.
CreationTime *time.Time
// The display name of the lineage group summary.
DisplayName *string
// The last modified time of the lineage group summary.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the lineage group resource.
LineageGroupArn *string
// The name or Amazon Resource Name (ARN) of the lineage group.
LineageGroupName *string
noSmithyDocumentSerde
}
// Defines an Amazon Cognito or your own OIDC IdP user group that is part of a
// work team.
type MemberDefinition struct {
// The Amazon Cognito user group that is part of the work team.
CognitoMemberDefinition *CognitoMemberDefinition
// A list user groups that exist in your OIDC Identity Provider (IdP). One to ten
// groups can be used to create a single private work team. When you add a user
// group to the list of Groups , you can add that user group to one or more private
// work teams. If you add a user group to a private work team, all workers in that
// user group are added to the work team.
OidcMemberDefinition *OidcMemberDefinition
noSmithyDocumentSerde
}
// Metadata properties of the tracking entity, trial, or trial component.
type MetadataProperties struct {
// The commit ID.
CommitId *string
// The entity this entity was generated by.
GeneratedBy *string
// The project ID.
ProjectId *string
// The repository.
Repository *string
noSmithyDocumentSerde
}
// The name, value, and date and time of a metric that was emitted to Amazon
// CloudWatch.
type MetricData struct {
// The name of the metric.
MetricName *string
// The date and time that the algorithm emitted the metric.
Timestamp *time.Time
// The value of the metric.
Value *float32
noSmithyDocumentSerde
}
// Information about the metric for a candidate produced by an AutoML job.
type MetricDatum struct {
// The name of the metric.
MetricName AutoMLMetricEnum
// The dataset split from which the AutoML job produced the metric.
Set MetricSetSource
// The name of the standard metric. For definitions of the standard metrics, see
// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-metrics)
// .
StandardMetricName AutoMLMetricExtendedEnum
// The value of the metric.
Value *float32
noSmithyDocumentSerde
}
// Specifies a metric that the training algorithm writes to stderr or stdout . You
// can view these logs to understand how your training job performs and check for
// any errors encountered during training. SageMaker hyperparameter tuning captures
// all defined metrics. Specify one of the defined metrics to use as an objective
// metric using the TuningObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective)
// parameter in the HyperParameterTrainingJobDefinition API to evaluate job
// performance during hyperparameter tuning.
type MetricDefinition struct {
// The name of the metric.
//
// This member is required.
Name *string
// A regular expression that searches the output of a training job and gets the
// value of the metric. For more information about using regular expressions to
// define metrics, see Defining metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// .
//
// This member is required.
Regex *string
noSmithyDocumentSerde
}
// An object containing information about a metric.
//
// The following types satisfy this interface:
//
// MetricSpecificationMemberCustomized
// MetricSpecificationMemberPredefined
type MetricSpecification interface {
isMetricSpecification()
}
// Information about a customized metric.
type MetricSpecificationMemberCustomized struct {
Value CustomizedMetricSpecification
noSmithyDocumentSerde
}
func (*MetricSpecificationMemberCustomized) isMetricSpecification() {}
// Information about a predefined metric.
type MetricSpecificationMemberPredefined struct {
Value PredefinedMetricSpecification
noSmithyDocumentSerde
}
func (*MetricSpecificationMemberPredefined) isMetricSpecification() {}
// Details about the metrics source.
type MetricsSource struct {
// The metric source content type.
//
// This member is required.
ContentType *string
// The S3 URI for the metrics source.
//
// This member is required.
S3Uri *string
// The hash key used for the metrics source.
ContentDigest *string
noSmithyDocumentSerde
}
// The properties of a model as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Model struct {
// The containers in the inference pipeline.
Containers []ContainerDefinition
// A timestamp that indicates when the model was created.
CreationTime *time.Time
// A set of recommended deployment configurations for the model.
DeploymentRecommendation *DeploymentRecommendation
// Isolates the model container. No inbound or outbound network calls can be made
// to or from the model container.
EnableNetworkIsolation *bool
// The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
ExecutionRoleArn *string
// Specifies details about how containers in a multi-container endpoint are run.
InferenceExecutionConfig *InferenceExecutionConfig
// The Amazon Resource Name (ARN) of the model.
ModelArn *string
// The name of the model.
ModelName *string
// Describes the container, as part of model definition.
PrimaryContainer *ContainerDefinition
// A list of key-value pairs associated with the model. For more information, see
// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// in the Amazon Web Services General Reference Guide.
Tags []Tag
// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// The access configuration file for the ML model. You can explicitly accept the
// model end-user license agreement (EULA) within the ModelAccessConfig . For more
// information, see End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
// .
type ModelAccessConfig struct {
// Specifies agreement to the model end-user license agreement (EULA). The
// AcceptEula value must be explicitly defined as True in order to accept the EULA
// that this model requires. You are responsible for reviewing and complying with
// any applicable license terms and making sure they are acceptable for your use
// case before downloading or using a model.
//
// This member is required.
AcceptEula *bool
noSmithyDocumentSerde
}
// Provides information about the location that is configured for storing model
// artifacts. Model artifacts are the output that results from training a model,
// and typically consist of trained parameters, a model definition that describes
// how to compute inferences, and other metadata.
type ModelArtifacts struct {
// The path of the S3 object that contains the model artifacts. For example,
// s3://bucket-name/keynameprefix/model.tar.gz .
//
// This member is required.
S3ModelArtifacts *string
noSmithyDocumentSerde
}
// Docker container image configuration object for the model bias job.
type ModelBiasAppSpecification struct {
// JSON formatted S3 file that defines bias parameters. For more information on
// this JSON configuration file, see Configure bias parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-bias-parameters.html)
// .
//
// This member is required.
ConfigUri *string
// The container image to be run by the model bias job.
//
// This member is required.
ImageUri *string
// Sets the environment variables in the Docker container.
Environment map[string]string
noSmithyDocumentSerde
}
// The configuration for a baseline model bias job.
type ModelBiasBaselineConfig struct {
// The name of the baseline model bias job.
BaseliningJobName *string
// The constraints resource for a monitoring job.
ConstraintsResource *MonitoringConstraintsResource
noSmithyDocumentSerde
}
// Inputs for the model bias job.
type ModelBiasJobInput struct {
// Location of ground truth labels to use in model bias job.
//
// This member is required.
GroundTruthS3Input *MonitoringGroundTruthS3Input
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// Input object for the endpoint
EndpointInput *EndpointInput
noSmithyDocumentSerde
}
// An Amazon SageMaker Model Card.
type ModelCard struct {
// The content of the model card. Content uses the model card JSON schema (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema)
// and provided as a string.
Content *string
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// The date and time that the model card was created.
CreationTime *time.Time
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// The date and time that the model card was last modified.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the model card.
ModelCardArn *string
// The unique name of the model card.
ModelCardName *string
// The approval status of the model card within your organization. Different
// organizations might have different criteria for model card review and approval.
// - Draft : The model card is a work in progress.
// - PendingReview : The model card is pending review.
// - Approved : The model card is approved.
// - Archived : The model card is archived. No more updates should be made to the
// model card, but it can still be exported.
ModelCardStatus ModelCardStatus
// The version of the model card.
ModelCardVersion *int32
// The unique name (ID) of the model.
ModelId *string
// The model package group that contains the model package. Only relevant for
// model cards created for model packages in the Amazon SageMaker Model Registry.
ModelPackageGroupName *string
// The risk rating of the model. Different organizations might have different
// criteria for model card risk ratings. For more information, see Risk ratings (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html)
// .
RiskRating *string
// The security configuration used to protect model card data.
SecurityConfig *ModelCardSecurityConfig
// Key-value pairs used to manage metadata for the model card.
Tags []Tag
noSmithyDocumentSerde
}
// The artifacts of the model card export job.
type ModelCardExportArtifacts struct {
// The Amazon S3 URI of the exported model artifacts.
//
// This member is required.
S3ExportArtifacts *string
noSmithyDocumentSerde
}
// The summary of the Amazon SageMaker Model Card export job.
type ModelCardExportJobSummary struct {
// The date and time that the model card export job was created.
//
// This member is required.
CreatedAt *time.Time
// The date and time that the model card export job was last modified..
//
// This member is required.
LastModifiedAt *time.Time
// The Amazon Resource Name (ARN) of the model card export job.
//
// This member is required.
ModelCardExportJobArn *string
// The name of the model card export job.
//
// This member is required.
ModelCardExportJobName *string
// The name of the model card that the export job exports.
//
// This member is required.
ModelCardName *string
// The version of the model card that the export job exports.
//
// This member is required.
ModelCardVersion *int32
// The completion status of the model card export job.
//
// This member is required.
Status ModelCardExportJobStatus
noSmithyDocumentSerde
}
// Configure the export output details for an Amazon SageMaker Model Card.
type ModelCardExportOutputConfig struct {
// The Amazon S3 output path to export your model card PDF.
//
// This member is required.
S3OutputPath *string
noSmithyDocumentSerde
}
// Configure the security settings to protect model card data.
type ModelCardSecurityConfig struct {
// A Key Management Service key ID (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
// to use for encrypting a model card.
KmsKeyId *string
noSmithyDocumentSerde
}
// A summary of the model card.
type ModelCardSummary struct {
// The date and time that the model card was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model card.
//
// This member is required.
ModelCardArn *string
// The name of the model card.
//
// This member is required.
ModelCardName *string
// The approval status of the model card within your organization. Different
// organizations might have different criteria for model card review and approval.
// - Draft : The model card is a work in progress.
// - PendingReview : The model card is pending review.
// - Approved : The model card is approved.
// - Archived : The model card is archived. No more updates should be made to the
// model card, but it can still be exported.
//
// This member is required.
ModelCardStatus ModelCardStatus
// The date and time that the model card was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// A summary of a specific version of the model card.
type ModelCardVersionSummary struct {
// The date and time that the model card version was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model card.
//
// This member is required.
ModelCardArn *string
// The name of the model card.
//
// This member is required.
ModelCardName *string
// The approval status of the model card version within your organization.
// Different organizations might have different criteria for model card review and
// approval.
// - Draft : The model card is a work in progress.
// - PendingReview : The model card is pending review.
// - Approved : The model card is approved.
// - Archived : The model card is archived. No more updates should be made to the
// model card, but it can still be exported.
//
// This member is required.
ModelCardStatus ModelCardStatus
// A version of the model card.
//
// This member is required.
ModelCardVersion *int32
// The time date and time that the model card version was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Configures the timeout and maximum number of retries for processing a transform
// job invocation.
type ModelClientConfig struct {
// The maximum number of retries when invocation requests are failing. The default
// value is 3.
InvocationsMaxRetries *int32
// The timeout value in seconds for an invocation request. The default value is
// 600.
InvocationsTimeoutInSeconds *int32
noSmithyDocumentSerde
}
// Defines the model configuration. Includes the specification name and
// environment parameters.
type ModelConfiguration struct {
// The name of the compilation job used to create the recommended model artifacts.
CompilationJobName *string
// Defines the environment parameters that includes key, value types, and values.
EnvironmentParameters []EnvironmentParameter
// The inference specification name in the model package version.
InferenceSpecificationName *string
noSmithyDocumentSerde
}
// An endpoint that hosts a model displayed in the Amazon SageMaker Model
// Dashboard.
type ModelDashboardEndpoint struct {
// A timestamp that indicates when the endpoint was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the endpoint.
//
// This member is required.
EndpointArn *string
// The endpoint name.
//
// This member is required.
EndpointName *string
// The endpoint status.
//
// This member is required.
EndpointStatus EndpointStatus
// The last time the endpoint was modified.
//
// This member is required.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// An alert action taken to light up an icon on the Amazon SageMaker Model
// Dashboard when an alert goes into InAlert status.
type ModelDashboardIndicatorAction struct {
// Indicates whether the alert action is turned on.
Enabled *bool
noSmithyDocumentSerde
}
// A model displayed in the Amazon SageMaker Model Dashboard.
type ModelDashboardModel struct {
// The endpoints that host a model.
Endpoints []ModelDashboardEndpoint
// A batch transform job. For information about SageMaker batch transform, see Use
// Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html)
// .
LastBatchTransformJob *TransformJob
// A model displayed in the Model Dashboard.
Model *Model
// The model card for a model.
ModelCard *ModelDashboardModelCard
// The monitoring schedules for a model.
MonitoringSchedules []ModelDashboardMonitoringSchedule
noSmithyDocumentSerde
}
// The model card for a model displayed in the Amazon SageMaker Model Dashboard.
type ModelDashboardModelCard struct {
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// A timestamp that indicates when the model card was created.
CreationTime *time.Time
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// A timestamp that indicates when the model card was last updated.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) for a model card.
ModelCardArn *string
// The name of a model card.
ModelCardName *string
// The model card status.
ModelCardStatus ModelCardStatus
// The model card version.
ModelCardVersion *int32
// For models created in SageMaker, this is the model ARN. For models created
// outside of SageMaker, this is a user-customized string.
ModelId *string
// A model card's risk rating. Can be low, medium, or high.
RiskRating *string
// The KMS Key ID ( KMSKeyId ) for encryption of model card information.
SecurityConfig *ModelCardSecurityConfig
// The tags associated with a model card.
Tags []Tag
noSmithyDocumentSerde
}
// A monitoring schedule for a model displayed in the Amazon SageMaker Model
// Dashboard.
type ModelDashboardMonitoringSchedule struct {
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// A timestamp that indicates when the monitoring schedule was created.
CreationTime *time.Time
// The endpoint which is monitored.
EndpointName *string
// If a monitoring job failed, provides the reason.
FailureReason *string
// A timestamp that indicates when the monitoring schedule was last updated.
LastModifiedTime *time.Time
// Summary of information about the last monitoring job to run.
LastMonitoringExecutionSummary *MonitoringExecutionSummary
// A JSON array where each element is a summary for a monitoring alert.
MonitoringAlertSummaries []MonitoringAlertSummary
// The Amazon Resource Name (ARN) of a monitoring schedule.
MonitoringScheduleArn *string
// Configures the monitoring schedule and defines the monitoring job.
MonitoringScheduleConfig *MonitoringScheduleConfig
// The name of a monitoring schedule.
MonitoringScheduleName *string
// The status of the monitoring schedule.
MonitoringScheduleStatus ScheduleStatus
// The monitor type of a model monitor.
MonitoringType MonitoringType
noSmithyDocumentSerde
}
// Data quality constraints and statistics for a model.
type ModelDataQuality struct {
// Data quality constraints for a model.
Constraints *MetricsSource
// Data quality statistics for a model.
Statistics *MetricsSource
noSmithyDocumentSerde
}
// Specifies the location of ML model data to deploy. If specified, you must
// specify one and only one of the available data sources.
type ModelDataSource struct {
// Specifies the S3 location of ML model data to deploy.
S3DataSource *S3ModelDataSource
noSmithyDocumentSerde
}
// Specifies how to generate the endpoint name for an automatic one-click
// Autopilot model deployment.
type ModelDeployConfig struct {
// Set to True to automatically generate an endpoint name for a one-click
// Autopilot model deployment; set to False otherwise. The default value is False .
// If you set AutoGenerateEndpointName to True , do not specify the EndpointName ;
// otherwise a 400 error is thrown.
AutoGenerateEndpointName *bool
// Specifies the endpoint name to use for a one-click Autopilot model deployment
// if the endpoint name is not generated automatically. Specify the EndpointName
// if and only if you set AutoGenerateEndpointName to False ; otherwise a 400 error
// is thrown.
EndpointName *string
noSmithyDocumentSerde
}
// Provides information about the endpoint of the model deployment.
type ModelDeployResult struct {
// The name of the endpoint to which the model has been deployed. If model
// deployment fails, this field is omitted from the response.
EndpointName *string
noSmithyDocumentSerde
}
// Provides information to verify the integrity of stored model artifacts.
type ModelDigests struct {
// Provides a hash value that uniquely identifies the stored model artifacts.
ArtifactDigest *string
noSmithyDocumentSerde
}
// Docker container image configuration object for the model explainability job.
type ModelExplainabilityAppSpecification struct {
// JSON formatted Amazon S3 file that defines explainability parameters. For more
// information on this JSON configuration file, see Configure model explainability
// parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-model-explainability-parameters.html)
// .
//
// This member is required.
ConfigUri *string
// The container image to be run by the model explainability job.
//
// This member is required.
ImageUri *string
// Sets the environment variables in the Docker container.
Environment map[string]string
noSmithyDocumentSerde
}
// The configuration for a baseline model explainability job.
type ModelExplainabilityBaselineConfig struct {
// The name of the baseline model explainability job.
BaseliningJobName *string
// The constraints resource for a monitoring job.
ConstraintsResource *MonitoringConstraintsResource
noSmithyDocumentSerde
}
// Inputs for the model explainability job.
type ModelExplainabilityJobInput struct {
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// Input object for the endpoint
EndpointInput *EndpointInput
noSmithyDocumentSerde
}
// The configuration for the infrastructure that the model will be deployed to.
type ModelInfrastructureConfig struct {
// The inference option to which to deploy your model. Possible values are the
// following:
// - RealTime : Deploy to real-time inference.
//
// This member is required.
InfrastructureType ModelInfrastructureType
// The infrastructure configuration for deploying the model to real-time inference.
//
// This member is required.
RealTimeInferenceConfig *RealTimeInferenceConfig
noSmithyDocumentSerde
}
// Input object for the model.
type ModelInput struct {
// The input configuration object for the model.
//
// This member is required.
DataInputConfig *string
noSmithyDocumentSerde
}
// The model latency threshold.
type ModelLatencyThreshold struct {
// The model latency percentile threshold. Acceptable values are P95 and P99 . For
// custom load tests, specify the value as P95 .
Percentile *string
// The model latency percentile value in milliseconds.
ValueInMilliseconds *int32
noSmithyDocumentSerde
}
// Part of the search expression. You can specify the name and value (domain,
// task, framework, framework version, task, and model).
type ModelMetadataFilter struct {
// The name of the of the model to filter by.
//
// This member is required.
Name ModelMetadataFilterType
// The value to filter the model metadata.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// One or more filters that searches for the specified resource or resources in a
// search. All resource objects that satisfy the expression's condition are
// included in the search results
type ModelMetadataSearchExpression struct {
// A list of filter objects.
Filters []ModelMetadataFilter
noSmithyDocumentSerde
}
// A summary of the model metadata.
type ModelMetadataSummary struct {
// The machine learning domain of the model.
//
// This member is required.
Domain *string
// The machine learning framework of the model.
//
// This member is required.
Framework *string
// The framework version of the model.
//
// This member is required.
FrameworkVersion *string
// The name of the model.
//
// This member is required.
Model *string
// The machine learning task of the model.
//
// This member is required.
Task *string
noSmithyDocumentSerde
}
// Contains metrics captured from a model.
type ModelMetrics struct {
// Metrics that measure bais in a model.
Bias *Bias
// Metrics that help explain a model.
Explainability *Explainability
// Metrics that measure the quality of the input data for a model.
ModelDataQuality *ModelDataQuality
// Metrics that measure the quality of a model.
ModelQuality *ModelQuality
noSmithyDocumentSerde
}
// A versioned model that can be deployed for SageMaker inference.
type ModelPackage struct {
// An array of additional Inference Specification objects.
AdditionalInferenceSpecifications []AdditionalInferenceSpecificationDefinition
// A description provided when the model approval is set.
ApprovalDescription *string
// Whether the model package is to be certified to be listed on Amazon Web
// Services Marketplace. For information about listing model packages on Amazon Web
// Services Marketplace, see List Your Algorithm or Model Package on Amazon Web
// Services Marketplace (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-list.html)
// .
CertifyForMarketplace *bool
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, or project.
CreatedBy *UserContext
// The time that the model package was created.
CreationTime *time.Time
// The metadata properties for the model package.
CustomerMetadataProperties map[string]string
// The machine learning domain of your model package and its components. Common
// machine learning domains include computer vision and natural language
// processing.
Domain *string
// Represents the drift check baselines that can be used when the model monitor is
// set using the model package.
DriftCheckBaselines *DriftCheckBaselines
// Defines how to perform inference generation after a training job is run.
InferenceSpecification *InferenceSpecification
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, or project.
LastModifiedBy *UserContext
// The last time the model package was modified.
LastModifiedTime *time.Time
// Metadata properties of the tracking entity, trial, or trial component.
MetadataProperties *MetadataProperties
// The approval status of the model. This can be one of the following values.
// - APPROVED - The model is approved
// - REJECTED - The model is rejected.
// - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
ModelApprovalStatus ModelApprovalStatus
// Metrics for the model.
ModelMetrics *ModelMetrics
// The Amazon Resource Name (ARN) of the model package.
ModelPackageArn *string
// The description of the model package.
ModelPackageDescription *string
// The model group to which the model belongs.
ModelPackageGroupName *string
// The name of the model.
ModelPackageName *string
// The status of the model package. This can be one of the following values.
// - PENDING - The model package is pending being created.
// - IN_PROGRESS - The model package is in the process of being created.
// - COMPLETED - The model package was successfully created.
// - FAILED - The model package failed.
// - DELETING - The model package is in the process of being deleted.
ModelPackageStatus ModelPackageStatus
// Specifies the validation and image scan statuses of the model package.
ModelPackageStatusDetails *ModelPackageStatusDetails
// The version number of a versioned model.
ModelPackageVersion *int32
// The Amazon Simple Storage Service path where the sample payload are stored.
// This path must point to a single gzip compressed tar archive (.tar.gz suffix).
SamplePayloadUrl *string
// Indicates if you want to skip model validation.
SkipModelValidation SkipModelValidation
// A list of algorithms that were used to create a model package.
SourceAlgorithmSpecification *SourceAlgorithmSpecification
// A list of the tags associated with the model package. For more information, see
// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// in the Amazon Web Services General Reference Guide.
Tags []Tag
// The machine learning task your model package accomplishes. Common machine
// learning tasks include object detection and image classification.
Task *string
// Specifies batch transform jobs that SageMaker runs to validate your model
// package.
ValidationSpecification *ModelPackageValidationSpecification
noSmithyDocumentSerde
}
// Describes the Docker container for the model package.
type ModelPackageContainerDefinition struct {
// The Amazon EC2 Container Registry (Amazon ECR) path where inference code is
// stored. If you are using your own custom algorithm instead of an algorithm
// provided by SageMaker, the inference code must meet SageMaker requirements.
// SageMaker supports both registry/repository[:tag] and
// registry/repository[@digest] image path formats. For more information, see
// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// .
//
// This member is required.
Image *string
// The additional data source that is used during inference in the Docker
// container for your model package.
AdditionalS3DataSource *AdditionalS3DataSource
// The DNS host name for the Docker container.
ContainerHostname *string
// The environment variables to set in the Docker container. Each key and value in
// the Environment string to string map can have length of up to 1024. We support
// up to 16 entries in the map.
Environment map[string]string
// The machine learning framework of the model package container image.
Framework *string
// The framework version of the Model Package Container Image.
FrameworkVersion *string
// An MD5 hash of the training algorithm that identifies the Docker image used for
// training.
ImageDigest *string
// The Amazon S3 path where the model artifacts, which result from model training,
// are stored. This path must point to a single gzip compressed tar archive (
// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
// region as the model package.
ModelDataUrl *string
// A structure with Model Input details.
ModelInput *ModelInput
// The name of a pre-trained machine learning benchmarked by Amazon SageMaker
// Inference Recommender model that matches your model. You can find a list of
// benchmarked models by calling ListModelMetadata .
NearestModelName *string
// The Amazon Web Services Marketplace product ID of the model package.
ProductId *string
noSmithyDocumentSerde
}
// A group of versioned models in the model registry.
type ModelPackageGroup struct {
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// The time that the model group was created.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model group.
ModelPackageGroupArn *string
// The description for the model group.
ModelPackageGroupDescription *string
// The name of the model group.
ModelPackageGroupName *string
// The status of the model group. This can be one of the following values.
// - PENDING - The model group is pending being created.
// - IN_PROGRESS - The model group is in the process of being created.
// - COMPLETED - The model group was successfully created.
// - FAILED - The model group failed.
// - DELETING - The model group is in the process of being deleted.
// - DELETE_FAILED - SageMaker failed to delete the model group.
ModelPackageGroupStatus ModelPackageGroupStatus
// A list of the tags associated with the model group. For more information, see
// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// in the Amazon Web Services General Reference Guide.
Tags []Tag
noSmithyDocumentSerde
}
// Summary information about a model group.
type ModelPackageGroupSummary struct {
// The time that the model group was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model group.
//
// This member is required.
ModelPackageGroupArn *string
// The name of the model group.
//
// This member is required.
ModelPackageGroupName *string
// The status of the model group.
//
// This member is required.
ModelPackageGroupStatus ModelPackageGroupStatus
// A description of the model group.
ModelPackageGroupDescription *string
noSmithyDocumentSerde
}
// Specifies the validation and image scan statuses of the model package.
type ModelPackageStatusDetails struct {
// The validation status of the model package.
//
// This member is required.
ValidationStatuses []ModelPackageStatusItem
// The status of the scan of the Docker image container for the model package.
ImageScanStatuses []ModelPackageStatusItem
noSmithyDocumentSerde
}
// Represents the overall status of a model package.
type ModelPackageStatusItem struct {
// The name of the model package for which the overall status is being reported.
//
// This member is required.
Name *string
// The current status.
//
// This member is required.
Status DetailedModelPackageStatus
// if the overall status is Failed , the reason for the failure.
FailureReason *string
noSmithyDocumentSerde
}
// Provides summary information about a model package.
type ModelPackageSummary struct {
// A timestamp that shows when the model package was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model package.
//
// This member is required.
ModelPackageArn *string
// The overall status of the model package.
//
// This member is required.
ModelPackageStatus ModelPackageStatus
// The approval status of the model. This can be one of the following values.
// - APPROVED - The model is approved
// - REJECTED - The model is rejected.
// - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
ModelApprovalStatus ModelApprovalStatus
// A brief description of the model package.
ModelPackageDescription *string
// If the model package is a versioned model, the model group that the versioned
// model belongs to.
ModelPackageGroupName *string
// The name of the model package.
ModelPackageName *string
// If the model package is a versioned model, the version of the model.
ModelPackageVersion *int32
noSmithyDocumentSerde
}
// Contains data, such as the inputs and targeted instance types that are used in
// the process of validating the model package. The data provided in the validation
// profile is made available to your buyers on Amazon Web Services Marketplace.
type ModelPackageValidationProfile struct {
// The name of the profile for the model package.
//
// This member is required.
ProfileName *string
// The TransformJobDefinition object that describes the transform job used for the
// validation of the model package.
//
// This member is required.
TransformJobDefinition *TransformJobDefinition
noSmithyDocumentSerde
}
// Specifies batch transform jobs that SageMaker runs to validate your model
// package.
type ModelPackageValidationSpecification struct {
// An array of ModelPackageValidationProfile objects, each of which specifies a
// batch transform job that SageMaker runs to validate your model package.
//
// This member is required.
ValidationProfiles []ModelPackageValidationProfile
// The IAM roles to be used for the validation of the model package.
//
// This member is required.
ValidationRole *string
noSmithyDocumentSerde
}
// Model quality statistics and constraints.
type ModelQuality struct {
// Model quality constraints.
Constraints *MetricsSource
// Model quality statistics.
Statistics *MetricsSource
noSmithyDocumentSerde
}
// Container image configuration object for the monitoring job.
type ModelQualityAppSpecification struct {
// The address of the container image that the monitoring job runs.
//
// This member is required.
ImageUri *string
// An array of arguments for the container used to run the monitoring job.
ContainerArguments []string
// Specifies the entrypoint for a container that the monitoring job runs.
ContainerEntrypoint []string
// Sets the environment variables in the container that the monitoring job runs.
Environment map[string]string
// An Amazon S3 URI to a script that is called after analysis has been performed.
// Applicable only for the built-in (first party) containers.
PostAnalyticsProcessorSourceUri *string
// The machine learning problem type of the model that the monitoring job monitors.
ProblemType MonitoringProblemType
// An Amazon S3 URI to a script that is called per row prior to running analysis.
// It can base64 decode the payload and convert it into a flattened JSON so that
// the built-in container can use the converted data. Applicable only for the
// built-in (first party) containers.
RecordPreprocessorSourceUri *string
noSmithyDocumentSerde
}
// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type ModelQualityBaselineConfig struct {
// The name of the job that performs baselining for the monitoring job.
BaseliningJobName *string
// The constraints resource for a monitoring job.
ConstraintsResource *MonitoringConstraintsResource
noSmithyDocumentSerde
}
// The input for the model quality monitoring job. Currently endpoints are
// supported for input for model quality monitoring jobs.
type ModelQualityJobInput struct {
// The ground truth label provided for the model.
//
// This member is required.
GroundTruthS3Input *MonitoringGroundTruthS3Input
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// Input object for the endpoint
EndpointInput *EndpointInput
noSmithyDocumentSerde
}
// The model registry settings for the SageMaker Canvas application.
type ModelRegisterSettings struct {
// The Amazon Resource Name (ARN) of the SageMaker model registry account.
// Required only to register model versions created by a different SageMaker Canvas
// Amazon Web Services account than the Amazon Web Services account in which
// SageMaker model registry is set up.
CrossAccountModelRegisterRoleArn *string
// Describes whether the integration to the model registry is enabled or disabled
// in the Canvas application.
Status FeatureStatus
noSmithyDocumentSerde
}
// Metadata for Model steps.
type ModelStepMetadata struct {
// The Amazon Resource Name (ARN) of the created model.
Arn *string
noSmithyDocumentSerde
}
// Provides summary information about a model.
type ModelSummary struct {
// A timestamp that indicates when the model was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the model.
//
// This member is required.
ModelArn *string
// The name of the model that you want a summary for.
//
// This member is required.
ModelName *string
noSmithyDocumentSerde
}
// Contains information about the deployment options of a model.
type ModelVariantConfig struct {
// The configuration for the infrastructure that the model will be deployed to.
//
// This member is required.
InfrastructureConfig *ModelInfrastructureConfig
// The name of the Amazon SageMaker Model entity.
//
// This member is required.
ModelName *string
// The name of the variant.
//
// This member is required.
VariantName *string
noSmithyDocumentSerde
}
// Summary of the deployment configuration of a model.
type ModelVariantConfigSummary struct {
// The configuration of the infrastructure that the model has been deployed to.
//
// This member is required.
InfrastructureConfig *ModelInfrastructureConfig
// The name of the Amazon SageMaker Model entity.
//
// This member is required.
ModelName *string
// The status of deployment for the model variant on the hosted inference
// endpoint.
// - Creating - Amazon SageMaker is preparing the model variant on the hosted
// inference endpoint.
// - InService - The model variant is running on the hosted inference endpoint.
// - Updating - Amazon SageMaker is updating the model variant on the hosted
// inference endpoint.
// - Deleting - Amazon SageMaker is deleting the model variant on the hosted
// inference endpoint.
// - Deleted - The model variant has been deleted on the hosted inference
// endpoint. This can only happen after stopping the experiment.
//
// This member is required.
Status ModelVariantStatus
// The name of the variant.
//
// This member is required.
VariantName *string
noSmithyDocumentSerde
}
// A list of alert actions taken in response to an alert going into InAlert status.
type MonitoringAlertActions struct {
// An alert action taken to light up an icon on the Model Dashboard when an alert
// goes into InAlert status.
ModelDashboardIndicator *ModelDashboardIndicatorAction
noSmithyDocumentSerde
}
// Provides summary information of an alert's history.
type MonitoringAlertHistorySummary struct {
// The current alert status of an alert.
//
// This member is required.
AlertStatus MonitoringAlertStatus
// A timestamp that indicates when the first alert transition occurred in an alert
// history. An alert transition can be from status InAlert to OK , or from OK to
// InAlert .
//
// This member is required.
CreationTime *time.Time
// The name of a monitoring alert.
//
// This member is required.
MonitoringAlertName *string
// The name of a monitoring schedule.
//
// This member is required.
MonitoringScheduleName *string
noSmithyDocumentSerde
}
// Provides summary information about a monitor alert.
type MonitoringAlertSummary struct {
// A list of alert actions taken in response to an alert going into InAlert status.
//
// This member is required.
Actions *MonitoringAlertActions
// The current status of an alert.
//
// This member is required.
AlertStatus MonitoringAlertStatus
// A timestamp that indicates when a monitor alert was created.
//
// This member is required.
CreationTime *time.Time
// Within EvaluationPeriod , how many execution failures will raise an alert.
//
// This member is required.
DatapointsToAlert *int32
// The number of most recent monitoring executions to consider when evaluating
// alert status.
//
// This member is required.
EvaluationPeriod *int32
// A timestamp that indicates when a monitor alert was last updated.
//
// This member is required.
LastModifiedTime *time.Time
// The name of a monitoring alert.
//
// This member is required.
MonitoringAlertName *string
noSmithyDocumentSerde
}
// Container image configuration object for the monitoring job.
type MonitoringAppSpecification struct {
// The container image to be run by the monitoring job.
//
// This member is required.
ImageUri *string
// An array of arguments for the container used to run the monitoring job.
ContainerArguments []string
// Specifies the entrypoint for a container used to run the monitoring job.
ContainerEntrypoint []string
// An Amazon S3 URI to a script that is called after analysis has been performed.
// Applicable only for the built-in (first party) containers.
PostAnalyticsProcessorSourceUri *string
// An Amazon S3 URI to a script that is called per row prior to running analysis.
// It can base64 decode the payload and convert it into a flattened JSON so that
// the built-in container can use the converted data. Applicable only for the
// built-in (first party) containers.
RecordPreprocessorSourceUri *string
noSmithyDocumentSerde
}
// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type MonitoringBaselineConfig struct {
// The name of the job that performs baselining for the monitoring job.
BaseliningJobName *string
// The baseline constraint file in Amazon S3 that the current monitoring job
// should validated against.
ConstraintsResource *MonitoringConstraintsResource
// The baseline statistics file in Amazon S3 that the current monitoring job
// should be validated against.
StatisticsResource *MonitoringStatisticsResource
noSmithyDocumentSerde
}
// Configuration for the cluster used to run model monitoring jobs.
type MonitoringClusterConfig struct {
// The number of ML compute instances to use in the model monitoring job. For
// distributed processing jobs, specify a value greater than 1. The default value
// is 1.
//
// This member is required.
InstanceCount *int32
// The ML compute instance type for the processing job.
//
// This member is required.
InstanceType ProcessingInstanceType
// The size of the ML storage volume, in gigabytes, that you want to provision.
// You must specify sufficient ML storage for your scenario.
//
// This member is required.
VolumeSizeInGB *int32
// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data
// on the storage volume attached to the ML compute instance(s) that run the model
// monitoring job.
VolumeKmsKeyId *string
noSmithyDocumentSerde
}
// The constraints resource for a monitoring job.
type MonitoringConstraintsResource struct {
// The Amazon S3 URI for the constraints resource.
S3Uri *string
noSmithyDocumentSerde
}
// Represents the CSV dataset format used when running a monitoring job.
type MonitoringCsvDatasetFormat struct {
// Indicates if the CSV data has a header.
Header *bool
noSmithyDocumentSerde
}
// Represents the dataset format used when running a monitoring job.
type MonitoringDatasetFormat struct {
// The CSV dataset used in the monitoring job.
Csv *MonitoringCsvDatasetFormat
// The JSON dataset used in the monitoring job
Json *MonitoringJsonDatasetFormat
// The Parquet dataset used in the monitoring job
Parquet *MonitoringParquetDatasetFormat
noSmithyDocumentSerde
}
// Summary of information about the last monitoring job to run.
type MonitoringExecutionSummary struct {
// The time at which the monitoring job was created.
//
// This member is required.
CreationTime *time.Time
// A timestamp that indicates the last time the monitoring job was modified.
//
// This member is required.
LastModifiedTime *time.Time
// The status of the monitoring job.
//
// This member is required.
MonitoringExecutionStatus ExecutionStatus
// The name of the monitoring schedule.
//
// This member is required.
MonitoringScheduleName *string
// The time the monitoring job was scheduled.
//
// This member is required.
ScheduledTime *time.Time
// The name of the endpoint used to run the monitoring job.
EndpointName *string
// Contains the reason a monitoring job failed, if it failed.
FailureReason *string
// The name of the monitoring job.
MonitoringJobDefinitionName *string
// The type of the monitoring job.
MonitoringType MonitoringType
// The Amazon Resource Name (ARN) of the monitoring job.
ProcessingJobArn *string
noSmithyDocumentSerde
}
// The ground truth labels for the dataset used for the monitoring job.
type MonitoringGroundTruthS3Input struct {
// The address of the Amazon S3 location of the ground truth labels.
S3Uri *string
noSmithyDocumentSerde
}
// The inputs for a monitoring job.
type MonitoringInput struct {
// Input object for the batch transform job.
BatchTransformInput *BatchTransformInput
// The endpoint for a monitoring job.
EndpointInput *EndpointInput
noSmithyDocumentSerde
}
// Defines the monitoring job.
type MonitoringJobDefinition struct {
// Configures the monitoring job to run a specified Docker container image.
//
// This member is required.
MonitoringAppSpecification *MonitoringAppSpecification
// The array of inputs for the monitoring job. Currently we support monitoring an
// Amazon SageMaker Endpoint.
//
// This member is required.
MonitoringInputs []MonitoringInput
// The array of outputs from the monitoring job to be uploaded to Amazon S3.
//
// This member is required.
MonitoringOutputConfig *MonitoringOutputConfig
// Identifies the resources, ML compute instances, and ML storage volumes to
// deploy for a monitoring job. In distributed processing, you specify more than
// one instance.
//
// This member is required.
MonitoringResources *MonitoringResources
// The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume
// to perform tasks on your behalf.
//
// This member is required.
RoleArn *string
// Baseline configuration used to validate that the data conforms to the specified
// constraints and statistics
BaselineConfig *MonitoringBaselineConfig
// Sets the environment variables in the Docker container.
Environment map[string]string
// Specifies networking options for an monitoring job.
NetworkConfig *NetworkConfig
// Specifies a time limit for how long the monitoring job is allowed to run.
StoppingCondition *MonitoringStoppingCondition
noSmithyDocumentSerde
}
// Summary information about a monitoring job.
type MonitoringJobDefinitionSummary struct {
// The time that the monitoring job was created.
//
// This member is required.
CreationTime *time.Time
// The name of the endpoint that the job monitors.
//
// This member is required.
EndpointName *string
// The Amazon Resource Name (ARN) of the monitoring job.
//
// This member is required.
MonitoringJobDefinitionArn *string
// The name of the monitoring job.
//
// This member is required.
MonitoringJobDefinitionName *string
noSmithyDocumentSerde
}
// Represents the JSON dataset format used when running a monitoring job.
type MonitoringJsonDatasetFormat struct {
// Indicates if the file should be read as a JSON object per line.
Line *bool
noSmithyDocumentSerde
}
// The networking configuration for the monitoring job.
type MonitoringNetworkConfig struct {
// Whether to encrypt all communications between the instances used for the
// monitoring jobs. Choose True to encrypt communications. Encryption provides
// greater security for distributed jobs, but the processing might take longer.
EnableInterContainerTrafficEncryption *bool
// Whether to allow inbound and outbound network calls to and from the containers
// used for the monitoring job.
EnableNetworkIsolation *bool
// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// The output object for a monitoring job.
type MonitoringOutput struct {
// The Amazon S3 storage location where the results of a monitoring job are saved.
//
// This member is required.
S3Output *MonitoringS3Output
noSmithyDocumentSerde
}
// The output configuration for monitoring jobs.
type MonitoringOutputConfig struct {
// Monitoring outputs for monitoring jobs. This is where the output of the
// periodic monitoring jobs is uploaded.
//
// This member is required.
MonitoringOutputs []MonitoringOutput
// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the
// model artifacts at rest using Amazon S3 server-side encryption.
KmsKeyId *string
noSmithyDocumentSerde
}
// Represents the Parquet dataset format used when running a monitoring job.
type MonitoringParquetDatasetFormat struct {
noSmithyDocumentSerde
}
// Identifies the resources to deploy for a monitoring job.
type MonitoringResources struct {
// The configuration for the cluster resources used to run the processing job.
//
// This member is required.
ClusterConfig *MonitoringClusterConfig
noSmithyDocumentSerde
}
// Information about where and how you want to store the results of a monitoring
// job.
type MonitoringS3Output struct {
// The local path to the Amazon S3 storage location where Amazon SageMaker saves
// the results of a monitoring job. LocalPath is an absolute path for the output
// data.
//
// This member is required.
LocalPath *string
// A URI that identifies the Amazon S3 storage location where Amazon SageMaker
// saves the results of a monitoring job.
//
// This member is required.
S3Uri *string
// Whether to upload the results of the monitoring job continuously or after the
// job completes.
S3UploadMode ProcessingS3UploadMode
noSmithyDocumentSerde
}
// A schedule for a model monitoring job. For information about model monitor, see
// Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
// .
type MonitoringSchedule struct {
// The time that the monitoring schedule was created.
CreationTime *time.Time
// The endpoint that hosts the model being monitored.
EndpointName *string
// If the monitoring schedule failed, the reason it failed.
FailureReason *string
// The last time the monitoring schedule was changed.
LastModifiedTime *time.Time
// Summary of information about the last monitoring job to run.
LastMonitoringExecutionSummary *MonitoringExecutionSummary
// The Amazon Resource Name (ARN) of the monitoring schedule.
MonitoringScheduleArn *string
// Configures the monitoring schedule and defines the monitoring job.
MonitoringScheduleConfig *MonitoringScheduleConfig
// The name of the monitoring schedule.
MonitoringScheduleName *string
// The status of the monitoring schedule. This can be one of the following values.
// - PENDING - The schedule is pending being created.
// - FAILED - The schedule failed.
// - SCHEDULED - The schedule was successfully created.
// - STOPPED - The schedule was stopped.
MonitoringScheduleStatus ScheduleStatus
// The type of the monitoring job definition to schedule.
MonitoringType MonitoringType
// A list of the tags associated with the monitoring schedlue. For more
// information, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// in the Amazon Web Services General Reference Guide.
Tags []Tag
noSmithyDocumentSerde
}
// Configures the monitoring schedule and defines the monitoring job.
type MonitoringScheduleConfig struct {
// Defines the monitoring job.
MonitoringJobDefinition *MonitoringJobDefinition
// The name of the monitoring job definition to schedule.
MonitoringJobDefinitionName *string
// The type of the monitoring job definition to schedule.
MonitoringType MonitoringType
// Configures the monitoring schedule.
ScheduleConfig *ScheduleConfig
noSmithyDocumentSerde
}
// Summarizes the monitoring schedule.
type MonitoringScheduleSummary struct {
// The creation time of the monitoring schedule.
//
// This member is required.
CreationTime *time.Time
// The last time the monitoring schedule was modified.
//
// This member is required.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the monitoring schedule.
//
// This member is required.
MonitoringScheduleArn *string
// The name of the monitoring schedule.
//
// This member is required.
MonitoringScheduleName *string
// The status of the monitoring schedule.
//
// This member is required.
MonitoringScheduleStatus ScheduleStatus
// The name of the endpoint using the monitoring schedule.
EndpointName *string
// The name of the monitoring job definition that the schedule is for.
MonitoringJobDefinitionName *string
// The type of the monitoring job definition that the schedule is for.
MonitoringType MonitoringType
noSmithyDocumentSerde
}
// The statistics resource for a monitoring job.
type MonitoringStatisticsResource struct {
// The Amazon S3 URI for the statistics resource.
S3Uri *string
noSmithyDocumentSerde
}
// A time limit for how long the monitoring job is allowed to run before stopping.
type MonitoringStoppingCondition struct {
// The maximum runtime allowed in seconds. The MaxRuntimeInSeconds cannot exceed
// the frequency of the job. For data quality and model explainability, this can be
// up to 3600 seconds for an hourly schedule. For model bias and model quality
// hourly schedules, this can be up to 1800 seconds.
//
// This member is required.
MaxRuntimeInSeconds *int32
noSmithyDocumentSerde
}
// Specifies additional configuration for hosting multi-model endpoints.
type MultiModelConfig struct {
// Whether to cache models for a multi-model endpoint. By default, multi-model
// endpoints cache models so that a model does not have to be loaded into memory
// each time it is invoked. Some use cases do not benefit from model caching. For
// example, if an endpoint hosts a large number of models that are each invoked
// infrequently, the endpoint might perform better if you disable model caching. To
// disable model caching, set the value of this parameter to Disabled .
ModelCacheSetting ModelCacheSetting
noSmithyDocumentSerde
}
// The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
// configuration object that specifies the VPC that you want the compilation jobs
// to connect to. For more information on controlling access to your Amazon S3
// buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs
// Access to Resources in Your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html)
// .
type NeoVpcConfig struct {
// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
// security groups for the VPC that is specified in the Subnets field.
//
// This member is required.
SecurityGroupIds []string
// The ID of the subnets in the VPC that you want to connect the compilation job
// to for accessing the model in Amazon S3.
//
// This member is required.
Subnets []string
noSmithyDocumentSerde
}
// A list of nested Filter (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Filter.html)
// objects. A resource must satisfy the conditions of all filters to be included in
// the results returned from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API. For example, to filter on a training job's InputDataConfig property with a
// specific channel name and S3Uri prefix, define the following filters:
// - '{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
// "Value":"train"}',
// - '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
// "Operator":"Contains", "Value":"mybucket/catdata"}'
type NestedFilters struct {
// A list of filters. Each filter acts on a property. Filters must contain at
// least one Filters value. For example, a NestedFilters call might include a
// filter on the PropertyName parameter of the InputDataConfig property:
// InputDataConfig.DataSource.S3DataSource.S3Uri .
//
// This member is required.
Filters []Filter
// The name of the property to use in the nested filters. The value must match a
// listed property name, such as InputDataConfig .
//
// This member is required.
NestedPropertyName *string
noSmithyDocumentSerde
}
// Networking options for a job, such as network traffic encryption between
// containers, whether to allow inbound and outbound network calls to and from
// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
type NetworkConfig struct {
// Whether to encrypt all communications between distributed processing jobs.
// Choose True to encrypt communications. Encryption provides greater security for
// distributed processing jobs, but the processing might take longer.
EnableInterContainerTrafficEncryption *bool
// Whether to allow inbound and outbound network calls to and from the containers
// used for the processing job.
EnableNetworkIsolation *bool
// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// Provides a summary of a notebook instance lifecycle configuration.
type NotebookInstanceLifecycleConfigSummary struct {
// The Amazon Resource Name (ARN) of the lifecycle configuration.
//
// This member is required.
NotebookInstanceLifecycleConfigArn *string
// The name of the lifecycle configuration.
//
// This member is required.
NotebookInstanceLifecycleConfigName *string
// A timestamp that tells when the lifecycle configuration was created.
CreationTime *time.Time
// A timestamp that tells when the lifecycle configuration was last modified.
LastModifiedTime *time.Time
noSmithyDocumentSerde
}
// Contains the notebook instance lifecycle configuration script. Each lifecycle
// configuration script has a limit of 16384 characters. The value of the $PATH
// environment variable that is available to both scripts is
// /sbin:bin:/usr/sbin:/usr/bin . View CloudWatch Logs for notebook instance
// lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log
// stream [notebook-instance-name]/[LifecycleConfigHook] . Lifecycle configuration
// scripts cannot run for longer than 5 minutes. If a script runs for longer than 5
// minutes, it fails and the notebook instance is not created or started. For
// information about notebook instance lifestyle configurations, see Step 2.1:
// (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html)
// .
type NotebookInstanceLifecycleHook struct {
// A base64-encoded string that contains a shell script for a notebook instance
// lifecycle configuration.
Content *string
noSmithyDocumentSerde
}
// Provides summary information for an SageMaker notebook instance.
type NotebookInstanceSummary struct {
// The Amazon Resource Name (ARN) of the notebook instance.
//
// This member is required.
NotebookInstanceArn *string
// The name of the notebook instance that you want a summary for.
//
// This member is required.
NotebookInstanceName *string
// An array of up to three Git repositories associated with the notebook instance.
// These can be either the names of Git repositories stored as resources in your
// account, or the URL of Git repositories in Amazon Web Services CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
// or in any other Git repository. These repositories are cloned at the same level
// as the default repository of your notebook instance. For more information, see
// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
// .
AdditionalCodeRepositories []string
// A timestamp that shows when the notebook instance was created.
CreationTime *time.Time
// The Git repository associated with the notebook instance as its default code
// repository. This can be either the name of a Git repository stored as a resource
// in your account, or the URL of a Git repository in Amazon Web Services
// CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
// or in any other Git repository. When you open a notebook instance, it opens in
// the directory that contains this repository. For more information, see
// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
// .
DefaultCodeRepository *string
// The type of ML compute instance that the notebook instance is running on.
InstanceType InstanceType
// A timestamp that shows when the notebook instance was last modified.
LastModifiedTime *time.Time
// The name of a notebook instance lifecycle configuration associated with this
// notebook instance. For information about notebook instance lifestyle
// configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html)
// .
NotebookInstanceLifecycleConfigName *string
// The status of the notebook instance.
NotebookInstanceStatus NotebookInstanceStatus
// The URL that you use to connect to the Jupyter notebook running in your
// notebook instance.
Url *string
noSmithyDocumentSerde
}
// Configures Amazon SNS notifications of available or expiring work items for
// work teams.
type NotificationConfiguration struct {
// The ARN for the Amazon SNS topic to which notifications should be published.
NotificationTopicArn *string
noSmithyDocumentSerde
}
// Specifies the number of training jobs that this hyperparameter tuning job
// launched, categorized by the status of their objective metric. The objective
// metric status shows whether the final objective metric for the training job has
// been evaluated by the tuning job and used in the hyperparameter tuning process.
type ObjectiveStatusCounters struct {
// The number of training jobs whose final objective metric was not evaluated and
// used in the hyperparameter tuning process. This typically occurs when the
// training job failed or did not emit an objective metric.
Failed *int32
// The number of training jobs that are in progress and pending evaluation of
// their final objective metric.
Pending *int32
// The number of training jobs whose final objective metric was evaluated by the
// hyperparameter tuning job and used in the hyperparameter tuning process.
Succeeded *int32
noSmithyDocumentSerde
}
// The configuration of an OfflineStore . Provide an OfflineStoreConfig in a
// request to CreateFeatureGroup to create an OfflineStore . To encrypt an
// OfflineStore using at rest data encryption, specify Amazon Web Services Key
// Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .
type OfflineStoreConfig struct {
// The Amazon Simple Storage (Amazon S3) location of OfflineStore .
//
// This member is required.
S3StorageConfig *S3StorageConfig
// The meta data of the Glue table that is autogenerated when an OfflineStore is
// created.
DataCatalogConfig *DataCatalogConfig
// Set to True to disable the automatic creation of an Amazon Web Services Glue
// table when configuring an OfflineStore . If set to False , Feature Store will
// name the OfflineStore Glue table following Athena's naming recommendations (https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html)
// . The default value is False .
DisableGlueTableCreation *bool
// Format for the offline store table. Supported formats are Glue (Default) and
// Apache Iceberg (https://iceberg.apache.org/) .
TableFormat TableFormat
noSmithyDocumentSerde
}
// The status of OfflineStore .
type OfflineStoreStatus struct {
// An OfflineStore status.
//
// This member is required.
Status OfflineStoreStatusValue
// The justification for why the OfflineStoreStatus is Blocked (if applicable).
BlockedReason *string
noSmithyDocumentSerde
}
// Use this parameter to configure your OIDC Identity Provider (IdP).
type OidcConfig struct {
// The OIDC IdP authorization endpoint used to configure your private workforce.
//
// This member is required.
AuthorizationEndpoint *string
// The OIDC IdP client ID used to configure your private workforce.
//
// This member is required.
ClientId *string
// The OIDC IdP client secret used to configure your private workforce.
//
// This member is required.
ClientSecret *string
// The OIDC IdP issuer used to configure your private workforce.
//
// This member is required.
Issuer *string
// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
// workforce.
//
// This member is required.
JwksUri *string
// The OIDC IdP logout endpoint used to configure your private workforce.
//
// This member is required.
LogoutEndpoint *string
// The OIDC IdP token endpoint used to configure your private workforce.
//
// This member is required.
TokenEndpoint *string
// The OIDC IdP user information endpoint used to configure your private workforce.
//
// This member is required.
UserInfoEndpoint *string
noSmithyDocumentSerde
}
// Your OIDC IdP workforce configuration.
type OidcConfigForResponse struct {
// The OIDC IdP authorization endpoint used to configure your private workforce.
AuthorizationEndpoint *string
// The OIDC IdP client ID used to configure your private workforce.
ClientId *string
// The OIDC IdP issuer used to configure your private workforce.
Issuer *string
// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
// workforce.
JwksUri *string
// The OIDC IdP logout endpoint used to configure your private workforce.
LogoutEndpoint *string
// The OIDC IdP token endpoint used to configure your private workforce.
TokenEndpoint *string
// The OIDC IdP user information endpoint used to configure your private workforce.
UserInfoEndpoint *string
noSmithyDocumentSerde
}
// A list of user groups that exist in your OIDC Identity Provider (IdP). One to
// ten groups can be used to create a single private work team. When you add a user
// group to the list of Groups , you can add that user group to one or more private
// work teams. If you add a user group to a private work team, all workers in that
// user group are added to the work team.
type OidcMemberDefinition struct {
// A list of comma seperated strings that identifies user groups in your OIDC IdP.
// Each user group is made up of a group of private workers.
Groups []string
noSmithyDocumentSerde
}
// Use this to specify the Amazon Web Services Key Management Service (KMS) Key
// ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or
// off by specifying the EnableOnlineStore flag at General Assembly. The default
// value is False .
type OnlineStoreConfig struct {
// Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn
// OnlineStore on by specifying True for the EnableOnlineStore flag. The default
// value is False .
EnableOnlineStore *bool
// Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your
// OnlineStore .
SecurityConfig *OnlineStoreSecurityConfig
// Option for different tiers of low latency storage for real-time data retrieval.
// - Standard : A managed low latency data store for feature groups.
// - InMemory : A managed data store for feature groups that supports very low
// latency retrieval.
StorageType StorageType
// Time to live duration, where the record is hard deleted after the expiration
// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
// API in the Amazon SageMaker API Reference guide.
TtlDuration *TtlDuration
noSmithyDocumentSerde
}
// Updates the feature group online store configuration.
type OnlineStoreConfigUpdate struct {
// Time to live duration, where the record is hard deleted after the expiration
// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
// API in the Amazon SageMaker API Reference guide.
TtlDuration *TtlDuration
noSmithyDocumentSerde
}
// The security configuration for OnlineStore .
type OnlineStoreSecurityConfig struct {
// The Amazon Web Services Key Management Service (KMS) key ARN that SageMaker
// Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3
// server-side encryption. The caller (either user or IAM role) of
// CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :
// - "kms:Encrypt"
// - "kms:Decrypt"
// - "kms:DescribeKey"
// - "kms:CreateGrant"
// - "kms:RetireGrant"
// - "kms:ReEncryptFrom"
// - "kms:ReEncryptTo"
// - "kms:GenerateDataKey"
// - "kms:ListAliases"
// - "kms:ListGrants"
// - "kms:RevokeGrant"
// The caller (either user or IAM role) to all DataPlane operations ( PutRecord ,
// GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :
// - "kms:Decrypt"
KmsKeyId *string
noSmithyDocumentSerde
}
// Contains information about the output location for the compiled model and the
// target device that the model runs on. TargetDevice and TargetPlatform are
// mutually exclusive, so you need to choose one between the two to specify your
// target device or platform. If you cannot find your device you want to use from
// the TargetDevice list, use TargetPlatform to describe the platform of your edge
// device and CompilerOptions if there are specific settings that are required or
// recommended to use for particular TargetPlatform.
type OutputConfig struct {
// Identifies the S3 bucket where you want Amazon SageMaker to store the model
// artifacts. For example, s3://bucket-name/key-name-prefix .
//
// This member is required.
S3OutputLocation *string
// Specifies additional parameters for compiler options in JSON format. The
// compiler options are TargetPlatform specific. It is required for NVIDIA
// accelerators and highly recommended for CPU compilations. For any other cases,
// it is optional to specify CompilerOptions.
// - DTYPE : Specifies the data type for the input. When compiling for ml_*
// (except for ml_inf ) instances using PyTorch framework, provide the data type
// (dtype) of the model's input. "float32" is used if "DTYPE" is not specified.
// Options for data type are:
// - float32: Use either "float" or "float32" .
// - int64: Use either "int64" or "long" . For example, {"dtype" : "float32"} .
// - CPU : Compilation for CPU supports the following compiler options.
// - mcpu : CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
// - mattr : CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
// - ARM : Details of ARM CPU compilations.
// - NEON : NEON is an implementation of the Advanced SIMD extension used in
// ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler
// options if compiling for ARM 32-bit platform with the NEON support.
// - NVIDIA : Compilation for NVIDIA GPU supports the following compiler options.
// - gpu_code : Specifies the targeted architecture.
// - trt-ver : Specifies the TensorRT versions in x.y.z. format.
// - cuda-ver : Specifies the CUDA version in x.y format. For example,
// {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
// - ANDROID : Compilation for the Android OS supports the following compiler
// options:
// - ANDROID_PLATFORM : Specifies the Android API levels. Available levels range
// from 21 to 29. For example, {'ANDROID_PLATFORM': 28} .
// - mattr : Add {'mattr': ['+neon']} to compiler options if compiling for ARM
// 32-bit platform with NEON support.
// - INFERENTIA : Compilation for target ml_inf1 uses compiler options passed in
// as a JSON string. For example, "CompilerOptions": "\"--verbose 1
// --num-neuroncores 2 -O2\"" . For information about supported compiler options,
// see Neuron Compiler CLI Reference Guide (https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html)
// .
// - CoreML : Compilation for the CoreML OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
// TargetDevice supports the following compiler options:
// - class_labels : Specifies the classification labels file name inside input
// tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"} .
// Labels inside the txt file should be separated by newlines.
// - EIA : Compilation for the Elastic Inference Accelerator supports the
// following compiler options:
// - precision_mode : Specifies the precision of compiled artifacts. Supported
// values are "FP16" and "FP32" . Default is "FP32" .
// - signature_def_key : Specifies the signature to use for models in SavedModel
// format. Defaults is TensorFlow's default signature def key.
// - output_names : Specifies a list of output tensor names for models in
// FrozenGraph format. Set at most one API field, either: signature_def_key or
// output_names . For example: {"precision_mode": "FP32", "output_names":
// ["output:0"]}
CompilerOptions *string
// The Amazon Web Services Key Management Service key (Amazon Web Services KMS)
// that Amazon SageMaker uses to encrypt your output models with Amazon S3
// server-side encryption after compilation job. If you don't provide a KMS key ID,
// Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
// For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of
// the following formats:
// - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
// - Key ARN:
// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
// - Alias name: alias/ExampleAlias
// - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
KmsKeyId *string
// Identifies the target device or the machine learning instance that you want to
// run your model on after the compilation has completed. Alternatively, you can
// specify OS, architecture, and accelerator using TargetPlatform (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html)
// fields. It can be used instead of TargetPlatform . Currently ml_trn1 is
// available only in US East (N. Virginia) Region, and ml_inf2 is available only
// in US East (Ohio) Region.
TargetDevice TargetDevice
// Contains information about a target platform that you want your model to run
// on, such as OS, architecture, and accelerators. It is an alternative of
// TargetDevice . The following examples show how to configure the TargetPlatform
// and CompilerOptions JSON strings for popular target platforms:
// - Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch":
// "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']}
// - Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64",
// "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver':
// '6.0.1', 'cuda-ver': '10.0'}
// - EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch":
// "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu':
// 'skylake-avx512'}
// - RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
// "MALI"}
// - ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
// "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
// - ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
// "CompilerOptions": {'ANDROID_PLATFORM': 29}
TargetPlatform *TargetPlatform
noSmithyDocumentSerde
}
// Provides information about how to store model training results (model
// artifacts).
type OutputDataConfig struct {
// Identifies the S3 path where you want SageMaker to store the model artifacts.
// For example, s3://bucket-name/key-name-prefix .
//
// This member is required.
S3OutputPath *string
// The model output compression type. Select None to output an uncompressed model,
// recommended for large model outputs. Defaults to gzip.
CompressionType OutputCompressionType
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that SageMaker uses to encrypt the model artifacts at rest using Amazon S3
// server-side encryption. The KmsKeyId can be any of the following formats:
// - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - // Amazon Resource Name (ARN) of a KMS Key
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// - // KMS Key Alias "alias/ExampleAlias"
// - // Amazon Resource Name (ARN) of a KMS Key Alias
// "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
// role must include permissions to call kms:Encrypt . If you don't provide a KMS
// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
// account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide. If the output data is
// stored in Amazon S3 Express One Zone, it is encrypted with server-side
// encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for
// Amazon S3 Express One Zone The KMS key policy must grant permission to the IAM
// role that you specify in your CreateTrainingJob , CreateTransformJob , or
// CreateHyperParameterTuningJob requests. For more information, see Using Key
// Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
// in the Amazon Web Services Key Management Service Developer Guide.
KmsKeyId *string
noSmithyDocumentSerde
}
// An output parameter of a pipeline step.
type OutputParameter struct {
// The name of the output parameter.
//
// This member is required.
Name *string
// The value of the output parameter.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// The collection of ownership settings for a space.
type OwnershipSettings struct {
// The user profile who is the owner of the private space.
//
// This member is required.
OwnerUserProfileName *string
noSmithyDocumentSerde
}
// Specifies summary information about the ownership settings.
type OwnershipSettingsSummary struct {
// The user profile who is the owner of the private space.
OwnerUserProfileName *string
noSmithyDocumentSerde
}
// Configuration that controls the parallelism of the pipeline. By default, the
// parallelism configuration specified applies to all executions of the pipeline
// unless overridden.
type ParallelismConfiguration struct {
// The max number of steps that can be executed in parallel.
//
// This member is required.
MaxParallelExecutionSteps *int32
noSmithyDocumentSerde
}
// Assigns a value to a named Pipeline parameter.
type Parameter struct {
// The name of the parameter to assign a value to. This parameter name must match
// a named parameter in the pipeline definition.
//
// This member is required.
Name *string
// The literal value for the parameter.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// Defines the possible values for categorical, continuous, and integer
// hyperparameters to be used by an algorithm.
type ParameterRange struct {
// A CategoricalParameterRangeSpecification object that defines the possible
// values for a categorical hyperparameter.
CategoricalParameterRangeSpecification *CategoricalParameterRangeSpecification
// A ContinuousParameterRangeSpecification object that defines the possible values
// for a continuous hyperparameter.
ContinuousParameterRangeSpecification *ContinuousParameterRangeSpecification
// A IntegerParameterRangeSpecification object that defines the possible values
// for an integer hyperparameter.
IntegerParameterRangeSpecification *IntegerParameterRangeSpecification
noSmithyDocumentSerde
}
// Specifies ranges of integer, continuous, and categorical hyperparameters that a
// hyperparameter tuning job searches. The hyperparameter tuning job launches
// training jobs with hyperparameter values within these ranges to find the
// combination of values that result in the training job with the best performance
// as measured by the objective metric of the hyperparameter tuning job. The
// maximum number of items specified for Array Members refers to the maximum
// number of hyperparameters for each range and also the maximum for the
// hyperparameter tuning job itself. That is, the sum of the number of
// hyperparameters for all the ranges can't exceed the maximum number specified.
type ParameterRanges struct {
// A list containing hyperparameter names and example values to be used by
// Autotune to determine optimal ranges for your tuning job.
AutoParameters []AutoParameter
// The array of CategoricalParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CategoricalParameterRange.html)
// objects that specify ranges of categorical hyperparameters that a hyperparameter
// tuning job searches.
CategoricalParameterRanges []CategoricalParameterRange
// The array of ContinuousParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContinuousParameterRange.html)
// objects that specify ranges of continuous hyperparameters that a hyperparameter
// tuning job searches.
ContinuousParameterRanges []ContinuousParameterRange
// The array of IntegerParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_IntegerParameterRange.html)
// objects that specify ranges of integer hyperparameters that a hyperparameter
// tuning job searches.
IntegerParameterRanges []IntegerParameterRange
noSmithyDocumentSerde
}
// The trial that a trial component is associated with and the experiment the
// trial is part of. A component might not be associated with a trial. A component
// can be associated with multiple trials.
type Parent struct {
// The name of the experiment.
ExperimentName *string
// The name of the trial.
TrialName *string
noSmithyDocumentSerde
}
// A previously completed or stopped hyperparameter tuning job to be used as a
// starting point for a new hyperparameter tuning job.
type ParentHyperParameterTuningJob struct {
// The name of the hyperparameter tuning job to be used as a starting point for a
// new hyperparameter tuning job.
HyperParameterTuningJobName *string
noSmithyDocumentSerde
}
// The summary of an in-progress deployment when an endpoint is creating or
// updating with a new endpoint configuration.
type PendingDeploymentSummary struct {
// The name of the endpoint configuration used in the deployment.
//
// This member is required.
EndpointConfigName *string
// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
// objects, one for each model hosted behind this endpoint for the in-progress
// deployment.
ProductionVariants []PendingProductionVariantSummary
// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
// objects, one for each model hosted behind this endpoint in shadow mode with
// production traffic replicated from the model specified on ProductionVariants
// for the in-progress deployment.
ShadowProductionVariants []PendingProductionVariantSummary
// The start time of the deployment.
StartTime *time.Time
noSmithyDocumentSerde
}
// The production variant summary for a deployment when an endpoint is creating or
// updating with the CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html)
// or UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// operations. Describes the VariantStatus , weight and capacity for a production
// variant associated with an endpoint.
type PendingProductionVariantSummary struct {
// The name of the variant.
//
// This member is required.
VariantName *string
// The size of the Elastic Inference (EI) instance to use for the production
// variant. EI instances provide on-demand GPU computing for inference. For more
// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
// .
AcceleratorType ProductionVariantAcceleratorType
// The number of instances associated with the variant.
CurrentInstanceCount *int32
// The serverless configuration for the endpoint.
CurrentServerlessConfig *ProductionVariantServerlessConfig
// The weight associated with the variant.
CurrentWeight *float32
// An array of DeployedImage objects that specify the Amazon EC2 Container
// Registry paths of the inference images deployed on instances of this
// ProductionVariant .
DeployedImages []DeployedImage
// The number of instances requested in this deployment, as specified in the
// endpoint configuration for the endpoint. The value is taken from the request to
// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
// operation.
DesiredInstanceCount *int32
// The serverless configuration requested for this deployment, as specified in the
// endpoint configuration for the endpoint.
DesiredServerlessConfig *ProductionVariantServerlessConfig
// The requested weight for the variant in this deployment, as specified in the
// endpoint configuration for the endpoint. The value is taken from the request to
// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
// operation.
DesiredWeight *float32
// The type of instances associated with the variant.
InstanceType ProductionVariantInstanceType
// Settings that control the range in the number of instances that the endpoint
// provisions as it scales up or down to accommodate traffic.
ManagedInstanceScaling *ProductionVariantManagedInstanceScaling
// Settings that control how the endpoint routes incoming traffic to the instances
// that the endpoint hosts.
RoutingConfig *ProductionVariantRoutingConfig
// The endpoint variant status which describes the current deployment stage status
// or operational status.
VariantStatus []ProductionVariantStatus
noSmithyDocumentSerde
}
// Defines the traffic pattern.
type Phase struct {
// Specifies how long a traffic phase should be. For custom load tests, the value
// should be between 120 and 3600. This value should not exceed
// JobDurationInSeconds .
DurationInSeconds *int32
// Specifies how many concurrent users to start with. The value should be between
// 1 and 3.
InitialNumberOfUsers *int32
// Specified how many new users to spawn in a minute.
SpawnRate *int32
noSmithyDocumentSerde
}
// A SageMaker Model Building Pipeline instance.
type Pipeline struct {
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// The creation time of the pipeline.
CreationTime *time.Time
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// The time that the pipeline was last modified.
LastModifiedTime *time.Time
// The time when the pipeline was last run.
LastRunTime *time.Time
// The parallelism configuration applied to the pipeline.
ParallelismConfiguration *ParallelismConfiguration
// The Amazon Resource Name (ARN) of the pipeline.
PipelineArn *string
// The description of the pipeline.
PipelineDescription *string
// The display name of the pipeline.
PipelineDisplayName *string
// The name of the pipeline.
PipelineName *string
// The status of the pipeline.
PipelineStatus PipelineStatus
// The Amazon Resource Name (ARN) of the role that created the pipeline.
RoleArn *string
// A list of tags that apply to the pipeline.
Tags []Tag
noSmithyDocumentSerde
}
// The location of the pipeline definition stored in Amazon S3.
type PipelineDefinitionS3Location struct {
// Name of the S3 bucket.
//
// This member is required.
Bucket *string
// The object key (or key name) uniquely identifies the object in an S3 bucket.
//
// This member is required.
ObjectKey *string
// Version Id of the pipeline definition file. If not specified, Amazon SageMaker
// will retrieve the latest version.
VersionId *string
noSmithyDocumentSerde
}
// An execution of a pipeline.
type PipelineExecution struct {
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// The creation time of the pipeline execution.
CreationTime *time.Time
// If the execution failed, a message describing why.
FailureReason *string
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// The time that the pipeline execution was last modified.
LastModifiedTime *time.Time
// The parallelism configuration applied to the pipeline execution.
ParallelismConfiguration *ParallelismConfiguration
// The Amazon Resource Name (ARN) of the pipeline that was executed.
PipelineArn *string
// The Amazon Resource Name (ARN) of the pipeline execution.
PipelineExecutionArn *string
// The description of the pipeline execution.
PipelineExecutionDescription *string
// The display name of the pipeline execution.
PipelineExecutionDisplayName *string
// The status of the pipeline status.
PipelineExecutionStatus PipelineExecutionStatus
// Specifies the names of the experiment and trial created by a pipeline.
PipelineExperimentConfig *PipelineExperimentConfig
// Contains a list of pipeline parameters. This list can be empty.
PipelineParameters []Parameter
// The selective execution configuration applied to the pipeline run.
SelectiveExecutionConfig *SelectiveExecutionConfig
noSmithyDocumentSerde
}
// An execution of a step in a pipeline.
type PipelineExecutionStep struct {
// The current attempt of the execution step. For more information, see Retry
// Policy for SageMaker Pipelines steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-retry-policy.html)
// .
AttemptCount *int32
// If this pipeline execution step was cached, details on the cache hit.
CacheHitResult *CacheHitResult
// The time that the step stopped executing.
EndTime *time.Time
// The reason why the step failed execution. This is only returned if the step
// failed its execution.
FailureReason *string
// Metadata to run the pipeline step.
Metadata *PipelineExecutionStepMetadata
// The ARN from an execution of the current pipeline from which results are reused
// for this step.
SelectiveExecutionResult *SelectiveExecutionResult
// The time that the step started executing.
StartTime *time.Time
// The description of the step.
StepDescription *string
// The display name of the step.
StepDisplayName *string
// The name of the step that is executed.
StepName *string
// The status of the step execution.
StepStatus StepStatus
noSmithyDocumentSerde
}
// Metadata for a step execution.
type PipelineExecutionStepMetadata struct {
// The Amazon Resource Name (ARN) of the AutoML job that was run by this step.
AutoMLJob *AutoMLJobStepMetadata
// The URL of the Amazon SQS queue used by this step execution, the pipeline
// generated token, and a list of output parameters.
Callback *CallbackStepMetadata
// Container for the metadata for a Clarify check step. The configurations and
// outcomes of the check step execution. This includes:
// - The type of the check conducted,
// - The Amazon S3 URIs of baseline constraints and statistics files to be used
// for the drift check.
// - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
// - The model package group name provided.
// - The Amazon S3 URI of the violation report if violations detected.
// - The Amazon Resource Name (ARN) of check processing job initiated by the
// step execution.
// - The boolean flags indicating if the drift check is skipped.
// - If step property BaselineUsedForDriftCheck is set the same as
// CalculatedBaseline .
ClarifyCheck *ClarifyCheckStepMetadata
// The outcome of the condition evaluation that was run by this step execution.
Condition *ConditionStepMetadata
// The configurations and outcomes of an Amazon EMR step execution.
EMR *EMRStepMetadata
// The configurations and outcomes of a Fail step execution.
Fail *FailStepMetadata
// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
// execution and a list of output parameters.
Lambda *LambdaStepMetadata
// The Amazon Resource Name (ARN) of the model that was created by this step
// execution.
Model *ModelStepMetadata
// The Amazon Resource Name (ARN) of the processing job that was run by this step
// execution.
ProcessingJob *ProcessingJobStepMetadata
// The configurations and outcomes of the check step execution. This includes:
// - The type of the check conducted.
// - The Amazon S3 URIs of baseline constraints and statistics files to be used
// for the drift check.
// - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
// - The model package group name provided.
// - The Amazon S3 URI of the violation report if violations detected.
// - The Amazon Resource Name (ARN) of check processing job initiated by the
// step execution.
// - The Boolean flags indicating if the drift check is skipped.
// - If step property BaselineUsedForDriftCheck is set the same as
// CalculatedBaseline .
QualityCheck *QualityCheckStepMetadata
// The Amazon Resource Name (ARN) of the model package that the model was
// registered to by this step execution.
RegisterModel *RegisterModelStepMetadata
// The Amazon Resource Name (ARN) of the training job that was run by this step
// execution.
TrainingJob *TrainingJobStepMetadata
// The Amazon Resource Name (ARN) of the transform job that was run by this step
// execution.
TransformJob *TransformJobStepMetadata
// The Amazon Resource Name (ARN) of the tuning job that was run by this step
// execution.
TuningJob *TuningJobStepMetaData
noSmithyDocumentSerde
}
// A pipeline execution summary.
type PipelineExecutionSummary struct {
// The Amazon Resource Name (ARN) of the pipeline execution.
PipelineExecutionArn *string
// The description of the pipeline execution.
PipelineExecutionDescription *string
// The display name of the pipeline execution.
PipelineExecutionDisplayName *string
// A message generated by SageMaker Pipelines describing why the pipeline
// execution failed.
PipelineExecutionFailureReason *string
// The status of the pipeline execution.
PipelineExecutionStatus PipelineExecutionStatus
// The start time of the pipeline execution.
StartTime *time.Time
noSmithyDocumentSerde
}
// Specifies the names of the experiment and trial created by a pipeline.
type PipelineExperimentConfig struct {
// The name of the experiment.
ExperimentName *string
// The name of the trial.
TrialName *string
noSmithyDocumentSerde
}
// A summary of a pipeline.
type PipelineSummary struct {
// The creation time of the pipeline.
CreationTime *time.Time
// The last time that a pipeline execution began.
LastExecutionTime *time.Time
// The time that the pipeline was last modified.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the pipeline.
PipelineArn *string
// The description of the pipeline.
PipelineDescription *string
// The display name of the pipeline.
PipelineDisplayName *string
// The name of the pipeline.
PipelineName *string
// The Amazon Resource Name (ARN) that the pipeline used to execute.
RoleArn *string
noSmithyDocumentSerde
}
// A specification for a predefined metric.
type PredefinedMetricSpecification struct {
// The metric type. You can only apply SageMaker metric types to SageMaker
// endpoints.
PredefinedMetricType *string
noSmithyDocumentSerde
}
// Configuration for the cluster used to run a processing job.
type ProcessingClusterConfig struct {
// The number of ML compute instances to use in the processing job. For
// distributed processing jobs, specify a value greater than 1. The default value
// is 1.
//
// This member is required.
InstanceCount *int32
// The ML compute instance type for the processing job.
//
// This member is required.
InstanceType ProcessingInstanceType
// The size of the ML storage volume in gigabytes that you want to provision. You
// must specify sufficient ML storage for your scenario. Certain Nitro-based
// instances include local storage with a fixed total size, dependent on the
// instance type. When using these instances for processing, Amazon SageMaker
// mounts the local instance storage instead of Amazon EBS gp2 storage. You can't
// request a VolumeSizeInGB greater than the total size of the local instance
// storage. For a list of instance types that support local instance storage,
// including the total size per instance type, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
// .
//
// This member is required.
VolumeSizeInGB *int32
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
// ML compute instance(s) that run the processing job. Certain Nitro-based
// instances include local storage, dependent on the instance type. Local storage
// volumes are encrypted using a hardware module on the instance. You can't request
// a VolumeKmsKeyId when using an instance type with local storage. For a list of
// instance types that support local instance storage, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
// . For more information about local instance storage encryption, see SSD
// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
// .
VolumeKmsKeyId *string
noSmithyDocumentSerde
}
// Configuration for processing job outputs in Amazon SageMaker Feature Store.
type ProcessingFeatureStoreOutput struct {
// The name of the Amazon SageMaker FeatureGroup to use as the destination for
// processing job output. Note that your processing script is responsible for
// putting records into your Feature Store.
//
// This member is required.
FeatureGroupName *string
noSmithyDocumentSerde
}
// The inputs for a processing job. The processing input must specify exactly one
// of either S3Input or DatasetDefinition types.
type ProcessingInput struct {
// The name for the processing job input.
//
// This member is required.
InputName *string
// When True , input operations such as data download are managed natively by the
// processing job application. When False (default), input operations are managed
// by Amazon SageMaker.
AppManaged *bool
// Configuration for a Dataset Definition input.
DatasetDefinition *DatasetDefinition
// Configuration for downloading input data from Amazon S3 into the processing
// container.
S3Input *ProcessingS3Input
noSmithyDocumentSerde
}
// An Amazon SageMaker processing job that is used to analyze data and evaluate
// models. For more information, see Process Data and Evaluate Models (https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html)
// .
type ProcessingJob struct {
// Configuration to run a processing job in a specified container image.
AppSpecification *AppSpecification
// The Amazon Resource Name (ARN) of the AutoML job associated with this
// processing job.
AutoMLJobArn *string
// The time the processing job was created.
CreationTime *time.Time
// Sets the environment variables in the Docker container.
Environment map[string]string
// A string, up to one KB in size, that contains metadata from the processing
// container when the processing job exits.
ExitMessage *string
// Associates a SageMaker job as a trial component with an experiment and trial.
// Specified when you call the following APIs:
// - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
// - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
ExperimentConfig *ExperimentConfig
// A string, up to one KB in size, that contains the reason a processing job
// failed, if it failed.
FailureReason *string
// The time the processing job was last modified.
LastModifiedTime *time.Time
// The ARN of a monitoring schedule for an endpoint associated with this
// processing job.
MonitoringScheduleArn *string
// Networking options for a job, such as network traffic encryption between
// containers, whether to allow inbound and outbound network calls to and from
// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
NetworkConfig *NetworkConfig
// The time that the processing job ended.
ProcessingEndTime *time.Time
// List of input configurations for the processing job.
ProcessingInputs []ProcessingInput
// The ARN of the processing job.
ProcessingJobArn *string
// The name of the processing job.
ProcessingJobName *string
// The status of the processing job.
ProcessingJobStatus ProcessingJobStatus
// Configuration for uploading output from the processing container.
ProcessingOutputConfig *ProcessingOutputConfig
// Identifies the resources, ML compute instances, and ML storage volumes to
// deploy for a processing job. In distributed training, you specify more than one
// instance.
ProcessingResources *ProcessingResources
// The time that the processing job started.
ProcessingStartTime *time.Time
// The ARN of the role used to create the processing job.
RoleArn *string
// Configures conditions under which the processing job should be stopped, such as
// how long the processing job has been running. After the condition is met, the
// processing job is stopped.
StoppingCondition *ProcessingStoppingCondition
// An array of key-value pairs. For more information, see Using Cost Allocation
// Tags (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
// in the Amazon Web Services Billing and Cost Management User Guide.
Tags []Tag
// The ARN of the training job associated with this processing job.
TrainingJobArn *string
noSmithyDocumentSerde
}
// Metadata for a processing job step.
type ProcessingJobStepMetadata struct {
// The Amazon Resource Name (ARN) of the processing job.
Arn *string
noSmithyDocumentSerde
}
// Summary of information about a processing job.
type ProcessingJobSummary struct {
// The time at which the processing job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the processing job..
//
// This member is required.
ProcessingJobArn *string
// The name of the processing job.
//
// This member is required.
ProcessingJobName *string
// The status of the processing job.
//
// This member is required.
ProcessingJobStatus ProcessingJobStatus
// An optional string, up to one KB in size, that contains metadata from the
// processing container when the processing job exits.
ExitMessage *string
// A string, up to one KB in size, that contains the reason a processing job
// failed, if it failed.
FailureReason *string
// A timestamp that indicates the last time the processing job was modified.
LastModifiedTime *time.Time
// The time at which the processing job completed.
ProcessingEndTime *time.Time
noSmithyDocumentSerde
}
// Describes the results of a processing job. The processing output must specify
// exactly one of either S3Output or FeatureStoreOutput types.
type ProcessingOutput struct {
// The name for the processing job output.
//
// This member is required.
OutputName *string
// When True , output operations such as data upload are managed natively by the
// processing job application. When False (default), output operations are managed
// by Amazon SageMaker.
AppManaged *bool
// Configuration for processing job outputs in Amazon SageMaker Feature Store.
// This processing output type is only supported when AppManaged is specified.
FeatureStoreOutput *ProcessingFeatureStoreOutput
// Configuration for processing job outputs in Amazon S3.
S3Output *ProcessingS3Output
noSmithyDocumentSerde
}
// Configuration for uploading output from the processing container.
type ProcessingOutputConfig struct {
// An array of outputs configuring the data to upload from the processing
// container.
//
// This member is required.
Outputs []ProcessingOutput
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can
// be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS
// key. The KmsKeyId is applied to all outputs.
KmsKeyId *string
noSmithyDocumentSerde
}
// Identifies the resources, ML compute instances, and ML storage volumes to
// deploy for a processing job. In distributed training, you specify more than one
// instance.
type ProcessingResources struct {
// The configuration for the resources in a cluster used to run the processing job.
//
// This member is required.
ClusterConfig *ProcessingClusterConfig
noSmithyDocumentSerde
}
// Configuration for downloading input data from Amazon S3 into the processing
// container.
type ProcessingS3Input struct {
// Whether you use an S3Prefix or a ManifestFile for the data type. If you choose
// S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all
// objects with the specified key name prefix for the processing job. If you choose
// ManifestFile , S3Uri identifies an object that is a manifest file containing a
// list of object keys that you want Amazon SageMaker to use for the processing
// job.
//
// This member is required.
S3DataType ProcessingS3DataType
// The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run
// a processing job.
//
// This member is required.
S3Uri *string
// The local path in your container where you want Amazon SageMaker to write input
// data to. LocalPath is an absolute path to the input data and must begin with
// /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False
// (default).
LocalPath *string
// Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the
// processing container. Gzip can only be used when Pipe mode is specified as the
// S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source
// directly to your container without using the EBS volume.
S3CompressionType ProcessingS3CompressionType
// Whether to distribute the data from Amazon S3 to all processing instances with
// FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key,
// downloading one shard of data to each processing instance.
S3DataDistributionType ProcessingS3DataDistributionType
// Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies
// the data from the input source onto the local ML storage volume before starting
// your processing container. This is the most commonly used input mode. In Pipe
// mode, Amazon SageMaker streams input data from the source directly to your
// processing container into named pipes without using the ML storage volume.
S3InputMode ProcessingS3InputMode
noSmithyDocumentSerde
}
// Configuration for uploading output data to Amazon S3 from the processing
// container.
type ProcessingS3Output struct {
// The local path of a directory where you want Amazon SageMaker to upload its
// contents to Amazon S3. LocalPath is an absolute path to a directory containing
// output files. This directory will be created by the platform and exist when your
// container's entrypoint is invoked.
//
// This member is required.
LocalPath *string
// Whether to upload the results of the processing job continuously or after the
// job completes.
//
// This member is required.
S3UploadMode ProcessingS3UploadMode
// A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to
// save the results of a processing job.
//
// This member is required.
S3Uri *string
noSmithyDocumentSerde
}
// Configures conditions under which the processing job should be stopped, such as
// how long the processing job has been running. After the condition is met, the
// processing job is stopped.
type ProcessingStoppingCondition struct {
// Specifies the maximum runtime in seconds.
//
// This member is required.
MaxRuntimeInSeconds *int32
noSmithyDocumentSerde
}
// Identifies a model that you want to host and the resources chosen to deploy for
// hosting it. If you are deploying multiple models, tell SageMaker how to
// distribute traffic among the models by specifying variant weights. For more
// information on production variants, check Production variants (https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html)
// .
type ProductionVariant struct {
// The name of the production variant.
//
// This member is required.
VariantName *string
// The size of the Elastic Inference (EI) instance to use for the production
// variant. EI instances provide on-demand GPU computing for inference. For more
// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
// .
AcceleratorType ProductionVariantAcceleratorType
// The timeout value, in seconds, for your inference container to pass health
// check by SageMaker Hosting. For more information about health check, see How
// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
// .
ContainerStartupHealthCheckTimeoutInSeconds *int32
// Specifies configuration for a core dump from the model container when the
// process crashes.
CoreDumpConfig *ProductionVariantCoreDumpConfig
// You can use this parameter to turn on native Amazon Web Services Systems
// Manager (SSM) access for a production variant behind an endpoint. By default,
// SSM access is disabled for all production variants behind an endpoint. You can
// turn on or turn off SSM access for a production variant behind an existing
// endpoint by creating a new endpoint configuration and calling UpdateEndpoint .
EnableSSMAccess *bool
// Number of instances to launch initially.
InitialInstanceCount *int32
// Determines initial traffic distribution among all of the models that you
// specify in the endpoint configuration. The traffic to a production variant is
// determined by the ratio of the VariantWeight to the sum of all VariantWeight
// values across all ProductionVariants. If unspecified, it defaults to 1.0.
InitialVariantWeight *float32
// The ML compute instance type.
InstanceType ProductionVariantInstanceType
// Settings that control the range in the number of instances that the endpoint
// provisions as it scales up or down to accommodate traffic.
ManagedInstanceScaling *ProductionVariantManagedInstanceScaling
// The timeout value, in seconds, to download and extract the model that you want
// to host from Amazon S3 to the individual inference instance associated with this
// production variant.
ModelDataDownloadTimeoutInSeconds *int32
// The name of the model that you want to host. This is the name that you
// specified when creating the model.
ModelName *string
// Settings that control how the endpoint routes incoming traffic to the instances
// that the endpoint hosts.
RoutingConfig *ProductionVariantRoutingConfig
// The serverless configuration for an endpoint. Specifies a serverless endpoint
// configuration instead of an instance-based endpoint configuration.
ServerlessConfig *ProductionVariantServerlessConfig
// The size, in GB, of the ML storage volume attached to individual inference
// instance associated with the production variant. Currently only Amazon EBS gp2
// storage volumes are supported.
VolumeSizeInGB *int32
noSmithyDocumentSerde
}
// Specifies configuration for a core dump from the model container when the
// process crashes.
type ProductionVariantCoreDumpConfig struct {
// The Amazon S3 bucket to send the core dump to.
//
// This member is required.
DestinationS3Uri *string
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that SageMaker uses to encrypt the core dump data at rest using Amazon S3
// server-side encryption. The KmsKeyId can be any of the following formats:
// - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - // Amazon Resource Name (ARN) of a KMS Key
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
// - // KMS Key Alias "alias/ExampleAlias"
// - // Amazon Resource Name (ARN) of a KMS Key Alias
// "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
// role must include permissions to call kms:Encrypt . If you don't provide a KMS
// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
// account. SageMaker uses server-side encryption with KMS-managed keys for
// OutputDataConfig . If you use a bucket policy with an s3:PutObject permission
// that only allows objects with server-side encryption, set the condition key of
// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
// grant permission to the IAM role that you specify in your CreateEndpoint and
// UpdateEndpoint requests. For more information, see Using Key Policies in Amazon
// Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
// in the Amazon Web Services Key Management Service Developer Guide.
KmsKeyId *string
noSmithyDocumentSerde
}
// Settings that control the range in the number of instances that the endpoint
// provisions as it scales up or down to accommodate traffic.
type ProductionVariantManagedInstanceScaling struct {
// The maximum number of instances that the endpoint can provision when it scales
// up to accommodate an increase in traffic.
MaxInstanceCount *int32
// The minimum number of instances that the endpoint must retain when it scales
// down to accommodate a decrease in traffic.
MinInstanceCount *int32
// Indicates whether managed instance scaling is enabled.
Status ManagedInstanceScalingStatus
noSmithyDocumentSerde
}
// Settings that control how the endpoint routes incoming traffic to the instances
// that the endpoint hosts.
type ProductionVariantRoutingConfig struct {
// Sets how the endpoint routes incoming traffic:
// - LEAST_OUTSTANDING_REQUESTS : The endpoint routes requests to the specific
// instances that have more capacity to process them.
// - RANDOM : The endpoint routes each request to a randomly chosen instance.
//
// This member is required.
RoutingStrategy RoutingStrategy
noSmithyDocumentSerde
}
// Specifies the serverless configuration for an endpoint variant.
type ProductionVariantServerlessConfig struct {
// The maximum number of concurrent invocations your serverless endpoint can
// process.
//
// This member is required.
MaxConcurrency *int32
// The memory size of your serverless endpoint. Valid values are in 1 GB
// increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
//
// This member is required.
MemorySizeInMB *int32
// The amount of provisioned concurrency to allocate for the serverless endpoint.
// Should be less than or equal to MaxConcurrency . This field is not supported for
// serverless endpoint recommendations for Inference Recommender jobs. For more
// information about creating an Inference Recommender job, see
// CreateInferenceRecommendationsJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
// .
ProvisionedConcurrency *int32
noSmithyDocumentSerde
}
// Specifies the serverless update concurrency configuration for an endpoint
// variant.
type ProductionVariantServerlessUpdateConfig struct {
// The updated maximum number of concurrent invocations your serverless endpoint
// can process.
MaxConcurrency *int32
// The updated amount of provisioned concurrency to allocate for the serverless
// endpoint. Should be less than or equal to MaxConcurrency .
ProvisionedConcurrency *int32
noSmithyDocumentSerde
}
// Describes the status of the production variant.
type ProductionVariantStatus struct {
// The endpoint variant status which describes the current deployment stage status
// or operational status.
// - Creating : Creating inference resources for the production variant.
// - Deleting : Terminating inference resources for the production variant.
// - Updating : Updating capacity for the production variant.
// - ActivatingTraffic : Turning on traffic for the production variant.
// - Baking : Waiting period to monitor the CloudWatch alarms in the automatic
// rollback configuration.
//
// This member is required.
Status VariantStatus
// The start time of the current status change.
StartTime *time.Time
// A message that describes the status of the production variant.
StatusMessage *string
noSmithyDocumentSerde
}
// Describes weight and capacities for a production variant associated with an
// endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API
// and the endpoint status is Updating , you get different desired and current
// values.
type ProductionVariantSummary struct {
// The name of the variant.
//
// This member is required.
VariantName *string
// The number of instances associated with the variant.
CurrentInstanceCount *int32
// The serverless configuration for the endpoint.
CurrentServerlessConfig *ProductionVariantServerlessConfig
// The weight associated with the variant.
CurrentWeight *float32
// An array of DeployedImage objects that specify the Amazon EC2 Container
// Registry paths of the inference images deployed on instances of this
// ProductionVariant .
DeployedImages []DeployedImage
// The number of instances requested in the UpdateEndpointWeightsAndCapacities
// request.
DesiredInstanceCount *int32
// The serverless configuration requested for the endpoint update.
DesiredServerlessConfig *ProductionVariantServerlessConfig
// The requested weight, as specified in the UpdateEndpointWeightsAndCapacities
// request.
DesiredWeight *float32
// Settings that control the range in the number of instances that the endpoint
// provisions as it scales up or down to accommodate traffic.
ManagedInstanceScaling *ProductionVariantManagedInstanceScaling
// Settings that control how the endpoint routes incoming traffic to the instances
// that the endpoint hosts.
RoutingConfig *ProductionVariantRoutingConfig
// The endpoint variant status which describes the current deployment stage status
// or operational status.
VariantStatus []ProductionVariantStatus
noSmithyDocumentSerde
}
// Configuration information for Amazon SageMaker Debugger system monitoring,
// framework profiling, and storage paths.
type ProfilerConfig struct {
// Configuration to turn off Amazon SageMaker Debugger's system monitoring and
// profiling functionality. To turn it off, set to True .
DisableProfiler *bool
// A time interval for capturing system metrics in milliseconds. Available values
// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
// milliseconds. The default value is 500 milliseconds.
ProfilingIntervalInMilliseconds *int64
// Configuration information for capturing framework metrics. Available key
// strings for different profiling options are DetailedProfilingConfig ,
// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
// configuration structures for the ProfilingParameters parameter. To learn more
// about how to configure the ProfilingParameters parameter, see Use the SageMaker
// and Debugger Configuration API Operations to Create, Update, and Debug Your
// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
ProfilingParameters map[string]string
// Path to Amazon S3 storage location for system and framework metrics.
S3OutputPath *string
noSmithyDocumentSerde
}
// Configuration information for updating the Amazon SageMaker Debugger profile
// parameters, system and framework metrics configurations, and storage paths.
type ProfilerConfigForUpdate struct {
// To turn off Amazon SageMaker Debugger monitoring and profiling while a training
// job is in progress, set to True .
DisableProfiler *bool
// A time interval for capturing system metrics in milliseconds. Available values
// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
// milliseconds. The default value is 500 milliseconds.
ProfilingIntervalInMilliseconds *int64
// Configuration information for capturing framework metrics. Available key
// strings for different profiling options are DetailedProfilingConfig ,
// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
// configuration structures for the ProfilingParameters parameter. To learn more
// about how to configure the ProfilingParameters parameter, see Use the SageMaker
// and Debugger Configuration API Operations to Create, Update, and Debug Your
// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
ProfilingParameters map[string]string
// Path to Amazon S3 storage location for system and framework metrics.
S3OutputPath *string
noSmithyDocumentSerde
}
// Configuration information for profiling rules.
type ProfilerRuleConfiguration struct {
// The name of the rule configuration. It must be unique relative to other rule
// configuration names.
//
// This member is required.
RuleConfigurationName *string
// The Amazon Elastic Container Registry Image for the managed rule evaluation.
//
// This member is required.
RuleEvaluatorImage *string
// The instance type to deploy a custom rule for profiling a training job.
InstanceType ProcessingInstanceType
// Path to local storage location for output of rules. Defaults to
// /opt/ml/processing/output/rule/ .
LocalPath *string
// Runtime configuration for rule container.
RuleParameters map[string]string
// Path to Amazon S3 storage location for rules.
S3OutputPath *string
// The size, in GB, of the ML storage volume attached to the processing instance.
VolumeSizeInGB *int32
noSmithyDocumentSerde
}
// Information about the status of the rule evaluation.
type ProfilerRuleEvaluationStatus struct {
// Timestamp when the rule evaluation status was last modified.
LastModifiedTime *time.Time
// The name of the rule configuration.
RuleConfigurationName *string
// The Amazon Resource Name (ARN) of the rule evaluation job.
RuleEvaluationJobArn *string
// Status of the rule evaluation.
RuleEvaluationStatus RuleEvaluationStatus
// Details from the rule evaluation.
StatusDetails *string
noSmithyDocumentSerde
}
// The properties of a project as returned by the Search API.
type Project struct {
// Who created the project.
CreatedBy *UserContext
// A timestamp specifying when the project was created.
CreationTime *time.Time
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// A timestamp container for when the project was last modified.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the project.
ProjectArn *string
// The description of the project.
ProjectDescription *string
// The ID of the project.
ProjectId *string
// The name of the project.
ProjectName *string
// The status of the project.
ProjectStatus ProjectStatus
// Details of a provisioned service catalog product. For information about service
// catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
ServiceCatalogProvisionedProductDetails *ServiceCatalogProvisionedProductDetails
// Details that you specify to provision a service catalog product. For
// information about service catalog, see What is Amazon Web Services Service
// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
ServiceCatalogProvisioningDetails *ServiceCatalogProvisioningDetails
// An array of key-value pairs. You can use tags to categorize your Amazon Web
// Services resources in different ways, for example, by purpose, owner, or
// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// .
Tags []Tag
noSmithyDocumentSerde
}
// Information about a project.
type ProjectSummary struct {
// The time that the project was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the project.
//
// This member is required.
ProjectArn *string
// The ID of the project.
//
// This member is required.
ProjectId *string
// The name of the project.
//
// This member is required.
ProjectName *string
// The status of the project.
//
// This member is required.
ProjectStatus ProjectStatus
// The description of the project.
ProjectDescription *string
noSmithyDocumentSerde
}
// Part of the SuggestionQuery type. Specifies a hint for retrieving property
// names that begin with the specified text.
type PropertyNameQuery struct {
// Text that begins a property's name.
//
// This member is required.
PropertyNameHint *string
noSmithyDocumentSerde
}
// A property name returned from a GetSearchSuggestions call that specifies a
// value in the PropertyNameQuery field.
type PropertyNameSuggestion struct {
// A suggested property name based on what you entered in the search textbox in
// the SageMaker console.
PropertyName *string
noSmithyDocumentSerde
}
// A key value pair used when you provision a project as a service catalog
// product. For information, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ProvisioningParameter struct {
// The key that identifies a provisioning parameter.
Key *string
// The value of the provisioning parameter.
Value *string
noSmithyDocumentSerde
}
// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
// task performed. Use one of the following prices for bounding box tasks. Prices
// are in US dollars and should be based on the complexity of the task; the longer
// it takes in your initial testing, the more you should offer.
// - 0.036
// - 0.048
// - 0.060
// - 0.072
// - 0.120
// - 0.240
// - 0.360
// - 0.480
// - 0.600
// - 0.720
// - 0.840
// - 0.960
// - 1.080
// - 1.200
//
// Use one of the following prices for image classification, text classification,
// and custom tasks. Prices are in US dollars.
// - 0.012
// - 0.024
// - 0.036
// - 0.048
// - 0.060
// - 0.072
// - 0.120
// - 0.240
// - 0.360
// - 0.480
// - 0.600
// - 0.720
// - 0.840
// - 0.960
// - 1.080
// - 1.200
//
// Use one of the following prices for semantic segmentation tasks. Prices are in
// US dollars.
// - 0.840
// - 0.960
// - 1.080
// - 1.200
//
// Use one of the following prices for Textract AnalyzeDocument Important Form Key
// Amazon Augmented AI review tasks. Prices are in US dollars.
// - 2.400
// - 2.280
// - 2.160
// - 2.040
// - 1.920
// - 1.800
// - 1.680
// - 1.560
// - 1.440
// - 1.320
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
//
// Use one of the following prices for Rekognition DetectModerationLabels Amazon
// Augmented AI review tasks. Prices are in US dollars.
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
//
// Use one of the following prices for Amazon Augmented AI custom human review
// tasks. Prices are in US dollars.
// - 1.200
// - 1.080
// - 0.960
// - 0.840
// - 0.720
// - 0.600
// - 0.480
// - 0.360
// - 0.240
// - 0.120
// - 0.072
// - 0.060
// - 0.048
// - 0.036
// - 0.024
// - 0.012
type PublicWorkforceTaskPrice struct {
// Defines the amount of money paid to an Amazon Mechanical Turk worker in United
// States dollars.
AmountInUsd *USD
noSmithyDocumentSerde
}
// Container for the metadata for a Quality check step. For more information, see
// the topic on QualityCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-quality-check)
// in the Amazon SageMaker Developer Guide.
type QualityCheckStepMetadata struct {
// The Amazon S3 URI of the baseline constraints file used for the drift check.
BaselineUsedForDriftCheckConstraints *string
// The Amazon S3 URI of the baseline statistics file used for the drift check.
BaselineUsedForDriftCheckStatistics *string
// The Amazon S3 URI of the newly calculated baseline constraints file.
CalculatedBaselineConstraints *string
// The Amazon S3 URI of the newly calculated baseline statistics file.
CalculatedBaselineStatistics *string
// The Amazon Resource Name (ARN) of the Quality check processing job that was run
// by this step execution.
CheckJobArn *string
// The type of the Quality check step.
CheckType *string
// The model package group name.
ModelPackageGroupName *string
// This flag indicates if a newly calculated baseline can be accessed through step
// properties BaselineUsedForDriftCheckConstraints and
// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
// baseline of the configured check type must also be available. These can be
// accessed through the BaselineUsedForDriftCheckConstraints and
// BaselineUsedForDriftCheckStatistics properties.
RegisterNewBaseline *bool
// This flag indicates if the drift check against the previous baseline will be
// skipped or not. If it is set to False , the previous baseline of the configured
// check type must be available.
SkipCheck *bool
// The Amazon S3 URI of violation report if violations are detected.
ViolationReport *string
noSmithyDocumentSerde
}
// A set of filters to narrow the set of lineage entities connected to the StartArn
// (s) returned by the QueryLineage API action.
type QueryFilters struct {
// Filter the lineage entities connected to the StartArn (s) after the create date.
CreatedAfter *time.Time
// Filter the lineage entities connected to the StartArn (s) by created date.
CreatedBefore *time.Time
// Filter the lineage entities connected to the StartArn (s) by the type of the
// lineage entity.
LineageTypes []LineageType
// Filter the lineage entities connected to the StartArn (s) after the last
// modified date.
ModifiedAfter *time.Time
// Filter the lineage entities connected to the StartArn (s) before the last
// modified date.
ModifiedBefore *time.Time
// Filter the lineage entities connected to the StartArn (s) by a set if property
// key value pairs. If multiple pairs are provided, an entity is included in the
// results if it matches any of the provided pairs.
Properties map[string]string
// Filter the lineage entities connected to the StartArn by type. For example:
// DataSet , Model , Endpoint , or ModelDeployment .
Types []string
noSmithyDocumentSerde
}
// The infrastructure configuration for deploying the model to a real-time
// inference endpoint.
type RealTimeInferenceConfig struct {
// The number of instances of the type specified by InstanceType .
//
// This member is required.
InstanceCount *int32
// The instance type the model is deployed to.
//
// This member is required.
InstanceType InstanceType
noSmithyDocumentSerde
}
// The recommended configuration to use for Real-Time Inference.
type RealTimeInferenceRecommendation struct {
// The recommended instance type for Real-Time Inference.
//
// This member is required.
InstanceType ProductionVariantInstanceType
// The recommendation ID which uniquely identifies each recommendation.
//
// This member is required.
RecommendationId *string
// The recommended environment variables to set in the model container for
// Real-Time Inference.
Environment map[string]string
noSmithyDocumentSerde
}
// Provides information about the output configuration for the compiled model.
type RecommendationJobCompiledOutputConfig struct {
// Identifies the Amazon S3 bucket where you want SageMaker to store the compiled
// model artifacts.
S3OutputUri *string
noSmithyDocumentSerde
}
// Specifies mandatory fields for running an Inference Recommender job directly in
// the CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
// API. The fields specified in ContainerConfig override the corresponding fields
// in the model package. Use ContainerConfig if you want to specify these fields
// for the recommendation job but don't want to edit them in your model package.
type RecommendationJobContainerConfig struct {
// Specifies the name and shape of the expected data inputs for your trained model
// with a JSON dictionary form. This field is used for optimizing your model using
// SageMaker Neo. For more information, see DataInputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html#sagemaker-Type-InputConfig-DataInputConfig)
// .
DataInputConfig *string
// The machine learning domain of the model and its components. Valid Values:
// COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
Domain *string
// The machine learning framework of the container image. Valid Values: TENSORFLOW
// | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
Framework *string
// The framework version of the container image.
FrameworkVersion *string
// The name of a pre-trained machine learning model benchmarked by Amazon
// SageMaker Inference Recommender that matches your model. Valid Values:
// efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 |
// inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
// resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
// | xceptionV1-keras | resnet50 | retinanet
NearestModelName *string
// Specifies the SamplePayloadUrl and all other sample payload-related fields.
PayloadConfig *RecommendationJobPayloadConfig
// The endpoint type to receive recommendations for. By default this is null, and
// the results of the inference recommendation job return a combined list of both
// real-time and serverless benchmarks. By specifying a value for this field, you
// can receive a longer list of benchmarks for the desired endpoint type.
SupportedEndpointType RecommendationJobSupportedEndpointType
// A list of the instance types that are used to generate inferences in real-time.
SupportedInstanceTypes []string
// The supported MIME types for the output data.
SupportedResponseMIMETypes []string
// The machine learning task that the model accomplishes. Valid Values:
// IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION |
// FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
Task *string
noSmithyDocumentSerde
}
// The details for a specific benchmark from an Inference Recommender job.
type RecommendationJobInferenceBenchmark struct {
// Defines the model configuration. Includes the specification name and
// environment parameters.
//
// This member is required.
ModelConfiguration *ModelConfiguration
// The endpoint configuration made by Inference Recommender during a
// recommendation job.
EndpointConfiguration *EndpointOutputConfiguration
// The metrics for an existing endpoint compared in an Inference Recommender job.
EndpointMetrics *InferenceMetrics
// The reason why a benchmark failed.
FailureReason *string
// A timestamp that shows when the benchmark completed.
InvocationEndTime *time.Time
// A timestamp that shows when the benchmark started.
InvocationStartTime *time.Time
// The metrics of recommendations.
Metrics *RecommendationMetrics
noSmithyDocumentSerde
}
// The input configuration of the recommendation job.
type RecommendationJobInputConfig struct {
// Specifies mandatory fields for running an Inference Recommender job. The fields
// specified in ContainerConfig override the corresponding fields in the model
// package.
ContainerConfig *RecommendationJobContainerConfig
// Specifies the endpoint configuration to use for a job.
EndpointConfigurations []EndpointInputConfiguration
// Existing customer endpoints on which to run an Inference Recommender job.
Endpoints []EndpointInfo
// Specifies the maximum duration of the job, in seconds. The maximum value is
// 18,000 seconds.
JobDurationInSeconds *int32
// The name of the created model.
ModelName *string
// The Amazon Resource Name (ARN) of a versioned model package.
ModelPackageVersionArn *string
// Defines the resource limit of the job.
ResourceLimit *RecommendationJobResourceLimit
// Specifies the traffic pattern of the job.
TrafficPattern *TrafficPattern
// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the
// storage volume attached to the ML compute instance that hosts the endpoint. This
// key will be passed to SageMaker Hosting for endpoint creation. The SageMaker
// execution role must have kms:CreateGrant permission in order to encrypt data on
// the storage volume of the endpoints created for inference recommendation. The
// inference recommendation job will fail asynchronously during endpoint
// configuration creation if the role passed does not have kms:CreateGrant
// permission. The KmsKeyId can be any of the following formats:
// - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
// - // KMS Key Alias "alias/ExampleAlias"
// - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
// documentation.
VolumeKmsKeyId *string
// Inference Recommender provisions SageMaker endpoints with access to VPC in the
// inference recommendation job.
VpcConfig *RecommendationJobVpcConfig
noSmithyDocumentSerde
}
// Provides information about the output configuration for the compiled model.
type RecommendationJobOutputConfig struct {
// Provides information about the output configuration for the compiled model.
CompiledOutputConfig *RecommendationJobCompiledOutputConfig
// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output
// artifacts with Amazon S3 server-side encryption. The SageMaker execution role
// must have kms:GenerateDataKey permission. The KmsKeyId can be any of the
// following formats:
// - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
// - // KMS Key Alias "alias/ExampleAlias"
// - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
// documentation.
KmsKeyId *string
noSmithyDocumentSerde
}
// The configuration for the payload for a recommendation job.
type RecommendationJobPayloadConfig struct {
// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
// stored. This path must point to a single gzip compressed tar archive (.tar.gz
// suffix).
SamplePayloadUrl *string
// The supported MIME types for the input data.
SupportedContentTypes []string
noSmithyDocumentSerde
}
// Specifies the maximum number of jobs that can run in parallel and the maximum
// number of jobs that can run.
type RecommendationJobResourceLimit struct {
// Defines the maximum number of load tests.
MaxNumberOfTests *int32
// Defines the maximum number of parallel load tests.
MaxParallelOfTests *int32
noSmithyDocumentSerde
}
// Specifies conditions for stopping a job. When a job reaches a stopping
// condition limit, SageMaker ends the job.
type RecommendationJobStoppingConditions struct {
// Stops a load test when the number of invocations (TPS) peaks and flattens,
// which means that the instance has reached capacity. The default value is Stop .
// If you want the load test to continue after invocations have flattened, set the
// value to Continue .
FlatInvocations FlatInvocations
// The maximum number of requests per minute expected for the endpoint.
MaxInvocations *int32
// The interval of time taken by a model to respond as viewed from SageMaker. The
// interval includes the local communication time taken to send the request and to
// fetch the response from the container of a model and the time taken to complete
// the inference in the container.
ModelLatencyThresholds []ModelLatencyThreshold
noSmithyDocumentSerde
}
// Inference Recommender provisions SageMaker endpoints with access to VPC in the
// inference recommendation job.
type RecommendationJobVpcConfig struct {
// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
// security groups for the VPC that is specified in the Subnets field.
//
// This member is required.
SecurityGroupIds []string
// The ID of the subnets in the VPC to which you want to connect your model.
//
// This member is required.
Subnets []string
noSmithyDocumentSerde
}
// The metrics of recommendations.
type RecommendationMetrics struct {
// Defines the cost per hour for the instance.
//
// This member is required.
CostPerHour *float32
// Defines the cost per inference for the instance .
//
// This member is required.
CostPerInference *float32
// The expected maximum number of requests per minute for the instance.
//
// This member is required.
MaxInvocations *int32
// The expected model latency at maximum invocation per minute for the instance.
//
// This member is required.
ModelLatency *int32
// The expected CPU utilization at maximum invocations per minute for the
// instance. NaN indicates that the value is not available.
CpuUtilization *float32
// The expected memory utilization at maximum invocations per minute for the
// instance. NaN indicates that the value is not available.
MemoryUtilization *float32
// The time it takes to launch new compute resources for a serverless endpoint.
// The time can vary depending on the model size, how long it takes to download the
// model, and the start-up time of the container. NaN indicates that the value is
// not available.
ModelSetupTime *int32
noSmithyDocumentSerde
}
// Configuration for Redshift Dataset Definition input.
type RedshiftDatasetDefinition struct {
// The Redshift cluster Identifier.
//
// This member is required.
ClusterId *string
// The IAM role attached to your Redshift cluster that Amazon SageMaker uses to
// generate datasets.
//
// This member is required.
ClusterRoleArn *string
// The name of the Redshift database used in Redshift query execution.
//
// This member is required.
Database *string
// The database user name used in Redshift query execution.
//
// This member is required.
DbUser *string
// The data storage format for Redshift query results.
//
// This member is required.
OutputFormat RedshiftResultFormat
// The location in Amazon S3 where the Redshift query results are stored.
//
// This member is required.
OutputS3Uri *string
// The SQL query statements to be executed.
//
// This member is required.
QueryString *string
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt data from a Redshift execution.
KmsKeyId *string
// The compression used for Redshift query results.
OutputCompression RedshiftResultCompressionType
noSmithyDocumentSerde
}
// Metadata for a register model job step.
type RegisterModelStepMetadata struct {
// The Amazon Resource Name (ARN) of the model package.
Arn *string
noSmithyDocumentSerde
}
// Configuration for remote debugging for the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// API. To learn more about the remote debugging functionality of SageMaker, see
// Access a training container through Amazon Web Services Systems Manager (SSM)
// for remote debugging (https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html)
// .
type RemoteDebugConfig struct {
// If set to True, enables remote debugging.
EnableRemoteDebug *bool
noSmithyDocumentSerde
}
// Configuration for remote debugging for the UpdateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateTrainingJob.html)
// API. To learn more about the remote debugging functionality of SageMaker, see
// Access a training container through Amazon Web Services Systems Manager (SSM)
// for remote debugging (https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html)
// .
type RemoteDebugConfigForUpdate struct {
// If set to True, enables remote debugging.
EnableRemoteDebug *bool
noSmithyDocumentSerde
}
// Contains input values for a task.
type RenderableTask struct {
// A JSON object that contains values for the variables defined in the template.
// It is made available to the template under the substitution variable task.input
// . For example, if you define a variable task.input.text in your template, you
// can supply the variable in the JSON object as "text": "sample text" .
//
// This member is required.
Input *string
noSmithyDocumentSerde
}
// A description of an error that occurred while rendering the template.
type RenderingError struct {
// A unique identifier for a specific class of errors.
//
// This member is required.
Code *string
// A human-readable message describing the error.
//
// This member is required.
Message *string
noSmithyDocumentSerde
}
// Specifies an authentication configuration for the private docker registry where
// your model image is hosted. Specify a value for this property only if you
// specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig
// object that you passed to a call to CreateModel and the private Docker registry
// where the model image is hosted requires authentication.
type RepositoryAuthConfig struct {
// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that
// provides credentials to authenticate to the private Docker registry where your
// model image is hosted. For information about how to create an Amazon Web
// Services Lambda function, see Create a Lambda function with the console (https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html)
// in the Amazon Web Services Lambda Developer Guide.
//
// This member is required.
RepositoryCredentialsProviderArn *string
noSmithyDocumentSerde
}
// The resolved attributes.
type ResolvedAttributes struct {
// Specifies a metric to minimize or maximize as the objective of an AutoML job.
AutoMLJobObjective *AutoMLJobObjective
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
// The problem type.
ProblemType ProblemType
noSmithyDocumentSerde
}
// A resource catalog containing all of the resources of a specific resource type
// within a resource owner account. For an example on sharing the Amazon SageMaker
// Feature Store DefaultFeatureGroupCatalog , see Share Amazon SageMaker Catalog
// resource type (https://docs.aws.amazon.com/sagemaker/latest/APIReference/feature-store-cross-account-discoverability-share-sagemaker-catalog.html)
// in the Amazon SageMaker Developer Guide.
type ResourceCatalog struct {
// The time the ResourceCatalog was created.
//
// This member is required.
CreationTime *time.Time
// A free form description of the ResourceCatalog .
//
// This member is required.
Description *string
// The Amazon Resource Name (ARN) of the ResourceCatalog .
//
// This member is required.
ResourceCatalogArn *string
// The name of the ResourceCatalog .
//
// This member is required.
ResourceCatalogName *string
noSmithyDocumentSerde
}
// Describes the resources, including machine learning (ML) compute instances and
// ML storage volumes, to use for model training.
type ResourceConfig struct {
// The size of the ML storage volume that you want to provision. ML storage
// volumes store model artifacts and incremental states. Training algorithms might
// also use the ML storage volume for scratch space. If you want to store the
// training data in the ML storage volume, choose File as the TrainingInputMode in
// the algorithm specification. When using an ML instance with NVMe SSD volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes)
// , SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage.
// Available storage is fixed to the NVMe-type instance's storage capacity.
// SageMaker configures storage paths for training datasets, checkpoints, model
// artifacts, and outputs to use the entire capacity of the instance storage. For
// example, ML instance families with the NVMe-type instance storage include ml.p4d
// , ml.g4dn , and ml.g5 . When using an ML instance with the EBS-only storage
// option and without instance storage, you must define the size of EBS volume
// through VolumeSizeInGB in the ResourceConfig API. For example, ML instance
// families that use EBS volumes include ml.c5 and ml.p2 . To look up instance
// types and their instance storage types and volumes, see Amazon EC2 Instance
// Types (http://aws.amazon.com/ec2/instance-types/) . To find the default local
// paths defined by the SageMaker training platform, see Amazon SageMaker Training
// Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html)
// .
//
// This member is required.
VolumeSizeInGB *int32
// The number of ML compute instances to use. For distributed training, provide a
// value greater than 1.
InstanceCount *int32
// The configuration of a heterogeneous cluster in JSON format.
InstanceGroups []InstanceGroup
// The ML compute instance type. SageMaker Training on Amazon Elastic Compute
// Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.
// Amazon EC2 P4de instances (http://aws.amazon.com/ec2/instance-types/p4/)
// (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB
// high-performance HBM2e GPU memory, which accelerate the speed of training ML
// models that need to be trained on large datasets of high-resolution data. In
// this preview release, Amazon SageMaker supports ML training jobs on P4de
// instances ( ml.p4de.24xlarge ) to reduce model training time. The
// ml.p4de.24xlarge instances are available in the following Amazon Web Services
// Regions.
// - US East (N. Virginia) (us-east-1)
// - US West (Oregon) (us-west-2)
// To request quota limit increase and start using P4de instances, contact the
// SageMaker Training service team through your account team.
InstanceType TrainingInstanceType
// The duration of time in seconds to retain configured resources in a warm pool
// for subsequent training jobs.
KeepAlivePeriodInSeconds *int32
// The Amazon Web Services KMS key that SageMaker uses to encrypt data on the
// storage volume attached to the ML compute instance(s) that run the training job.
// Certain Nitro-based instances include local storage, dependent on the instance
// type. Local storage volumes are encrypted using a hardware module on the
// instance. You can't request a VolumeKmsKeyId when using an instance type with
// local storage. For a list of instance types that support local instance storage,
// see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
// . For more information about local instance storage encryption, see SSD
// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
// . The VolumeKmsKeyId can be in any of the following formats:
// - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
// - // Amazon Resource Name (ARN) of a KMS Key
// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
VolumeKmsKeyId *string
noSmithyDocumentSerde
}
// The ResourceConfig to update KeepAlivePeriodInSeconds . Other fields in the
// ResourceConfig cannot be updated.
type ResourceConfigForUpdate struct {
// The KeepAlivePeriodInSeconds value specified in the ResourceConfig to update.
//
// This member is required.
KeepAlivePeriodInSeconds *int32
noSmithyDocumentSerde
}
// Specifies the maximum number of training jobs and parallel training jobs that a
// hyperparameter tuning job can launch.
type ResourceLimits struct {
// The maximum number of concurrent training jobs that a hyperparameter tuning job
// can launch.
//
// This member is required.
MaxParallelTrainingJobs *int32
// The maximum number of training jobs that a hyperparameter tuning job can launch.
MaxNumberOfTrainingJobs *int32
// The maximum time in seconds that a hyperparameter tuning job can run.
MaxRuntimeInSeconds *int32
noSmithyDocumentSerde
}
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
type ResourceSpec struct {
// The instance type that the image version runs on. JupyterServer apps only
// support the system value. For KernelGateway apps, the system value is
// translated to ml.t3.medium . KernelGateway apps also support all other values
// for available instance types.
InstanceType AppInstanceType
// The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the
// Resource.
LifecycleConfigArn *string
// The ARN of the SageMaker image that the image version belongs to.
SageMakerImageArn *string
// The SageMakerImageVersionAlias of the image to launch with. This value is in
// SemVer 2.0.0 versioning format.
SageMakerImageVersionAlias *string
// The ARN of the image version created on the instance.
SageMakerImageVersionArn *string
noSmithyDocumentSerde
}
// The retention policy for data stored on an Amazon Elastic File System (EFS)
// volume.
type RetentionPolicy struct {
// The default is Retain , which specifies to keep the data stored on the EFS
// volume. Specify Delete to delete the data stored on the EFS volume.
HomeEfsFileSystem RetentionType
noSmithyDocumentSerde
}
// The retry strategy to use when a training job fails due to an
// InternalServerError . RetryStrategy is specified as part of the
// CreateTrainingJob and CreateHyperParameterTuningJob requests. You can add the
// StoppingCondition parameter to the request to limit the training time for the
// complete job.
type RetryStrategy struct {
// The number of times to retry the job. When the job is retried, it's
// SecondaryStatus is changed to STARTING .
//
// This member is required.
MaximumRetryAttempts *int32
noSmithyDocumentSerde
}
// Specifies a rolling deployment strategy for updating a SageMaker endpoint.
type RollingUpdatePolicy struct {
// Batch size for each rolling step to provision capacity and turn on traffic on
// the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value
// must be between 5% to 50% of the variant's total instance count.
//
// This member is required.
MaximumBatchSize *CapacitySize
// The length of the baking period, during which SageMaker monitors alarms for
// each batch on the new fleet.
//
// This member is required.
WaitIntervalInSeconds *int32
// The time limit for the total deployment. Exceeding this limit causes a timeout.
MaximumExecutionTimeoutInSeconds *int32
// Batch size for rollback to the old endpoint fleet. Each rolling step to
// provision capacity and turn on traffic on the old endpoint fleet, and terminate
// capacity on the new endpoint fleet. If this field is absent, the default value
// will be set to 100% of total capacity which means to bring up the whole capacity
// of the old fleet at once during rollback.
RollbackMaximumBatchSize *CapacitySize
noSmithyDocumentSerde
}
// A collection of settings that apply to an RSessionGateway app.
type RSessionAppSettings struct {
// A list of custom SageMaker images that are configured to run as a RSession app.
CustomImages []CustomImage
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
noSmithyDocumentSerde
}
// A collection of settings that configure user interaction with the
// RStudioServerPro app.
type RStudioServerProAppSettings struct {
// Indicates whether the current user has access to the RStudioServerPro app.
AccessStatus RStudioServerProAccessStatus
// The level of permissions that the user has within the RStudioServerPro app.
// This value defaults to `User`. The `Admin` value allows the user access to the
// RStudio Administrative Dashboard.
UserGroup RStudioServerProUserGroup
noSmithyDocumentSerde
}
// A collection of settings that configure the RStudioServerPro Domain-level app.
type RStudioServerProDomainSettings struct {
// The ARN of the execution role for the RStudioServerPro Domain-level app.
//
// This member is required.
DomainExecutionRoleArn *string
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
// A URL pointing to an RStudio Connect server.
RStudioConnectUrl *string
// A URL pointing to an RStudio Package Manager server.
RStudioPackageManagerUrl *string
noSmithyDocumentSerde
}
// A collection of settings that update the current configuration for the
// RStudioServerPro Domain-level app.
type RStudioServerProDomainSettingsForUpdate struct {
// The execution role for the RStudioServerPro Domain-level app.
//
// This member is required.
DomainExecutionRoleArn *string
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
// A URL pointing to an RStudio Connect server.
RStudioConnectUrl *string
// A URL pointing to an RStudio Package Manager server.
RStudioPackageManagerUrl *string
noSmithyDocumentSerde
}
// Describes the S3 data source. Your input bucket must be in the same Amazon Web
// Services region as your training job.
type S3DataSource struct {
// If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all
// objects that match the specified key name prefix for model training. If you
// choose ManifestFile , S3Uri identifies an object that is a manifest file
// containing a list of object keys that you want SageMaker to use for model
// training. If you choose AugmentedManifestFile , S3Uri identifies an object that
// is an augmented manifest file in JSON lines format. This file contains the data
// you want to use for model training. AugmentedManifestFile can only be used if
// the Channel's input mode is Pipe .
//
// This member is required.
S3DataType S3DataType
// Depending on the value specified for the S3DataType , identifies either a key
// name prefix or a manifest. For example:
// - A key name prefix might look like this: s3://bucketname/exampleprefix
// - A manifest might look like this: s3://bucketname/example.manifest A manifest
// is an S3 object which is a JSON file consisting of an array of elements. The
// first element is a prefix which is followed by one or more suffixes. SageMaker
// appends the suffix elements to the prefix to get a full set of S3Uri . Note
// that the prefix must be a valid non-empty S3Uri that precludes users from
// specifying a manifest whose individual S3Uri is sourced from different S3
// buckets. The following code example shows a valid manifest format: [
// {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
// "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is
// equivalent to the following S3Uri list:
// s3://customer_bucket/some/prefix/relative/path/to/custdata-1
// s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
// s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
// S3Uri in this manifest is the input data for the channel for this data source.
// The object that each S3Uri points to must be readable by the IAM role that
// SageMaker uses to perform tasks on your behalf.
// Your input bucket must be located in same Amazon Web Services region as your
// training job.
//
// This member is required.
S3Uri *string
// A list of one or more attribute names to use that are found in a specified
// augmented manifest file.
AttributeNames []string
// A list of names of instance groups that get data from the S3 data source.
InstanceGroupNames []string
// If you want SageMaker to replicate the entire dataset on each ML compute
// instance that is launched for model training, specify FullyReplicated . If you
// want SageMaker to replicate a subset of data on each ML compute instance that is
// launched for model training, specify ShardedByS3Key . If there are n ML compute
// instances launched for a training job, each instance gets approximately 1/n of
// the number of S3 objects. In this case, model training on each machine uses only
// the subset of training data. Don't choose more ML compute instances for training
// than available S3 objects. If you do, some nodes won't get any data and you will
// pay for nodes that aren't getting any training data. This applies in both File
// and Pipe modes. Keep this in mind when developing algorithms. In distributed
// training, where you use multiple ML compute EC2 instances, you might choose
// ShardedByS3Key . If the algorithm requires copying training data to the ML
// storage volume (when TrainingInputMode is set to File ), this copies 1/n of the
// number of objects.
S3DataDistributionType S3DataDistribution
noSmithyDocumentSerde
}
// Specifies the S3 location of ML model data to deploy.
type S3ModelDataSource struct {
// Specifies how the ML model data is prepared. If you choose Gzip and choose
// S3Object as the value of S3DataType , S3Uri identifies an object that is a
// gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the
// object during model deployment. If you choose None and chooose S3Object as the
// value of S3DataType , S3Uri identifies an object that represents an
// uncompressed ML model to deploy. If you choose None and choose S3Prefix as the
// value of S3DataType , S3Uri identifies a key name prefix, under which all
// objects represents the uncompressed ML model to deploy. If you choose None, then
// SageMaker will follow rules below when creating model data files under
// /opt/ml/model directory for use by your inference code:
// - If you choose S3Object as the value of S3DataType , then SageMaker will
// split the key of the S3 object referenced by S3Uri by slash (/), and use the
// last part as the filename of the file holding the content of the S3 object.
// - If you choose S3Prefix as the value of S3DataType , then for each S3 object
// under the key name pefix referenced by S3Uri , SageMaker will trim its key by
// the prefix, and use the remainder as the path (relative to /opt/ml/model ) of
// the file holding the content of the S3 object. SageMaker will split the
// remainder by slash (/), using intermediate parts as directory names and the last
// part as filename of the file holding the content of the S3 object.
// - Do not use any of the following as file names or directory names:
// - An empty or blank string
// - A string which contains null bytes
// - A string longer than 255 bytes
// - A single dot ( . )
// - A double dot ( .. )
// - Ambiguous file names will result in model deployment failure. For example,
// if your uncompressed ML model consists of two S3 objects
// s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you
// specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value
// of S3DataType , then it will result in name clash between
// /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a
// directory).
// - Do not organize the model artifacts in S3 console using folders (https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html)
// . When you create a folder in S3 console, S3 creates a 0-byte object with a key
// set to the folder name you provide. They key of the 0-byte object ends with a
// slash (/) which violates SageMaker restrictions on model artifact file names,
// leading to model deployment failure.
//
// This member is required.
CompressionType ModelCompressionType
// Specifies the type of ML model data to deploy. If you choose S3Prefix , S3Uri
// identifies a key name prefix. SageMaker uses all objects that match the
// specified key name prefix as part of the ML model data to deploy. A valid key
// name prefix identified by S3Uri always ends with a forward slash (/). If you
// choose S3Object , S3Uri identifies an object that is the ML model data to
// deploy.
//
// This member is required.
S3DataType S3ModelDataType
// Specifies the S3 path of ML model data to deploy.
//
// This member is required.
S3Uri *string
// Specifies the access configuration file for the ML model. You can explicitly
// accept the model end-user license agreement (EULA) within the ModelAccessConfig
// . You are responsible for reviewing and complying with any applicable license
// terms and making sure they are acceptable for your use case before downloading
// or using a model.
ModelAccessConfig *ModelAccessConfig
noSmithyDocumentSerde
}
// The Amazon Simple Storage (Amazon S3) location and and security configuration
// for OfflineStore .
type S3StorageConfig struct {
// The S3 URI, or location in Amazon S3, of OfflineStore . S3 URIs have a format
// similar to the following: s3://example-bucket/prefix/ .
//
// This member is required.
S3Uri *string
// The Amazon Web Services Key Management Service (KMS) key ARN of the key used to
// encrypt any objects written into the OfflineStore S3 location. The IAM roleARN
// that is passed as a parameter to CreateFeatureGroup must have below permissions
// to the KmsKeyId :
// - "kms:GenerateDataKey"
KmsKeyId *string
// The S3 path where offline records are written.
ResolvedOutputS3Uri *string
noSmithyDocumentSerde
}
// An object containing a recommended scaling policy.
//
// The following types satisfy this interface:
//
// ScalingPolicyMemberTargetTracking
type ScalingPolicy interface {
isScalingPolicy()
}
// A target tracking scaling policy. Includes support for predefined or customized
// metrics.
type ScalingPolicyMemberTargetTracking struct {
Value TargetTrackingScalingPolicyConfiguration
noSmithyDocumentSerde
}
func (*ScalingPolicyMemberTargetTracking) isScalingPolicy() {}
// The metric for a scaling policy.
type ScalingPolicyMetric struct {
// The number of invocations sent to a model, normalized by InstanceCount in each
// ProductionVariant. 1/numberOfInstances is sent as the value on each request,
// where numberOfInstances is the number of active instances for the
// ProductionVariant behind the endpoint at the time of the request.
InvocationsPerInstance *int32
// The interval of time taken by a model to respond as viewed from SageMaker. This
// interval includes the local communication times taken to send the request and to
// fetch the response from the container of a model and the time taken to complete
// the inference in the container.
ModelLatency *int32
noSmithyDocumentSerde
}
// An object where you specify the anticipated traffic pattern for an endpoint.
type ScalingPolicyObjective struct {
// The maximum number of expected requests to your endpoint per minute.
MaxInvocationsPerMinute *int32
// The minimum number of expected requests to your endpoint per minute.
MinInvocationsPerMinute *int32
noSmithyDocumentSerde
}
// Configuration details about the monitoring schedule.
type ScheduleConfig struct {
// A cron expression that describes details about the monitoring schedule. The
// supported cron expressions are:
// - If you want to set the job to start every hour, use the following: Hourly:
// cron(0 * ? * * *)
// - If you want to start the job daily: cron(0 [00-23] ? * * *)
// - If you want to run the job one time, immediately, use the following
// keyword: NOW
// For example, the following are valid cron expressions:
// - Daily at noon UTC: cron(0 12 ? * * *)
// - Daily at midnight UTC: cron(0 0 ? * * *)
// To support running every 6, 12 hours, the following are also supported: cron(0
// [00-23]/[01-24] ? * * *) For example, the following are valid cron expressions:
// - Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
// - Every two hours starting at midnight: cron(0 0/2 ? * * *)
//
// - Even though the cron expression is set to start at 5PM UTC, note that there
// could be a delay of 0-20 minutes from the actual requested time to run the
// execution.
// - We recommend that if you would like a daily schedule, you do not provide
// this parameter. Amazon SageMaker will pick a time for running every day.
// You can also specify the keyword NOW to run the monitoring job immediately, one
// time, without recurring.
//
// This member is required.
ScheduleExpression *string
// Sets the end time for a monitoring job window. Express this time as an offset
// to the times that you schedule your monitoring jobs to run. You schedule
// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
// ISO 8601 duration format. For example, if you want to end the window one hour
// before the start of each monitoring job, you would specify: "-PT1H" . The end
// time that you specify must not follow the start time that you specify by more
// than 24 hours. You specify the start time with the DataAnalysisStartTime
// parameter. If you set ScheduleExpression to NOW , this parameter is required.
DataAnalysisEndTime *string
// Sets the start time for a monitoring job window. Express this time as an offset
// to the times that you schedule your monitoring jobs to run. You schedule
// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
// ISO 8601 duration format. For example, if you want to monitor the five hours of
// data in your dataset that precede the start of each monitoring job, you would
// specify: "-PT5H" . The start time that you specify must not precede the end time
// that you specify by more than 24 hours. You specify the end time with the
// DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW , this
// parameter is required.
DataAnalysisStartTime *string
noSmithyDocumentSerde
}
// A multi-expression that searches for the specified resource or resources in a
// search. All resource objects that satisfy the expression's condition are
// included in the search results. You must specify at least one subexpression,
// filter, or nested filter. A SearchExpression can contain up to twenty elements.
// A SearchExpression contains the following components:
// - A list of Filter objects. Each filter defines a simple Boolean expression
// comprised of a resource property name, Boolean operator, and value.
// - A list of NestedFilter objects. Each nested filter defines a list of Boolean
// expressions using a list of resource properties. A nested filter is satisfied if
// a single object in the list satisfies all Boolean expressions.
// - A list of SearchExpression objects. A search expression object can be nested
// in a list of search expression objects.
// - A Boolean operator: And or Or .
type SearchExpression struct {
// A list of filter objects.
Filters []Filter
// A list of nested filter objects.
NestedFilters []NestedFilters
// A Boolean operator used to evaluate the search expression. If you want every
// conditional statement in all lists to be satisfied for the entire search
// expression to be true, specify And . If only a single conditional statement
// needs to be true for the entire search expression to be true, specify Or . The
// default value is And .
Operator BooleanOperator
// A list of search expression objects.
SubExpressions []SearchExpression
noSmithyDocumentSerde
}
// A single resource returned as part of the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API response.
type SearchRecord struct {
// A hosted endpoint for real-time inference.
Endpoint *Endpoint
// The properties of an experiment.
Experiment *Experiment
// Amazon SageMaker Feature Store stores features in a collection called Feature
// Group. A Feature Group can be visualized as a table which has rows, with a
// unique identifier for each row where each column in the table is a feature. In
// principle, a Feature Group is composed of features and values per features.
FeatureGroup *FeatureGroup
// The feature metadata used to search through the features.
FeatureMetadata *FeatureMetadata
// The properties of a hyperparameter tuning job.
HyperParameterTuningJob *HyperParameterTuningJobSearchEntity
// A model displayed in the Amazon SageMaker Model Dashboard.
Model *ModelDashboardModel
// An Amazon SageMaker Model Card that documents details about a machine learning
// model.
ModelCard *ModelCard
// A versioned model that can be deployed for SageMaker inference.
ModelPackage *ModelPackage
// A group of versioned models in the model registry.
ModelPackageGroup *ModelPackageGroup
// A SageMaker Model Building Pipeline instance.
Pipeline *Pipeline
// An execution of a pipeline.
PipelineExecution *PipelineExecution
// The properties of a project.
Project *Project
// The properties of a training job.
TrainingJob *TrainingJob
// The properties of a trial.
Trial *Trial
// The properties of a trial component.
TrialComponent *TrialComponent
noSmithyDocumentSerde
}
// An array element of SecondaryStatusTransitions for DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html)
// . It provides additional details about a status that the training job has
// transitioned through. A training job can be in one of several states, for
// example, starting, downloading, training, or uploading. Within each state, there
// are a number of intermediate states. For example, within the starting state,
// SageMaker could be starting the training job or launching the ML instances.
// These transitional states are referred to as the job's secondary status.
type SecondaryStatusTransition struct {
// A timestamp that shows when the training job transitioned to the current
// secondary status state.
//
// This member is required.
StartTime *time.Time
// Contains a secondary status information from a training job. Status might be
// one of the following secondary statuses: InProgress
// - Starting - Starting the training job.
// - Downloading - An optional stage for algorithms that support File training
// input mode. It indicates that data is being downloaded to the ML storage
// volumes.
// - Training - Training is in progress.
// - Uploading - Training is complete and the model artifacts are being uploaded
// to the S3 location.
// Completed
// - Completed - The training job has completed.
// Failed
// - Failed - The training job has failed. The reason for the failure is returned
// in the FailureReason field of DescribeTrainingJobResponse .
// Stopped
// - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
// runtime.
// - Stopped - The training job has stopped.
// Stopping
// - Stopping - Stopping the training job.
// We no longer support the following secondary statuses:
// - LaunchingMLInstances
// - PreparingTrainingStack
// - DownloadingTrainingImage
//
// This member is required.
Status SecondaryStatus
// A timestamp that shows when the training job transitioned out of this secondary
// status state into another secondary status state or when the training job has
// ended.
EndTime *time.Time
// A detailed description of the progress within a secondary status. SageMaker
// provides secondary statuses and status messages that apply to each of them:
// Starting
// - Starting the training job.
// - Launching requested ML instances.
// - Insufficient capacity error from EC2 while launching instances, retrying!
// - Launched instance was unhealthy, replacing it!
// - Preparing the instances for training.
// Training
// - Training image download completed. Training in progress.
// Status messages are subject to change. Therefore, we recommend not including
// them in code that programmatically initiates actions. For examples, don't use
// status messages in if statements. To have an overview of your training job's
// progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html)
// , and StatusMessage together. For example, at the start of a training job, you
// might see the following:
// - TrainingJobStatus - InProgress
// - SecondaryStatus - Training
// - StatusMessage - Downloading the training image
StatusMessage *string
noSmithyDocumentSerde
}
// A step selected to run in selective execution mode.
type SelectedStep struct {
// The name of the pipeline step.
//
// This member is required.
StepName *string
noSmithyDocumentSerde
}
// The selective execution configuration applied to the pipeline run.
type SelectiveExecutionConfig struct {
// A list of pipeline steps to run. All step(s) in all path(s) between two
// selected steps should be included.
//
// This member is required.
SelectedSteps []SelectedStep
// The ARN from a reference execution of the current pipeline. Used to copy input
// collaterals needed for the selected steps to run. The execution status of the
// pipeline can be either Failed or Success . This field is required if the steps
// you specify for SelectedSteps depend on output collaterals from any
// non-specified pipeline steps. For more information, see Selective Execution for
// Pipeline Steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-selective-ex.html)
// .
SourcePipelineExecutionArn *string
noSmithyDocumentSerde
}
// The ARN from an execution of the current pipeline.
type SelectiveExecutionResult struct {
// The ARN from an execution of the current pipeline.
SourcePipelineExecutionArn *string
noSmithyDocumentSerde
}
// Details of a provisioned service catalog product. For information about service
// catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisionedProductDetails struct {
// The ID of the provisioned product.
ProvisionedProductId *string
// The current status of the product.
// - AVAILABLE - Stable state, ready to perform any operation. The most recent
// operation succeeded and completed.
// - UNDER_CHANGE - Transitive state. Operations performed might not have valid
// results. Wait for an AVAILABLE status before performing operations.
// - TAINTED - Stable state, ready to perform any operation. The stack has
// completed the requested operation but is not exactly what was requested. For
// example, a request to update to a new version failed and the stack rolled back
// to the current version.
// - ERROR - An unexpected error occurred. The provisioned product exists but the
// stack is not running. For example, CloudFormation received a parameter value
// that was not valid and could not launch the stack.
// - PLAN_IN_PROGRESS - Transitive state. The plan operations were performed to
// provision a new product, but resources have not yet been created. After
// reviewing the list of resources to be created, execute the plan. Wait for an
// AVAILABLE status before performing operations.
ProvisionedProductStatusMessage *string
noSmithyDocumentSerde
}
// Details that you specify to provision a service catalog product. For
// information about service catalog, see What is Amazon Web Services Service
// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisioningDetails struct {
// The ID of the product to provision.
//
// This member is required.
ProductId *string
// The path identifier of the product. This value is optional if the product has a
// default path, and required if the product has more than one path.
PathId *string
// The ID of the provisioning artifact.
ProvisioningArtifactId *string
// A list of key value pairs that you specify when you provision a product.
ProvisioningParameters []ProvisioningParameter
noSmithyDocumentSerde
}
// Details that you specify to provision a service catalog product. For
// information about service catalog, see What is Amazon Web Services Service
// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisioningUpdateDetails struct {
// The ID of the provisioning artifact.
ProvisioningArtifactId *string
// A list of key value pairs that you specify when you provision a product.
ProvisioningParameters []ProvisioningParameter
noSmithyDocumentSerde
}
// The configuration of ShadowMode inference experiment type, which specifies a
// production variant to take all the inference requests, and a shadow variant to
// which Amazon SageMaker replicates a percentage of the inference requests. For
// the shadow variant it also specifies the percentage of requests that Amazon
// SageMaker replicates.
type ShadowModeConfig struct {
// List of shadow variant configurations.
//
// This member is required.
ShadowModelVariants []ShadowModelVariantConfig
// The name of the production variant, which takes all the inference requests.
//
// This member is required.
SourceModelVariantName *string
noSmithyDocumentSerde
}
// The name and sampling percentage of a shadow variant.
type ShadowModelVariantConfig struct {
// The percentage of inference requests that Amazon SageMaker replicates from the
// production variant to the shadow variant.
//
// This member is required.
SamplingPercentage *int32
// The name of the shadow variant.
//
// This member is required.
ShadowModelVariantName *string
noSmithyDocumentSerde
}
// Specifies options for sharing Amazon SageMaker Studio notebooks. These settings
// are specified as part of DefaultUserSettings when the CreateDomain API is
// called, and as part of UserSettings when the CreateUserProfile API is called.
// When SharingSettings is not specified, notebook sharing isn't allowed.
type SharingSettings struct {
// Whether to include the notebook cell output when sharing the notebook. The
// default is Disabled .
NotebookOutputOption NotebookOutputOption
// When NotebookOutputOption is Allowed , the Amazon Web Services Key Management
// Service (KMS) encryption key ID used to encrypt the notebook cell output in the
// Amazon S3 bucket.
S3KmsKeyId *string
// When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the
// shared notebook snapshots.
S3OutputPath *string
noSmithyDocumentSerde
}
// A configuration for a shuffle option for input data in a channel. If you use
// S3Prefix for S3DataType , the results of the S3 key prefix matches are shuffled.
// If you use ManifestFile , the order of the S3 object references in the
// ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the
// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
// determined using the Seed value. For Pipe input mode, when ShuffleConfig is
// specified shuffling is done at the start of every epoch. With large datasets,
// this ensures that the order of the training data is different for each epoch,
// and it helps reduce bias and possible overfitting. In a multi-node training job
// when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key ,
// the data is shuffled across nodes so that the content sent to a particular node
// on the first epoch might be sent to a different node on the second epoch.
type ShuffleConfig struct {
// Determines the shuffling order in ShuffleConfig value.
//
// This member is required.
Seed *int64
noSmithyDocumentSerde
}
// Specifies an algorithm that was used to create the model package. The algorithm
// must be either an algorithm resource in your SageMaker account or an algorithm
// in Amazon Web Services Marketplace that you are subscribed to.
type SourceAlgorithm struct {
// The name of an algorithm that was used to create the model package. The
// algorithm must be either an algorithm resource in your SageMaker account or an
// algorithm in Amazon Web Services Marketplace that you are subscribed to.
//
// This member is required.
AlgorithmName *string
// The Amazon S3 path where the model artifacts, which result from model training,
// are stored. This path must point to a single gzip compressed tar archive (
// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
// Amazon Web Services region as the algorithm.
ModelDataUrl *string
noSmithyDocumentSerde
}
// A list of algorithms that were used to create a model package.
type SourceAlgorithmSpecification struct {
// A list of the algorithms that were used to create a model package.
//
// This member is required.
SourceAlgorithms []SourceAlgorithm
noSmithyDocumentSerde
}
// A list of IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
// ). Used to create an allow list of IP addresses for a private workforce. Workers
// will only be able to login to their worker portal from an IP address within this
// range. By default, a workforce isn't restricted to specific IP addresses.
type SourceIpConfig struct {
// A list of one to ten Classless Inter-Domain Routing (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
// (CIDR) values. Maximum: Ten CIDR values The following Length Constraints apply
// to individual CIDR values in the CIDR value list.
//
// This member is required.
Cidrs []string
noSmithyDocumentSerde
}
// The application settings for a Code Editor space.
type SpaceCodeEditorAppSettings struct {
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
noSmithyDocumentSerde
}
// The space's details.
type SpaceDetails struct {
// The creation time.
CreationTime *time.Time
// The ID of the associated Domain.
DomainId *string
// The last modified time.
LastModifiedTime *time.Time
// Specifies summary information about the ownership settings.
OwnershipSettingsSummary *OwnershipSettingsSummary
// The name of the space that appears in the Studio UI.
SpaceDisplayName *string
// The name of the space.
SpaceName *string
// Specifies summary information about the space settings.
SpaceSettingsSummary *SpaceSettingsSummary
// Specifies summary information about the space sharing settings.
SpaceSharingSettingsSummary *SpaceSharingSettingsSummary
// The status.
Status SpaceStatus
noSmithyDocumentSerde
}
// The settings for the JupyterLab application within a space.
type SpaceJupyterLabAppSettings struct {
// A list of Git repositories that SageMaker automatically displays to users for
// cloning in the JupyterLab application.
CodeRepositories []CodeRepository
// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
DefaultResourceSpec *ResourceSpec
noSmithyDocumentSerde
}
// A collection of space settings.
type SpaceSettings struct {
// The type of app created within the space.
AppType AppType
// The Code Editor application settings.
CodeEditorAppSettings *SpaceCodeEditorAppSettings
// A file system, created by you, that you assign to a space for an Amazon
// SageMaker Domain. Permitted users can access this file system in Amazon
// SageMaker Studio.
CustomFileSystems []CustomFileSystem
// The settings for the JupyterLab application.
JupyterLabAppSettings *SpaceJupyterLabAppSettings
// The JupyterServer app settings.
JupyterServerAppSettings *JupyterServerAppSettings
// The KernelGateway app settings.
KernelGatewayAppSettings *KernelGatewayAppSettings
// The storage settings for a private space.
SpaceStorageSettings *SpaceStorageSettings
noSmithyDocumentSerde
}
// Specifies summary information about the space settings.
type SpaceSettingsSummary struct {
// The type of app created within the space.
AppType AppType
// The storage settings for a private space.
SpaceStorageSettings *SpaceStorageSettings
noSmithyDocumentSerde
}
// A collection of space sharing settings.
type SpaceSharingSettings struct {
// Specifies the sharing type of the space.
//
// This member is required.
SharingType SharingType
noSmithyDocumentSerde
}
// Specifies summary information about the space sharing settings.
type SpaceSharingSettingsSummary struct {
// Specifies the sharing type of the space.
SharingType SharingType
noSmithyDocumentSerde
}
// The storage settings for a private space.
type SpaceStorageSettings struct {
// A collection of EBS storage settings for a private space.
EbsStorageSettings *EbsStorageSettings
noSmithyDocumentSerde
}
// Defines the stairs traffic pattern for an Inference Recommender load test. This
// pattern type consists of multiple steps where the number of users increases at
// each step. Specify either the stairs or phases traffic pattern.
type Stairs struct {
// Defines how long each traffic step should be.
DurationInSeconds *int32
// Specifies how many steps to perform during traffic.
NumberOfSteps *int32
// Specifies how many new users to spawn in each step.
UsersPerStep *int32
noSmithyDocumentSerde
}
// Specifies a limit to how long a model training job or model compilation job can
// run. It also specifies how long a managed spot training job has to complete.
// When the job reaches the time limit, SageMaker ends the training or compilation
// job. Use this API to cap model training costs. To stop a training job, SageMaker
// sends the algorithm the SIGTERM signal, which delays job termination for 120
// seconds. Algorithms can use this 120-second window to save the model artifacts,
// so the results of training are not lost. The training algorithms provided by
// SageMaker automatically save the intermediate results of a model training job
// when possible. This attempt to save artifacts is only a best effort case as
// model might not be in a state from which it can be saved. For example, if
// training has just started, the model might not be ready to save. When saved,
// this intermediate data is a valid model artifact. You can use it to create a
// model with CreateModel . The Neural Topic Model (NTM) currently does not support
// saving intermediate model artifacts. When training NTMs, make sure that the
// maximum runtime is sufficient for the training job to complete.
type StoppingCondition struct {
// The maximum length of time, in seconds, that a training or compilation job can
// be pending before it is stopped.
MaxPendingTimeInSeconds *int32
// The maximum length of time, in seconds, that a training or compilation job can
// run before it is stopped. For compilation jobs, if the job does not complete
// during this time, a TimeOut error is generated. We recommend starting with 900
// seconds and increasing as necessary based on your model. For all other jobs, if
// the job does not complete during this time, SageMaker ends the job. When
// RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies
// the maximum time for all of the attempts in total, not each individual attempt.
// The default value is 1 day. The maximum value is 28 days. The maximum time that
// a TrainingJob can run in total, including any time spent publishing metrics or
// archiving and uploading models after it has been stopped, is 30 days.
MaxRuntimeInSeconds *int32
// The maximum length of time, in seconds, that a managed Spot training job has to
// complete. It is the amount of time spent waiting for Spot capacity plus the
// amount of time the job can run. It must be equal to or greater than
// MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker
// ends the job. When RetryStrategy is specified in the job request,
// MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in
// total, not each individual attempt.
MaxWaitTimeInSeconds *int32
noSmithyDocumentSerde
}
// Details of the Amazon SageMaker Studio Lifecycle Configuration.
type StudioLifecycleConfigDetails struct {
// The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
CreationTime *time.Time
// This value is equivalent to CreationTime because Amazon SageMaker Studio
// Lifecycle Configurations are immutable.
LastModifiedTime *time.Time
// The App type to which the Lifecycle Configuration is attached.
StudioLifecycleConfigAppType StudioLifecycleConfigAppType
// The Amazon Resource Name (ARN) of the Lifecycle Configuration.
StudioLifecycleConfigArn *string
// The name of the Amazon SageMaker Studio Lifecycle Configuration.
StudioLifecycleConfigName *string
noSmithyDocumentSerde
}
// Describes a work team of a vendor that does the a labelling job.
type SubscribedWorkteam struct {
// The Amazon Resource Name (ARN) of the vendor that you have subscribed.
//
// This member is required.
WorkteamArn *string
// Marketplace product listing ID.
ListingId *string
// The description of the vendor from the Amazon Marketplace.
MarketplaceDescription *string
// The title of the service provided by the vendor in the Amazon Marketplace.
MarketplaceTitle *string
// The name of the vendor in the Amazon Marketplace.
SellerName *string
noSmithyDocumentSerde
}
// Specified in the GetSearchSuggestions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetSearchSuggestions.html)
// request. Limits the property names that are included in the response.
type SuggestionQuery struct {
// Defines a property name hint. Only property names that begin with the specified
// hint are included in the response.
PropertyNameQuery *PropertyNameQuery
noSmithyDocumentSerde
}
// The collection of settings used by an AutoML job V2 for the tabular problem
// type.
type TabularJobConfig struct {
// The name of the target variable in supervised learning, usually represented by
// 'y'.
//
// This member is required.
TargetAttributeName *string
// The configuration information of how model candidates are generated.
CandidateGenerationConfig *CandidateGenerationConfig
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
// A URL to the Amazon S3 data source containing selected features from the input
// data source to run an Autopilot job V2. You can input FeatureAttributeNames
// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
// "col2", ...] } . You can also specify the data type of the feature (optional) in
// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
// "col2":"categorical" ... } } These column keys may not include the target
// column. In ensembling mode, Autopilot only supports the following data types:
// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
// numeric , categorical , text , datetime , and sequence . If only
// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
// subset of the column names in the input data. If both FeatureDataTypes and
// FeatureAttributeNames are provided, then the column keys should be a subset of
// the column names provided in FeatureAttributeNames . The key name
// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
// case sensitive and should be a list of strings containing unique values that are
// a subset of the column names in the input data. The list of columns provided
// must not include the target column.
FeatureSpecificationS3Uri *string
// Generates possible candidates without training the models. A model candidate is
// a combination of data preprocessors, algorithms, and algorithm parameter
// settings.
GenerateCandidateDefinitionsOnly *bool
// The method that Autopilot uses to train the data. You can either specify the
// mode manually or let Autopilot choose for you based on the dataset size by
// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
// mode uses a multi-stack ensemble model to predict classification and regression
// tasks directly from your dataset. This machine learning mode combines several
// base models to produce an optimal predictive model. It then uses a stacking
// ensemble method to combine predictions from contributing members. A multi-stack
// ensemble model can provide better performance over a single model by combining
// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
// (HPO) mode uses the best hyperparameters to train the best version of a model.
// HPO automatically selects an algorithm for the type of problem you want to
// solve. Then HPO finds the best hyperparameters according to your objective
// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
Mode AutoMLMode
// The type of supervised learning problem available for the model candidates of
// the AutoML job V2. For more information, see Amazon SageMaker Autopilot problem
// types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
// . You must either specify the type of supervised learning problem in ProblemType
// and provide the AutoMLJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective)
// metric, or none at all.
ProblemType ProblemType
// If specified, this column name indicates which column of the dataset should be
// treated as sample weights for use by the objective metric during the training,
// evaluation, and the selection of the best model. This column is not considered
// as a predictive feature. For more information on Autopilot metrics, see Metrics
// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
// . Sample weights should be numeric, non-negative, with larger values indicating
// which rows are more important than others. Data points that have invalid or no
// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
// mode only.
SampleWeightAttributeName *string
noSmithyDocumentSerde
}
// The resolved attributes specific to the tabular problem type.
type TabularResolvedAttributes struct {
// The type of supervised learning problem available for the model candidates of
// the AutoML job V2 (Binary Classification, Multiclass Classification,
// Regression). For more information, see Amazon SageMaker Autopilot problem types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
// .
ProblemType ProblemType
noSmithyDocumentSerde
}
// A tag object that consists of a key and an optional value, used to manage
// metadata for SageMaker Amazon Web Services resources. You can add tags to
// notebook instances, training jobs, hyperparameter tuning jobs, batch transform
// jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.
// For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html)
// . For more information on adding metadata to your Amazon Web Services resources
// with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// . For advice on best practices for managing Amazon Web Services resources with
// tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services
// Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf)
// .
type Tag struct {
// The tag key. Tag keys must be unique per resource.
//
// This member is required.
Key *string
// The tag value.
//
// This member is required.
Value *string
noSmithyDocumentSerde
}
// Contains information about a target platform that you want your model to run
// on, such as OS, architecture, and accelerators. It is an alternative of
// TargetDevice .
type TargetPlatform struct {
// Specifies a target platform architecture.
// - X86_64 : 64-bit version of the x86 instruction set.
// - X86 : 32-bit version of the x86 instruction set.
// - ARM64 : ARMv8 64-bit CPU.
// - ARM_EABIHF : ARMv7 32-bit, Hard Float.
// - ARM_EABI : ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
//
// This member is required.
Arch TargetPlatformArch
// Specifies a target platform OS.
// - LINUX : Linux-based operating systems.
// - ANDROID : Android operating systems. Android API level can be specified
// using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions":
// {'ANDROID_PLATFORM': 28}
//
// This member is required.
Os TargetPlatformOs
// Specifies a target platform accelerator (optional).
// - NVIDIA : Nvidia graphics processing unit. It also requires gpu-code ,
// trt-ver , cuda-ver compiler options
// - MALI : ARM Mali graphics processor
// - INTEL_GRAPHICS : Integrated Intel graphics
Accelerator TargetPlatformAccelerator
noSmithyDocumentSerde
}
// A target tracking scaling policy. Includes support for predefined or customized
// metrics. When using the PutScalingPolicy (https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html)
// API, this parameter is required when you are creating a policy with the policy
// type TargetTrackingScaling .
type TargetTrackingScalingPolicyConfiguration struct {
// An object containing information about a metric.
MetricSpecification MetricSpecification
// The recommended target value to specify for the metric when creating a scaling
// policy.
TargetValue *float64
noSmithyDocumentSerde
}
// The TensorBoard app settings.
type TensorBoardAppSettings struct {
// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
// image created on the instance.
DefaultResourceSpec *ResourceSpec
noSmithyDocumentSerde
}
// Configuration of storage locations for the Amazon SageMaker Debugger
// TensorBoard output data.
type TensorBoardOutputConfig struct {
// Path to Amazon S3 storage location for TensorBoard output.
//
// This member is required.
S3OutputPath *string
// Path to local storage location for tensorBoard output. Defaults to
// /opt/ml/output/tensorboard .
LocalPath *string
noSmithyDocumentSerde
}
// The collection of settings used by an AutoML job V2 for the text classification
// problem type.
type TextClassificationJobConfig struct {
// The name of the column used to provide the sentences to be classified. It
// should not be the same as the target column.
//
// This member is required.
ContentColumn *string
// The name of the column used to provide the class labels. It should not be same
// as the content column.
//
// This member is required.
TargetLabelColumn *string
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
noSmithyDocumentSerde
}
// The collection of settings used by an AutoML job V2 for the text generation
// problem type. The text generation models that support fine-tuning in Autopilot
// are currently accessible exclusively in regions supported by Canvas. Refer to
// the documentation of Canvas for the full list of its supported Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html)
// .
type TextGenerationJobConfig struct {
// The name of the base model to fine-tune. Autopilot supports fine-tuning a
// variety of large language models. For information on the list of supported
// models, see Text generation models supporting fine-tuning in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-models.html#autopilot-llms-finetuning-supported-llms)
// . If no BaseModelName is provided, the default model used is Falcon7BInstruct.
BaseModelName *string
// How long a fine-tuning job is allowed to run. For TextGenerationJobConfig
// problem types, the MaxRuntimePerTrainingJobInSeconds attribute of
// AutoMLJobCompletionCriteria defaults to 72h (259200s).
CompletionCriteria *AutoMLJobCompletionCriteria
// The access configuration file for the ML model. You can explicitly accept the
// model end-user license agreement (EULA) within the ModelAccessConfig . For more
// information, see End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
// .
ModelAccessConfig *ModelAccessConfig
// The hyperparameters used to configure and optimize the learning process of the
// base model. You can set any combination of the following hyperparameters for all
// base models. For more information on each supported hyperparameter, see
// Optimize the learning process of your text generation models with
// hyperparameters (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-set-hyperparameters.html)
// .
// - "epochCount" : The number of times the model goes through the entire
// training dataset. Its value should be a string containing an integer value
// within the range of "1" to "10".
// - "batchSize" : The number of data samples used in each iteration of training.
// Its value should be a string containing an integer value within the range of "1"
// to "64".
// - "learningRate" : The step size at which a model's parameters are updated
// during training. Its value should be a string containing a floating-point value
// within the range of "0" to "1".
// - "learningRateWarmupSteps" : The number of training steps during which the
// learning rate gradually increases before reaching its target or maximum value.
// Its value should be a string containing an integer value within the range of "0"
// to "250".
// Here is an example where all four hyperparameters are configured. {
// "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
// "learningRateWarmupSteps": "10" }
TextGenerationHyperParameters map[string]string
noSmithyDocumentSerde
}
// The resolved attributes specific to the text generation problem type.
type TextGenerationResolvedAttributes struct {
// The name of the base model to fine-tune.
BaseModelName *string
noSmithyDocumentSerde
}
// Used to set feature group throughput configuration. There are two modes:
// ON_DEMAND and PROVISIONED . With on-demand mode, you are charged for data reads
// and writes that your application performs on your feature group. You do not need
// to specify read and write throughput because Feature Store accommodates your
// workloads as they ramp up and down. You can switch a feature group to on-demand
// only once in a 24 hour period. With provisioned throughput mode, you specify the
// read and write capacity per second that you expect your application to require,
// and you are billed based on those limits. Exceeding provisioned throughput will
// result in your requests being throttled. Note: PROVISIONED throughput mode is
// supported only for feature groups that are offline-only, or use the Standard (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OnlineStoreConfig.html#sagemaker-Type-OnlineStoreConfig-StorageType)
// tier online store.
type ThroughputConfig struct {
// The mode used for your feature group throughput: ON_DEMAND or PROVISIONED .
//
// This member is required.
ThroughputMode ThroughputMode
// For provisioned feature groups with online store enabled, this indicates the
// read throughput you are billed for and can consume without throttling. This
// field is not applicable for on-demand feature groups.
ProvisionedReadCapacityUnits *int32
// For provisioned feature groups, this indicates the write throughput you are
// billed for and can consume without throttling. This field is not applicable for
// on-demand feature groups.
ProvisionedWriteCapacityUnits *int32
noSmithyDocumentSerde
}
// Active throughput configuration of the feature group. Used to set feature group
// throughput configuration. There are two modes: ON_DEMAND and PROVISIONED . With
// on-demand mode, you are charged for data reads and writes that your application
// performs on your feature group. You do not need to specify read and write
// throughput because Feature Store accommodates your workloads as they ramp up and
// down. You can switch a feature group to on-demand only once in a 24 hour period.
// With provisioned throughput mode, you specify the read and write capacity per
// second that you expect your application to require, and you are billed based on
// those limits. Exceeding provisioned throughput will result in your requests
// being throttled. Note: PROVISIONED throughput mode is supported only for
// feature groups that are offline-only, or use the Standard (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OnlineStoreConfig.html#sagemaker-Type-OnlineStoreConfig-StorageType)
// tier online store.
type ThroughputConfigDescription struct {
// The mode used for your feature group throughput: ON_DEMAND or PROVISIONED .
//
// This member is required.
ThroughputMode ThroughputMode
// For provisioned feature groups with online store enabled, this indicates the
// read throughput you are billed for and can consume without throttling. This
// field is not applicable for on-demand feature groups.
ProvisionedReadCapacityUnits *int32
// For provisioned feature groups, this indicates the write throughput you are
// billed for and can consume without throttling. This field is not applicable for
// on-demand feature groups.
ProvisionedWriteCapacityUnits *int32
noSmithyDocumentSerde
}
// The new throughput configuration for the feature group. You can switch between
// on-demand and provisioned modes or update the read / write capacity of
// provisioned feature groups. You can switch a feature group to on-demand only
// once in a 24 hour period.
type ThroughputConfigUpdate struct {
// For provisioned feature groups with online store enabled, this indicates the
// read throughput you are billed for and can consume without throttling.
ProvisionedReadCapacityUnits *int32
// For provisioned feature groups, this indicates the write throughput you are
// billed for and can consume without throttling.
ProvisionedWriteCapacityUnits *int32
// Target throughput mode of the feature group. Throughput update is an
// asynchronous operation, and the outcome should be monitored by polling
// LastUpdateStatus field in DescribeFeatureGroup response. You cannot update a
// feature group's throughput while another update is in progress.
ThroughputMode ThroughputMode
noSmithyDocumentSerde
}
// The collection of components that defines the time-series.
type TimeSeriesConfig struct {
// The name of the column that represents the set of item identifiers for which
// you want to predict the target value.
//
// This member is required.
ItemIdentifierAttributeName *string
// The name of the column representing the target variable that you want to
// predict for each item in your dataset. The data type of the target variable must
// be numerical.
//
// This member is required.
TargetAttributeName *string
// The name of the column indicating a point in time at which the target value of
// a given item is recorded.
//
// This member is required.
TimestampAttributeName *string
// A set of columns names that can be grouped with the item identifier column to
// create a composite key for which a target value is predicted.
GroupingAttributeNames []string
noSmithyDocumentSerde
}
// The collection of settings used by an AutoML job V2 for the time-series
// forecasting problem type.
type TimeSeriesForecastingJobConfig struct {
// The frequency of predictions in a forecast. Valid intervals are an integer
// followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute).
// For example, 1D indicates every day and 15min indicates every 15 minutes. The
// value of a frequency must not overlap with the next larger frequency. For
// example, you must use a frequency of 1H instead of 60min . The valid values for
// each frequency are the following:
// - Minute - 1-59
// - Hour - 1-23
// - Day - 1-6
// - Week - 1-4
// - Month - 1-11
// - Year - 1
//
// This member is required.
ForecastFrequency *string
// The number of time-steps that the model predicts. The forecast horizon is also
// called the prediction length. The maximum forecast horizon is the lesser of 500
// time-steps or 1/4 of the time-steps in the dataset.
//
// This member is required.
ForecastHorizon *int32
// The collection of components that defines the time-series.
//
// This member is required.
TimeSeriesConfig *TimeSeriesConfig
// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
CompletionCriteria *AutoMLJobCompletionCriteria
// A URL to the Amazon S3 data source containing additional selected features that
// complement the target, itemID, timestamp, and grouped columns set in
// TimeSeriesConfig . When not provided, the AutoML job V2 includes all the columns
// from the original dataset that are not already declared in TimeSeriesConfig . If
// provided, the AutoML job V2 only considers these additional columns as a
// complement to the ones declared in TimeSeriesConfig . You can input
// FeatureAttributeNames (optional) in JSON format as shown below: {
// "FeatureAttributeNames":["col1", "col2", ...] } . You can also specify the data
// type of the feature (optional) in the format shown below: {
// "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } } Autopilot
// supports the following data types: numeric , categorical , text , and datetime .
// These column keys must not include any column set in TimeSeriesConfig .
FeatureSpecificationS3Uri *string
// The quantiles used to train the model for forecasts at a specified quantile.
// You can specify quantiles from 0.01 (p1) to 0.99 (p99), by increments of 0.01
// or higher. Up to five forecast quantiles can be specified. When
// ForecastQuantiles is not provided, the AutoML job uses the quantiles p10, p50,
// and p90 as default.
ForecastQuantiles []string
// The collection of holiday featurization attributes used to incorporate national
// holiday information into your forecasting model.
HolidayConfig []HolidayConfigAttributes
// The transformations modifying specific attributes of the time-series, such as
// filling strategies for missing values.
Transformations *TimeSeriesTransformations
noSmithyDocumentSerde
}
// Time series forecast settings for the SageMaker Canvas application.
type TimeSeriesForecastingSettings struct {
// The IAM role that Canvas passes to Amazon Forecast for time series forecasting.
// By default, Canvas uses the execution role specified in the UserProfile that
// launches the Canvas application. If an execution role is not specified in the
// UserProfile , Canvas uses the execution role specified in the Domain that owns
// the UserProfile . To allow time series forecasting, this IAM role should have
// the AmazonSageMakerCanvasForecastAccess (https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess)
// policy attached and forecast.amazonaws.com added in the trust relationship as a
// service principal.
AmazonForecastRoleArn *string
// Describes whether time series forecasting is enabled or disabled in the Canvas
// application.
Status FeatureStatus
noSmithyDocumentSerde
}
// Transformations allowed on the dataset. Supported transformations are Filling
// and Aggregation . Filling specifies how to add values to missing values in the
// dataset. Aggregation defines how to aggregate data that does not align with
// forecast frequency.
type TimeSeriesTransformations struct {
// A key value pair defining the aggregation method for a column, where the key is
// the column name and the value is the aggregation method. The supported
// aggregation methods are sum (default), avg , first , min , max . Aggregation is
// only supported for the target column.
Aggregation map[string]AggregationTransformationValue
// A key value pair defining the filling method for a column, where the key is the
// column name and the value is an object which defines the filling logic. You can
// specify multiple filling methods for a single column. The supported filling
// methods and their corresponding options are:
// - frontfill : none (Supported only for target column)
// - middlefill : zero , value , median , mean , min , max
// - backfill : zero , value , median , mean , min , max
// - futurefill : zero , value , median , mean , min , max
// To set a filling method to a specific value, set the fill parameter to the
// chosen filling method value (for example "backfill" : "value" ), and define the
// filling value in an additional parameter prefixed with "_value". For example, to
// set backfill to a value of 2 , you must include two parameters: "backfill":
// "value" and "backfill_value":"2" .
Filling map[string]map[string]string
noSmithyDocumentSerde
}
// Defines the traffic pattern of the load test.
type TrafficPattern struct {
// Defines the phases traffic specification.
Phases []Phase
// Defines the stairs traffic pattern.
Stairs *Stairs
// Defines the traffic patterns. Choose either PHASES or STAIRS .
TrafficType TrafficType
noSmithyDocumentSerde
}
// Defines the traffic routing strategy during an endpoint deployment to shift
// traffic from the old fleet to the new fleet.
type TrafficRoutingConfig struct {
// Traffic routing strategy type.
// - ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
// - CANARY : Endpoint traffic shifts to the new fleet in two steps. The first
// step is the canary, which is a small portion of the traffic. The second step is
// the remainder of the traffic.
// - LINEAR : Endpoint traffic shifts to the new fleet in n steps of a
// configurable size.
//
// This member is required.
Type TrafficRoutingConfigType
// The waiting time (in seconds) between incremental steps to turn on traffic on
// the new endpoint fleet.
//
// This member is required.
WaitIntervalInSeconds *int32
// Batch size for the first step to turn on traffic on the new endpoint fleet.
// Value must be less than or equal to 50% of the variant's total instance count.
CanarySize *CapacitySize
// Batch size for each step to turn on traffic on the new endpoint fleet. Value
// must be 10-50% of the variant's total instance count.
LinearStepSize *CapacitySize
noSmithyDocumentSerde
}
// The configuration to use an image from a private Docker registry for a training
// job.
type TrainingImageConfig struct {
// The method that your training job will use to gain access to the images in your
// private Docker registry. For access to an image in a private Docker registry,
// set to Vpc .
//
// This member is required.
TrainingRepositoryAccessMode TrainingRepositoryAccessMode
// An object containing authentication information for a private Docker registry
// containing your training images.
TrainingRepositoryAuthConfig *TrainingRepositoryAuthConfig
noSmithyDocumentSerde
}
// Contains information about a training job.
type TrainingJob struct {
// Information about the algorithm used for training, and algorithm metadata.
AlgorithmSpecification *AlgorithmSpecification
// The Amazon Resource Name (ARN) of the job.
AutoMLJobArn *string
// The billable time in seconds.
BillableTimeInSeconds *int32
// Contains information about the output location for managed spot training
// checkpoint data.
CheckpointConfig *CheckpointConfig
// A timestamp that indicates when the training job was created.
CreationTime *time.Time
// Configuration information for the Amazon SageMaker Debugger hook parameters,
// metric and tensor collections, and storage paths. To learn more about how to
// configure the DebugHookConfig parameter, see Use the SageMaker and Debugger
// Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
DebugHookConfig *DebugHookConfig
// Information about the debug rule configuration.
DebugRuleConfigurations []DebugRuleConfiguration
// Information about the evaluation status of the rules for the training job.
DebugRuleEvaluationStatuses []DebugRuleEvaluationStatus
// To encrypt all communications between ML compute instances in distributed
// training, choose True . Encryption provides greater security for distributed
// training, but training might take longer. How long it takes depends on the
// amount of communication between compute instances, especially if you use a deep
// learning algorithm in distributed training.
EnableInterContainerTrafficEncryption *bool
// When true, enables managed spot training using Amazon EC2 Spot instances to run
// training jobs instead of on-demand instances. For more information, see Managed
// Spot Training (https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html)
// .
EnableManagedSpotTraining *bool
// If the TrainingJob was created with network isolation, the value is set to true
// . If network isolation is enabled, nodes can't communicate beyond the VPC they
// run in.
EnableNetworkIsolation *bool
// The environment variables to set in the Docker container.
Environment map[string]string
// Associates a SageMaker job as a trial component with an experiment and trial.
// Specified when you call the following APIs:
// - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
// - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
ExperimentConfig *ExperimentConfig
// If the training job failed, the reason it failed.
FailureReason *string
// A list of final metric values that are set when the training job completes.
// Used only if the training job was configured to use metrics.
FinalMetricDataList []MetricData
// Algorithm-specific parameters.
HyperParameters map[string]string
// An array of Channel objects that describes each data input channel. Your input
// must be in the same Amazon Web Services region as your training job.
InputDataConfig []Channel
// The Amazon Resource Name (ARN) of the labeling job.
LabelingJobArn *string
// A timestamp that indicates when the status of the training job was last
// modified.
LastModifiedTime *time.Time
// Information about the Amazon S3 location that is configured for storing model
// artifacts.
ModelArtifacts *ModelArtifacts
// The S3 path where model artifacts that you configured when creating the job are
// stored. SageMaker creates subfolders for model artifacts.
OutputDataConfig *OutputDataConfig
// Configuration information for Amazon SageMaker Debugger system monitoring,
// framework profiling, and storage paths.
ProfilerConfig *ProfilerConfig
// Resources, including ML compute instances and ML storage volumes, that are
// configured for model training.
ResourceConfig *ResourceConfig
// The number of times to retry the job when the job fails due to an
// InternalServerError .
RetryStrategy *RetryStrategy
// The Amazon Web Services Identity and Access Management (IAM) role configured
// for the training job.
RoleArn *string
// Provides detailed information about the state of the training job. For detailed
// information about the secondary status of the training job, see StatusMessage
// under SecondaryStatusTransition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html)
// . SageMaker provides primary statuses and secondary statuses that apply to each
// of them: InProgress
// - Starting - Starting the training job.
// - Downloading - An optional stage for algorithms that support File training
// input mode. It indicates that data is being downloaded to the ML storage
// volumes.
// - Training - Training is in progress.
// - Uploading - Training is complete and the model artifacts are being uploaded
// to the S3 location.
// Completed
// - Completed - The training job has completed.
// Failed
// - Failed - The training job has failed. The reason for the failure is returned
// in the FailureReason field of DescribeTrainingJobResponse .
// Stopped
// - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
// runtime.
// - Stopped - The training job has stopped.
// Stopping
// - Stopping - Stopping the training job.
// Valid values for SecondaryStatus are subject to change. We no longer support
// the following secondary statuses:
// - LaunchingMLInstances
// - PreparingTrainingStack
// - DownloadingTrainingImage
SecondaryStatus SecondaryStatus
// A history of all of the secondary statuses that the training job has
// transitioned through.
SecondaryStatusTransitions []SecondaryStatusTransition
// Specifies a limit to how long a model training job can run. It also specifies
// how long a managed Spot training job has to complete. When the job reaches the
// time limit, SageMaker ends the training job. Use this API to cap model training
// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
// delays job termination for 120 seconds. Algorithms can use this 120-second
// window to save the model artifacts, so the results of training are not lost.
StoppingCondition *StoppingCondition
// An array of key-value pairs. You can use tags to categorize your Amazon Web
// Services resources in different ways, for example, by purpose, owner, or
// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// .
Tags []Tag
// Configuration of storage locations for the Amazon SageMaker Debugger
// TensorBoard output data.
TensorBoardOutputConfig *TensorBoardOutputConfig
// Indicates the time when the training job ends on training instances. You are
// billed for the time interval between the value of TrainingStartTime and this
// time. For successful jobs and stopped jobs, this is the time after model
// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
// a job failure.
TrainingEndTime *time.Time
// The Amazon Resource Name (ARN) of the training job.
TrainingJobArn *string
// The name of the training job.
TrainingJobName *string
// The status of the training job. Training job statuses are:
// - InProgress - The training is in progress.
// - Completed - The training job has completed.
// - Failed - The training job has failed. To see the reason for the failure, see
// the FailureReason field in the response to a DescribeTrainingJobResponse call.
// - Stopping - The training job is stopping.
// - Stopped - The training job has stopped.
// For more detailed information, see SecondaryStatus .
TrainingJobStatus TrainingJobStatus
// Indicates the time when the training job starts on training instances. You are
// billed for the time interval between this time and the value of TrainingEndTime
// . The start time in CloudWatch Logs might be later than this time. The
// difference is due to the time it takes to download the training data and to the
// size of the training container.
TrainingStartTime *time.Time
// The training time in seconds.
TrainingTimeInSeconds *int32
// The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if
// the training job was launched by a hyperparameter tuning job.
TuningJobArn *string
// A VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
// object that specifies the VPC that this training job has access to. For more
// information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
// .
VpcConfig *VpcConfig
noSmithyDocumentSerde
}
// Defines the input needed to run a training job using the algorithm.
type TrainingJobDefinition struct {
// An array of Channel objects, each of which specifies an input source.
//
// This member is required.
InputDataConfig []Channel
// the path to the S3 bucket where you want to store model artifacts. SageMaker
// creates subfolders for the artifacts.
//
// This member is required.
OutputDataConfig *OutputDataConfig
// The resources, including the ML compute instances and ML storage volumes, to
// use for model training.
//
// This member is required.
ResourceConfig *ResourceConfig
// Specifies a limit to how long a model training job can run. It also specifies
// how long a managed Spot training job has to complete. When the job reaches the
// time limit, SageMaker ends the training job. Use this API to cap model training
// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
// delays job termination for 120 seconds. Algorithms can use this 120-second
// window to save the model artifacts.
//
// This member is required.
StoppingCondition *StoppingCondition
// The training input mode that the algorithm supports. For more information about
// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
// directly from Amazon S3 to the container. File mode If an algorithm supports
// File mode, SageMaker downloads the training data from S3 to the provisioned ML
// storage volume, and mounts the directory to the Docker volume for the training
// container. You must provision the ML storage volume with sufficient capacity to
// accommodate the data downloaded from S3. In addition to the training data, the
// ML storage volume also stores the output model. The algorithm container uses the
// ML storage volume to also store intermediate information, if any. For
// distributed algorithms, training data is distributed uniformly. Your training
// duration is predictable if the input data objects sizes are approximately the
// same. SageMaker does not split the files any further for model training. If the
// object sizes are skewed, training won't be optimal as the data distribution is
// also skewed when one host in a training cluster is overloaded, thus becoming a
// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
// SageMaker streams data directly from S3 to the container with no code changes,
// and provides file system access to the data. Users can author their training
// script to interact with these files as if they were stored on disk. FastFile
// mode works best when the data is read sequentially. Augmented manifest files
// aren't supported. The startup time is lower when there are fewer files in the S3
// bucket provided.
//
// This member is required.
TrainingInputMode TrainingInputMode
// The hyperparameters used for the training job.
HyperParameters map[string]string
noSmithyDocumentSerde
}
// The numbers of training jobs launched by a hyperparameter tuning job,
// categorized by status.
type TrainingJobStatusCounters struct {
// The number of completed training jobs launched by the hyperparameter tuning job.
Completed *int32
// The number of in-progress training jobs launched by a hyperparameter tuning job.
InProgress *int32
// The number of training jobs that failed and can't be retried. A failed training
// job can't be retried if it failed because a client error occurred.
NonRetryableError *int32
// The number of training jobs that failed, but can be retried. A failed training
// job can be retried only if it failed because an internal service error occurred.
RetryableError *int32
// The number of training jobs launched by a hyperparameter tuning job that were
// manually stopped.
Stopped *int32
noSmithyDocumentSerde
}
// Metadata for a training job step.
type TrainingJobStepMetadata struct {
// The Amazon Resource Name (ARN) of the training job that was run by this step
// execution.
Arn *string
noSmithyDocumentSerde
}
// Provides summary information about a training job.
type TrainingJobSummary struct {
// A timestamp that shows when the training job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the training job.
//
// This member is required.
TrainingJobArn *string
// The name of the training job that you want a summary for.
//
// This member is required.
TrainingJobName *string
// The status of the training job.
//
// This member is required.
TrainingJobStatus TrainingJobStatus
// Timestamp when the training job was last modified.
LastModifiedTime *time.Time
// A timestamp that shows when the training job ended. This field is set only if
// the training job has one of the terminal statuses ( Completed , Failed , or
// Stopped ).
TrainingEndTime *time.Time
// The status of the warm pool associated with the training job.
WarmPoolStatus *WarmPoolStatus
noSmithyDocumentSerde
}
// An object containing authentication information for a private Docker registry.
type TrainingRepositoryAuthConfig struct {
// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used
// to give SageMaker access credentials to your private Docker registry.
//
// This member is required.
TrainingRepositoryCredentialsProviderArn *string
noSmithyDocumentSerde
}
// Defines how the algorithm is used for a training job.
type TrainingSpecification struct {
// A list of the instance types that this algorithm can use for training.
//
// This member is required.
SupportedTrainingInstanceTypes []TrainingInstanceType
// A list of ChannelSpecification objects, which specify the input sources to be
// used by the algorithm.
//
// This member is required.
TrainingChannels []ChannelSpecification
// The Amazon ECR registry path of the Docker image that contains the training
// algorithm.
//
// This member is required.
TrainingImage *string
// The additional data source used during the training job.
AdditionalS3DataSource *AdditionalS3DataSource
// A list of MetricDefinition objects, which are used for parsing metrics
// generated by the algorithm.
MetricDefinitions []MetricDefinition
// A list of the HyperParameterSpecification objects, that define the supported
// hyperparameters. This is required if the algorithm supports automatic model
// tuning.>
SupportedHyperParameters []HyperParameterSpecification
// A list of the metrics that the algorithm emits that can be used as the
// objective metric in a hyperparameter tuning job.
SupportedTuningJobObjectiveMetrics []HyperParameterTuningJobObjective
// Indicates whether the algorithm supports distributed training. If set to false,
// buyers can't request more than one instance during training.
SupportsDistributedTraining *bool
// An MD5 hash of the training algorithm that identifies the Docker image used for
// training.
TrainingImageDigest *string
noSmithyDocumentSerde
}
// Describes the location of the channel data.
type TransformDataSource struct {
// The S3 location of the data source that is associated with a channel.
//
// This member is required.
S3DataSource *TransformS3DataSource
noSmithyDocumentSerde
}
// Describes the input source of a transform job and the way the transform job
// consumes it.
type TransformInput struct {
// Describes the location of the channel data, which is, the S3 location of the
// input data that the model can consume.
//
// This member is required.
DataSource *TransformDataSource
// If your transform data is compressed, specify the compression type. Amazon
// SageMaker automatically decompresses the data for the transform job accordingly.
// The default value is None .
CompressionType CompressionType
// The multipurpose internet mail extension (MIME) type of the data. Amazon
// SageMaker uses the MIME type with each http call to transfer data to the
// transform job.
ContentType *string
// The method to use to split the transform job's data files into smaller batches.
// Splitting is necessary when the total size of each object is too large to fit in
// a single request. You can also use data splitting to improve performance by
// processing multiple concurrent mini-batches. The default value for SplitType is
// None , which indicates that input data files are not split, and request payloads
// contain the entire contents of an input object. Set the value of this parameter
// to Line to split records on a newline character boundary. SplitType also
// supports a number of record-oriented binary data formats. Currently, the
// supported record formats are:
// - RecordIO
// - TFRecord
// When splitting is enabled, the size of a mini-batch depends on the values of
// the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy
// is MultiRecord , Amazon SageMaker sends the maximum number of records in each
// request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is
// SingleRecord , Amazon SageMaker sends individual records in each request. Some
// data formats represent a record as a binary payload wrapped with extra padding
// bytes. When splitting is applied to a binary data format, padding is removed if
// the value of BatchStrategy is set to SingleRecord . Padding is not removed if
// the value of BatchStrategy is set to MultiRecord . For more information about
// RecordIO , see Create a Dataset Using RecordIO (https://mxnet.apache.org/api/faq/recordio)
// in the MXNet documentation. For more information about TFRecord , see Consuming
// TFRecord data (https://www.tensorflow.org/guide/data#consuming_tfrecord_data) in
// the TensorFlow documentation.
SplitType SplitType
noSmithyDocumentSerde
}
// A batch transform job. For information about SageMaker batch transform, see Use
// Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html)
// .
type TransformJob struct {
// The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
AutoMLJobArn *string
// Specifies the number of records to include in a mini-batch for an HTTP
// inference request. A record is a single unit of input data that inference can be
// made on. For example, a single line in a CSV file is a record.
BatchStrategy BatchStrategy
// A timestamp that shows when the transform Job was created.
CreationTime *time.Time
// Configuration to control how SageMaker captures inference data for batch
// transform jobs.
DataCaptureConfig *BatchDataCaptureConfig
// The data structure used to specify the data to be used for inference in a batch
// transform job and to associate the data that is relevant to the prediction
// results in the output. The input filter provided allows you to exclude input
// data that is not needed for inference in a batch transform job. The output
// filter provided allows you to include input data relevant to interpreting the
// predictions in the output from the job. For more information, see Associate
// Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html)
// .
DataProcessing *DataProcessing
// The environment variables to set in the Docker container. We support up to 16
// key and values entries in the map.
Environment map[string]string
// Associates a SageMaker job as a trial component with an experiment and trial.
// Specified when you call the following APIs:
// - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
// - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
ExperimentConfig *ExperimentConfig
// If the transform job failed, the reason it failed.
FailureReason *string
// The Amazon Resource Name (ARN) of the labeling job that created the transform
// job.
LabelingJobArn *string
// The maximum number of parallel requests that can be sent to each instance in a
// transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker
// checks the optional execution-parameters to determine the settings for your
// chosen algorithm. If the execution-parameters endpoint is not enabled, the
// default value is 1. For built-in algorithms, you don't need to set a value for
// MaxConcurrentTransforms .
MaxConcurrentTransforms *int32
// The maximum allowed size of the payload, in MB. A payload is the data portion
// of a record (without metadata). The value in MaxPayloadInMB must be greater
// than, or equal to, the size of a single record. To estimate the size of a record
// in MB, divide the size of your dataset by the number of records. To ensure that
// the records fit within the maximum payload size, we recommend using a slightly
// larger value. The default value is 6 MB. For cases where the payload might be
// arbitrarily large and is transmitted using HTTP chunked encoding, set the value
// to 0. This feature works only in supported algorithms. Currently, SageMaker
// built-in algorithms do not support HTTP chunked encoding.
MaxPayloadInMB *int32
// Configures the timeout and maximum number of retries for processing a transform
// job invocation.
ModelClientConfig *ModelClientConfig
// The name of the model associated with the transform job.
ModelName *string
// A list of tags associated with the transform job.
Tags []Tag
// Indicates when the transform job has been completed, or has stopped or failed.
// You are billed for the time interval between this time and the value of
// TransformStartTime .
TransformEndTime *time.Time
// Describes the input source of a transform job and the way the transform job
// consumes it.
TransformInput *TransformInput
// The Amazon Resource Name (ARN) of the transform job.
TransformJobArn *string
// The name of the transform job.
TransformJobName *string
// The status of the transform job. Transform job statuses are:
// - InProgress - The job is in progress.
// - Completed - The job has completed.
// - Failed - The transform job has failed. To see the reason for the failure,
// see the FailureReason field in the response to a DescribeTransformJob call.
// - Stopping - The transform job is stopping.
// - Stopped - The transform job has stopped.
TransformJobStatus TransformJobStatus
// Describes the results of a transform job.
TransformOutput *TransformOutput
// Describes the resources, including ML instance types and ML instance count, to
// use for transform job.
TransformResources *TransformResources
// Indicates when the transform job starts on ML instances. You are billed for the
// time interval between this time and the value of TransformEndTime .
TransformStartTime *time.Time
noSmithyDocumentSerde
}
// Defines the input needed to run a transform job using the inference
// specification specified in the algorithm.
type TransformJobDefinition struct {
// A description of the input source and the way the transform job consumes it.
//
// This member is required.
TransformInput *TransformInput
// Identifies the Amazon S3 location where you want Amazon SageMaker to save the
// results from the transform job.
//
// This member is required.
TransformOutput *TransformOutput
// Identifies the ML compute instances for the transform job.
//
// This member is required.
TransformResources *TransformResources
// A string that determines the number of records included in a single mini-batch.
// SingleRecord means only one record is used per mini-batch. MultiRecord means a
// mini-batch is set to contain as many records that can fit within the
// MaxPayloadInMB limit.
BatchStrategy BatchStrategy
// The environment variables to set in the Docker container. We support up to 16
// key and values entries in the map.
Environment map[string]string
// The maximum number of parallel requests that can be sent to each instance in a
// transform job. The default value is 1.
MaxConcurrentTransforms *int32
// The maximum payload size allowed, in MB. A payload is the data portion of a
// record (without metadata).
MaxPayloadInMB *int32
noSmithyDocumentSerde
}
// Metadata for a transform job step.
type TransformJobStepMetadata struct {
// The Amazon Resource Name (ARN) of the transform job that was run by this step
// execution.
Arn *string
noSmithyDocumentSerde
}
// Provides a summary of a transform job. Multiple TransformJobSummary objects are
// returned as a list after in response to a ListTransformJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html)
// call.
type TransformJobSummary struct {
// A timestamp that shows when the transform Job was created.
//
// This member is required.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the transform job.
//
// This member is required.
TransformJobArn *string
// The name of the transform job.
//
// This member is required.
TransformJobName *string
// The status of the transform job.
//
// This member is required.
TransformJobStatus TransformJobStatus
// If the transform job failed, the reason it failed.
FailureReason *string
// Indicates when the transform job was last modified.
LastModifiedTime *time.Time
// Indicates when the transform job ends on compute instances. For successful jobs
// and stopped jobs, this is the exact time recorded after the results are
// uploaded. For failed jobs, this is when Amazon SageMaker detected that the job
// failed.
TransformEndTime *time.Time
noSmithyDocumentSerde
}
// Describes the results of a transform job.
type TransformOutput struct {
// The Amazon S3 path where you want Amazon SageMaker to store the results of the
// transform job. For example, s3://bucket-name/key-name-prefix . For every S3
// object used as input for the transform job, batch transform stores the
// transformed data with an . out suffix in a corresponding subfolder in the
// location in the output prefix. For example, for the input data stored at
// s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores
// the transformed data at
// s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch
// transform doesn't upload partially processed objects. For an input S3 object
// that contains multiple records, it creates an . out file only if the transform
// job succeeds on the entire file. When the input contains multiple S3 objects,
// the batch transform job processes the listed S3 objects and uploads only the
// output for successfully processed objects. If any object fails in the transform
// job batch transform marks the job as failed to prompt investigation.
//
// This member is required.
S3OutputPath *string
// The MIME type used to specify the output data. Amazon SageMaker uses the MIME
// type with each http call to transfer data from the transform job.
Accept *string
// Defines how to assemble the results of the transform job as a single S3 object.
// Choose a format that is most convenient to you. To concatenate the results in
// binary format, specify None . To add a newline character at the end of every
// transformed record, specify Line .
AssembleWith AssemblyType
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon
// S3 server-side encryption. The KmsKeyId can be any of the following formats:
// - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
// - Key ARN:
// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
// - Alias name: alias/ExampleAlias
// - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
// If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key
// for Amazon S3 for your role's account. For more information, see KMS-Managed
// Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
// grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html)
// request. For more information, see Using Key Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
// in the Amazon Web Services Key Management Service Developer Guide.
KmsKeyId *string
noSmithyDocumentSerde
}
// Describes the resources, including ML instance types and ML instance count, to
// use for transform job.
type TransformResources struct {
// The number of ML compute instances to use in the transform job. The default
// value is 1 , and the maximum is 100 . For distributed transform jobs, specify a
// value greater than 1 .
//
// This member is required.
InstanceCount *int32
// The ML compute instance type for the transform job. If you are using built-in
// algorithms to transform moderately sized datasets, we recommend using
// ml.m4.xlarge or ml.m5.large instance types.
//
// This member is required.
InstanceType TransformInstanceType
// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
// that Amazon SageMaker uses to encrypt model data on the storage volume attached
// to the ML compute instance(s) that run the batch transform job. Certain
// Nitro-based instances include local storage, dependent on the instance type.
// Local storage volumes are encrypted using a hardware module on the instance. You
// can't request a VolumeKmsKeyId when using an instance type with local storage.
// For a list of instance types that support local instance storage, see Instance
// Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
// . For more information about local instance storage encryption, see SSD
// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
// . The VolumeKmsKeyId can be any of the following formats:
// - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
// - Key ARN:
// arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
// - Alias name: alias/ExampleAlias
// - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
VolumeKmsKeyId *string
noSmithyDocumentSerde
}
// Describes the S3 data source.
type TransformS3DataSource struct {
// If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker
// uses all objects with the specified key name prefix for batch transform. If you
// choose ManifestFile , S3Uri identifies an object that is a manifest file
// containing a list of object keys that you want Amazon SageMaker to use for batch
// transform. The following values are compatible: ManifestFile , S3Prefix The
// following value is not compatible: AugmentedManifestFile
//
// This member is required.
S3DataType S3DataType
// Depending on the value specified for the S3DataType , identifies either a key
// name prefix or a manifest. For example:
// - A key name prefix might look like this: s3://bucketname/exampleprefix .
// - A manifest might look like this: s3://bucketname/example.manifest The
// manifest is an S3 object which is a JSON file with the following format: [
// {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
// "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding
// JSON matches the following S3Uris :
// s3://customer_bucket/some/prefix/relative/path/to/custdata-1
// s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
// s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
// S3Uris in this manifest constitutes the input data for the channel for this
// datasource. The object that each S3Uris points to must be readable by the IAM
// role that Amazon SageMaker uses to perform tasks on your behalf.
//
// This member is required.
S3Uri *string
noSmithyDocumentSerde
}
// The properties of a trial as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Trial struct {
// Who created the trial.
CreatedBy *UserContext
// When the trial was created.
CreationTime *time.Time
// The name of the trial as displayed. If DisplayName isn't specified, TrialName
// is displayed.
DisplayName *string
// The name of the experiment the trial is part of.
ExperimentName *string
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// Who last modified the trial.
LastModifiedTime *time.Time
// Metadata properties of the tracking entity, trial, or trial component.
MetadataProperties *MetadataProperties
// The source of the trial.
Source *TrialSource
// The list of tags that are associated with the trial. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API to search on the tags.
Tags []Tag
// The Amazon Resource Name (ARN) of the trial.
TrialArn *string
// A list of the components associated with the trial. For each component, a
// summary of the component's properties is included.
TrialComponentSummaries []TrialComponentSimpleSummary
// The name of the trial.
TrialName *string
noSmithyDocumentSerde
}
// The properties of a trial component as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type TrialComponent struct {
// Who created the trial component.
CreatedBy *UserContext
// When the component was created.
CreationTime *time.Time
// The name of the component as displayed. If DisplayName isn't specified,
// TrialComponentName is displayed.
DisplayName *string
// When the component ended.
EndTime *time.Time
// The input artifacts of the component.
InputArtifacts map[string]TrialComponentArtifact
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
LastModifiedBy *UserContext
// When the component was last modified.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the lineage group resource.
LineageGroupArn *string
// Metadata properties of the tracking entity, trial, or trial component.
MetadataProperties *MetadataProperties
// The metrics for the component.
Metrics []TrialComponentMetricSummary
// The output artifacts of the component.
OutputArtifacts map[string]TrialComponentArtifact
// The hyperparameters of the component.
Parameters map[string]TrialComponentParameterValue
// An array of the parents of the component. A parent is a trial the component is
// associated with and the experiment the trial is part of. A component might not
// have any parents.
Parents []Parent
// The name of the experiment run.
RunName *string
// The Amazon Resource Name (ARN) and job type of the source of the component.
Source *TrialComponentSource
// Details of the source of the component.
SourceDetail *TrialComponentSourceDetail
// When the component started.
StartTime *time.Time
// The status of the trial component.
Status *TrialComponentStatus
// The list of tags that are associated with the component. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API to search on the tags.
Tags []Tag
// The Amazon Resource Name (ARN) of the trial component.
TrialComponentArn *string
// The name of the trial component.
TrialComponentName *string
noSmithyDocumentSerde
}
// Represents an input or output artifact of a trial component. You specify
// TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts
// parameters in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html)
// request. Examples of input artifacts are datasets, algorithms, hyperparameters,
// source code, and instance types. Examples of output artifacts are metrics,
// snapshots, logs, and images.
type TrialComponentArtifact struct {
// The location of the artifact.
//
// This member is required.
Value *string
// The media type of the artifact, which indicates the type of data in the
// artifact file. The media type consists of a type and a subtype concatenated with
// a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type
// specifies the category of the media. The subtype specifies the kind of data.
MediaType *string
noSmithyDocumentSerde
}
// A summary of the metrics of a trial component.
type TrialComponentMetricSummary struct {
// The average value of the metric.
Avg *float64
// The number of samples used to generate the metric.
Count *int32
// The most recent value of the metric.
Last *float64
// The maximum value of the metric.
Max *float64
// The name of the metric.
MetricName *string
// The minimum value of the metric.
Min *float64
// The Amazon Resource Name (ARN) of the source.
SourceArn *string
// The standard deviation of the metric.
StdDev *float64
// When the metric was last updated.
TimeStamp *time.Time
noSmithyDocumentSerde
}
// The value of a hyperparameter. Only one of NumberValue or StringValue can be
// specified. This object is specified in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html)
// request.
//
// The following types satisfy this interface:
//
// TrialComponentParameterValueMemberNumberValue
// TrialComponentParameterValueMemberStringValue
type TrialComponentParameterValue interface {
isTrialComponentParameterValue()
}
// The numeric value of a numeric hyperparameter. If you specify a value for this
// parameter, you can't specify the StringValue parameter.
type TrialComponentParameterValueMemberNumberValue struct {
Value float64
noSmithyDocumentSerde
}
func (*TrialComponentParameterValueMemberNumberValue) isTrialComponentParameterValue() {}
// The string value of a categorical hyperparameter. If you specify a value for
// this parameter, you can't specify the NumberValue parameter.
type TrialComponentParameterValueMemberStringValue struct {
Value string
noSmithyDocumentSerde
}
func (*TrialComponentParameterValueMemberStringValue) isTrialComponentParameterValue() {}
// A short summary of a trial component.
type TrialComponentSimpleSummary struct {
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
CreatedBy *UserContext
// When the component was created.
CreationTime *time.Time
// The Amazon Resource Name (ARN) of the trial component.
TrialComponentArn *string
// The name of the trial component.
TrialComponentName *string
// The Amazon Resource Name (ARN) and job type of the source of a trial component.
TrialComponentSource *TrialComponentSource
noSmithyDocumentSerde
}
// The Amazon Resource Name (ARN) and job type of the source of a trial component.
type TrialComponentSource struct {
// The source Amazon Resource Name (ARN).
//
// This member is required.
SourceArn *string
// The source job type.
SourceType *string
noSmithyDocumentSerde
}
// Detailed information about the source of a trial component. Either ProcessingJob
// or TrainingJob is returned.
type TrialComponentSourceDetail struct {
// Information about a processing job that's the source of a trial component.
ProcessingJob *ProcessingJob
// The Amazon Resource Name (ARN) of the source.
SourceArn *string
// Information about a training job that's the source of a trial component.
TrainingJob *TrainingJob
// Information about a transform job that's the source of a trial component.
TransformJob *TransformJob
noSmithyDocumentSerde
}
// The status of the trial component.
type TrialComponentStatus struct {
// If the component failed, a message describing why.
Message *string
// The status of the trial component.
PrimaryStatus TrialComponentPrimaryStatus
noSmithyDocumentSerde
}
// A summary of the properties of a trial component. To get all the properties,
// call the DescribeTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrialComponent.html)
// API and provide the TrialComponentName .
type TrialComponentSummary struct {
// Who created the trial component.
CreatedBy *UserContext
// When the component was created.
CreationTime *time.Time
// The name of the component as displayed. If DisplayName isn't specified,
// TrialComponentName is displayed.
DisplayName *string
// When the component ended.
EndTime *time.Time
// Who last modified the component.
LastModifiedBy *UserContext
// When the component was last modified.
LastModifiedTime *time.Time
// When the component started.
StartTime *time.Time
// The status of the component. States include:
// - InProgress
// - Completed
// - Failed
Status *TrialComponentStatus
// The Amazon Resource Name (ARN) of the trial component.
TrialComponentArn *string
// The name of the trial component.
TrialComponentName *string
// The Amazon Resource Name (ARN) and job type of the source of a trial component.
TrialComponentSource *TrialComponentSource
noSmithyDocumentSerde
}
// The source of the trial.
type TrialSource struct {
// The Amazon Resource Name (ARN) of the source.
//
// This member is required.
SourceArn *string
// The source job type.
SourceType *string
noSmithyDocumentSerde
}
// A summary of the properties of a trial. To get the complete set of properties,
// call the DescribeTrial (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html)
// API and provide the TrialName .
type TrialSummary struct {
// When the trial was created.
CreationTime *time.Time
// The name of the trial as displayed. If DisplayName isn't specified, TrialName
// is displayed.
DisplayName *string
// When the trial was last modified.
LastModifiedTime *time.Time
// The Amazon Resource Name (ARN) of the trial.
TrialArn *string
// The name of the trial.
TrialName *string
// The source of the trial.
TrialSource *TrialSource
noSmithyDocumentSerde
}
// Time to live duration, where the record is hard deleted after the expiration
// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
// API in the Amazon SageMaker API Reference guide.
type TtlDuration struct {
// TtlDuration time unit.
Unit TtlDurationUnit
// TtlDuration time value.
Value *int32
noSmithyDocumentSerde
}
// The job completion criteria.
type TuningJobCompletionCriteria struct {
// A flag to stop your hyperparameter tuning job if model performance fails to
// improve as evaluated against an objective function.
BestObjectiveNotImproving *BestObjectiveNotImproving
// A flag to top your hyperparameter tuning job if automatic model tuning (AMT)
// has detected that your model has converged as evaluated against your objective
// function.
ConvergenceDetected *ConvergenceDetected
// The value of the objective metric.
TargetObjectiveMetricValue *float32
noSmithyDocumentSerde
}
// Metadata for a tuning step.
type TuningJobStepMetaData struct {
// The Amazon Resource Name (ARN) of the tuning job that was run by this step
// execution.
Arn *string
noSmithyDocumentSerde
}
// Provided configuration information for the worker UI for a labeling job.
// Provide either HumanTaskUiArn or UiTemplateS3Uri . For named entity recognition,
// 3D point cloud and video frame labeling jobs, use HumanTaskUiArn . For all other
// Ground Truth built-in task types and custom task types, use UiTemplateS3Uri to
// specify the location of a worker task template in Amazon S3.
type UiConfig struct {
// The ARN of the worker task template used to render the worker UI and tools for
// labeling job tasks. Use this parameter when you are creating a labeling job for
// named entity recognition, 3D point cloud and video frame labeling jobs. Use your
// labeling job task type to select one of the following ARNs and use it with this
// parameter when you create a labeling job. Replace aws-region with the Amazon
// Web Services Region you are creating your labeling job in. For example, replace
// aws-region with us-west-1 if you create a labeling job in US West (N.
// California). Named Entity Recognition Use the following HumanTaskUiArn for
// named entity recognition labeling jobs:
// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition
// 3D Point Cloud HumanTaskUiArns Use this HumanTaskUiArn for 3D point cloud
// object detection and 3D point cloud object detection adjustment labeling jobs.
// -
// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection
// Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud
// object tracking adjustment labeling jobs.
// -
// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking
// Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point
// cloud semantic segmentation adjustment labeling jobs.
// -
// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
// Video Frame HumanTaskUiArns Use this HumanTaskUiArn for video frame object
// detection and video frame object detection adjustment labeling jobs.
// - arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection
// Use this HumanTaskUiArn for video frame object tracking and video frame object
// tracking adjustment labeling jobs.
// - arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
HumanTaskUiArn *string
// The Amazon S3 bucket location of the UI template, or worker task template. This
// is the template used to render the worker UI and tools for labeling job tasks.
// For more information about the contents of a UI template, see Creating Your
// Custom Labeling Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html)
// .
UiTemplateS3Uri *string
noSmithyDocumentSerde
}
// The Liquid template for the worker user interface.
type UiTemplate struct {
// The content of the Liquid template for the worker user interface.
//
// This member is required.
Content *string
noSmithyDocumentSerde
}
// Container for user interface template information.
type UiTemplateInfo struct {
// The SHA-256 digest of the contents of the template.
ContentSha256 *string
// The URL for the user interface template.
Url *string
noSmithyDocumentSerde
}
// Represents an amount of money in United States dollars.
type USD struct {
// The fractional portion, in cents, of the amount.
Cents *int32
// The whole number of dollars in the amount.
Dollars *int32
// Fractions of a cent, in tenths.
TenthFractionsOfACent *int32
noSmithyDocumentSerde
}
// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
type UserContext struct {
// The domain associated with the user.
DomainId *string
// The IAM Identity details associated with the user. These details are associated
// with model package groups, model packages, and project entities only.
IamIdentity *IamIdentity
// The Amazon Resource Name (ARN) of the user's profile.
UserProfileArn *string
// The name of the user's profile.
UserProfileName *string
noSmithyDocumentSerde
}
// The user profile details.
type UserProfileDetails struct {
// The creation time.
CreationTime *time.Time
// The domain ID.
DomainId *string
// The last modified time.
LastModifiedTime *time.Time
// The status.
Status UserProfileStatus
// The user profile name.
UserProfileName *string
noSmithyDocumentSerde
}
// A collection of settings that apply to users in a domain. These settings are
// specified when the CreateUserProfile API is called, and as DefaultUserSettings
// when the CreateDomain API is called. SecurityGroups is aggregated when
// specified in both calls. For all other settings in UserSettings , the values
// specified in CreateUserProfile take precedence over those specified in
// CreateDomain .
type UserSettings struct {
// The Canvas app settings.
CanvasAppSettings *CanvasAppSettings
// The Code Editor application settings.
CodeEditorAppSettings *CodeEditorAppSettings
// The settings for assigning a custom file system to a user profile. Permitted
// users can access this file system in Amazon SageMaker Studio.
CustomFileSystemConfigs []CustomFileSystemConfig
// Details about the POSIX identity that is used for file system operations.
CustomPosixUserConfig *CustomPosixUserConfig
// The default experience that the user is directed to when accessing the domain.
// The supported values are:
// - studio:: : Indicates that Studio is the default experience. This value can
// only be passed if StudioWebPortal is set to ENABLED .
// - app:JupyterServer: : Indicates that Studio Classic is the default
// experience.
DefaultLandingUri *string
// The execution role for the user.
ExecutionRole *string
// The settings for the JupyterLab application.
JupyterLabAppSettings *JupyterLabAppSettings
// The Jupyter server's app settings.
JupyterServerAppSettings *JupyterServerAppSettings
// The kernel gateway app settings.
KernelGatewayAppSettings *KernelGatewayAppSettings
// A collection of settings that configure the RSessionGateway app.
RSessionAppSettings *RSessionAppSettings
// A collection of settings that configure user interaction with the
// RStudioServerPro app.
RStudioServerProAppSettings *RStudioServerProAppSettings
// The security groups for the Amazon Virtual Private Cloud (VPC) that the domain
// uses for communication. Optional when the CreateDomain.AppNetworkAccessType
// parameter is set to PublicInternetOnly . Required when the
// CreateDomain.AppNetworkAccessType parameter is set to VpcOnly , unless specified
// as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a
// security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the
// number of security groups that you can specify is one less than the maximum
// number shown.
SecurityGroups []string
// Specifies options for sharing Amazon SageMaker Studio notebooks.
SharingSettings *SharingSettings
// The storage settings for a private space.
SpaceStorageSettings *DefaultSpaceStorageSettings
// Whether the user can access Studio. If this value is set to DISABLED , the user
// cannot access Studio, even if that is the default experience for the domain.
StudioWebPortal StudioWebPortal
// The TensorBoard app settings.
TensorBoardAppSettings *TensorBoardAppSettings
noSmithyDocumentSerde
}
// Specifies a production variant property type for an Endpoint. If you are
// updating an endpoint with the RetainAllVariantProperties option of
// UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// set to true , the VariantProperty objects listed in the
// ExcludeRetainedVariantProperties parameter of UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// override the existing variant properties of the endpoint.
type VariantProperty struct {
// The type of variant property. The supported values are:
// - DesiredInstanceCount : Overrides the existing variant instance counts using
// the InitialInstanceCount values in the ProductionVariants of
// CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
// .
// - DesiredWeight : Overrides the existing variant weights using the
// InitialVariantWeight values in the ProductionVariants of CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
// .
// - DataCaptureConfig : (Not currently supported.)
//
// This member is required.
VariantPropertyType VariantPropertyType
noSmithyDocumentSerde
}
// Configuration for your vector collection type.
type VectorConfig struct {
// The number of elements in your vector.
//
// This member is required.
Dimension *int32
noSmithyDocumentSerde
}
// A lineage entity connected to the starting entity(ies).
type Vertex struct {
// The Amazon Resource Name (ARN) of the lineage entity resource.
Arn *string
// The type of resource of the lineage entity.
LineageType LineageType
// The type of the lineage entity resource. For example: DataSet , Model , Endpoint
// , etc...
Type *string
noSmithyDocumentSerde
}
// The list of key-value pairs that you specify for your resources.
type VisibilityConditions struct {
// The key for that specifies the tag that you're using to filter the search
// results. The key must start with Tags. .
Key *string
// The value for the tag that you're using to filter the search results.
Value *string
noSmithyDocumentSerde
}
// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
type VpcConfig struct {
// The VPC security group IDs, in the form sg-xxxxxxxx . Specify the security
// groups for the VPC that is specified in the Subnets field.
//
// This member is required.
SecurityGroupIds []string
// The ID of the subnets in the VPC to which you want to connect your training job
// or model. For information about the availability of specific instance types, see
// Supported Instance Types and Availability Zones (https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html)
// .
//
// This member is required.
Subnets []string
noSmithyDocumentSerde
}
// Status and billing information about the warm pool.
type WarmPoolStatus struct {
// The status of the warm pool.
// - InUse : The warm pool is in use for the training job.
// - Available : The warm pool is available to reuse for a matching training job.
// - Reused : The warm pool moved to a matching training job for reuse.
// - Terminated : The warm pool is no longer available. Warm pools are
// unavailable if they are terminated by a user, terminated for a patch update, or
// terminated for exceeding the specified KeepAlivePeriodInSeconds .
//
// This member is required.
Status WarmPoolResourceStatus
// The billable time in seconds used by the warm pool. Billable time refers to the
// absolute wall-clock time. Multiply ResourceRetainedBillableTimeInSeconds by the
// number of instances ( InstanceCount ) in your training cluster to get the total
// compute time SageMaker bills you if you run warm pool training. The formula is
// as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .
ResourceRetainedBillableTimeInSeconds *int32
// The name of the matching training job that reused the warm pool.
ReusedByJob *string
noSmithyDocumentSerde
}
// A single private workforce, which is automatically created when you create your
// first private work team. You can create one private work force in each Amazon
// Web Services Region. By default, any workforce-related API operation used in a
// specific region will apply to the workforce created in that region. To learn how
// to create a private workforce, see Create a Private Workforce (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html)
// .
type Workforce struct {
// The Amazon Resource Name (ARN) of the private workforce.
//
// This member is required.
WorkforceArn *string
// The name of the private workforce.
//
// This member is required.
WorkforceName *string
// The configuration of an Amazon Cognito workforce. A single Cognito workforce is
// created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
// .
CognitoConfig *CognitoConfig
// The date that the workforce is created.
CreateDate *time.Time
// The reason your workforce failed.
FailureReason *string
// The most recent date that UpdateWorkforce (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html)
// was used to successfully add one or more IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
// ) to a private workforce's allow list.
LastUpdatedDate *time.Time
// The configuration of an OIDC Identity Provider (IdP) private workforce.
OidcConfig *OidcConfigForResponse
// A list of one to ten IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
// ) to be added to the workforce allow list. By default, a workforce isn't
// restricted to specific IP addresses.
SourceIpConfig *SourceIpConfig
// The status of your workforce.
Status WorkforceStatus
// The subdomain for your OIDC Identity Provider.
SubDomain *string
// The configuration of a VPC workforce.
WorkforceVpcConfig *WorkforceVpcConfigResponse
noSmithyDocumentSerde
}
// The VPC object you use to create or update a workforce.
type WorkforceVpcConfigRequest struct {
// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
// be for the same VPC as specified in the subnet.
SecurityGroupIds []string
// The ID of the subnets in the VPC that you want to connect.
Subnets []string
// The ID of the VPC that the workforce uses for communication.
VpcId *string
noSmithyDocumentSerde
}
// A VpcConfig object that specifies the VPC that you want your workforce to
// connect to.
type WorkforceVpcConfigResponse struct {
// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
// be for the same VPC as specified in the subnet.
//
// This member is required.
SecurityGroupIds []string
// The ID of the subnets in the VPC that you want to connect.
//
// This member is required.
Subnets []string
// The ID of the VPC that the workforce uses for communication.
//
// This member is required.
VpcId *string
// The IDs for the VPC service endpoints of your VPC workforce when it is created
// and updated.
VpcEndpointId *string
noSmithyDocumentSerde
}
// The workspace settings for the SageMaker Canvas application.
type WorkspaceSettings struct {
// The Amazon S3 bucket used to store artifacts generated by Canvas. Updating the
// Amazon S3 location impacts existing configuration settings, and Canvas users no
// longer have access to their artifacts. Canvas users must log out and log back in
// to apply the new location.
S3ArtifactPath *string
// The Amazon Web Services Key Management Service (KMS) encryption key ID that is
// used to encrypt artifacts generated by Canvas in the Amazon S3 bucket.
S3KmsKeyId *string
noSmithyDocumentSerde
}
// Provides details about a labeling work team.
type Workteam struct {
// A description of the work team.
//
// This member is required.
Description *string
// A list of MemberDefinition objects that contains objects that identify the
// workers that make up the work team. Workforces can be created using Amazon
// Cognito or your own OIDC Identity Provider (IdP). For private workforces created
// using Amazon Cognito use CognitoMemberDefinition . For workforces created using
// your own OIDC identity provider (IdP) use OidcMemberDefinition .
//
// This member is required.
MemberDefinitions []MemberDefinition
// The Amazon Resource Name (ARN) that identifies the work team.
//
// This member is required.
WorkteamArn *string
// The name of the work team.
//
// This member is required.
WorkteamName *string
// The date and time that the work team was created (timestamp).
CreateDate *time.Time
// The date and time that the work team was last updated (timestamp).
LastUpdatedDate *time.Time
// Configures SNS notifications of available or expiring work items for work teams.
NotificationConfiguration *NotificationConfiguration
// The Amazon Marketplace identifier for a vendor's work team.
ProductListingIds []string
// The URI of the labeling job's user interface. Workers open this URI to start
// labeling your data objects.
SubDomain *string
// The Amazon Resource Name (ARN) of the workforce.
WorkforceArn *string
noSmithyDocumentSerde
}
type noSmithyDocumentSerde = smithydocument.NoSerde
// UnknownUnionMember is returned when a union member is returned over the wire,
// but has an unknown tag.
type UnknownUnionMember struct {
Tag string
Value []byte
noSmithyDocumentSerde
}
func (*UnknownUnionMember) isAutoMLProblemTypeConfig() {}
func (*UnknownUnionMember) isAutoMLProblemTypeResolvedAttributes() {}
func (*UnknownUnionMember) isCollectionConfig() {}
func (*UnknownUnionMember) isCustomFileSystem() {}
func (*UnknownUnionMember) isCustomFileSystemConfig() {}
func (*UnknownUnionMember) isMetricSpecification() {}
func (*UnknownUnionMember) isScalingPolicy() {}
func (*UnknownUnionMember) isTrialComponentParameterValue() {}
|