File: types.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.24.1-2~bpo12%2B1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-backports
  • size: 554,032 kB
  • sloc: java: 15,941; makefile: 419; sh: 175
file content (16470 lines) | stat: -rw-r--r-- 615,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
// Code generated by smithy-go-codegen DO NOT EDIT.

package types

import (
	smithydocument "github.com/aws/smithy-go/document"
	"time"
)

// A structure describing the source of an action.
type ActionSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// The ID of the source.
	SourceId *string

	// The type of the source.
	SourceType *string

	noSmithyDocumentSerde
}

// Lists the properties of an action. An action represents an action or activity.
// Some examples are a workflow step and a model deployment. Generally, an action
// involves at least one input artifact or output artifact.
type ActionSummary struct {

	// The Amazon Resource Name (ARN) of the action.
	ActionArn *string

	// The name of the action.
	ActionName *string

	// The type of the action.
	ActionType *string

	// When the action was created.
	CreationTime *time.Time

	// When the action was last modified.
	LastModifiedTime *time.Time

	// The source of the action.
	Source *ActionSource

	// The status of the action.
	Status ActionStatus

	noSmithyDocumentSerde
}

// A structure of additional Inference Specification. Additional Inference
// Specification specifies details about inference jobs that can be run with models
// based on this model package
type AdditionalInferenceSpecificationDefinition struct {

	// The Amazon ECR registry path of the Docker image that contains the inference
	// code.
	//
	// This member is required.
	Containers []ModelPackageContainerDefinition

	// A unique name to identify the additional inference specification. The name must
	// be unique within the list of your additional inference specifications for a
	// particular model package.
	//
	// This member is required.
	Name *string

	// A description of the additional Inference specification
	Description *string

	// The supported MIME types for the input data.
	SupportedContentTypes []string

	// A list of the instance types that are used to generate inferences in real-time.
	SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// A list of the instance types on which a transformation job can be run or on
	// which an endpoint can be deployed.
	SupportedTransformInstanceTypes []TransformInstanceType

	noSmithyDocumentSerde
}

// A data source used for training or inference that is in addition to the input
// dataset or model data.
type AdditionalS3DataSource struct {

	// The data type of the additional data source that you specify for use in
	// inference or training.
	//
	// This member is required.
	S3DataType AdditionalS3DataSourceDataType

	// The uniform resource identifier (URI) used to identify an additional data
	// source used in inference or training.
	//
	// This member is required.
	S3Uri *string

	// The type of compression used for an additional data source used in inference or
	// training. Specify None if your additional data source is not compressed.
	CompressionType CompressionType

	noSmithyDocumentSerde
}

// Edge Manager agent version.
type AgentVersion struct {

	// The number of Edge Manager agents.
	//
	// This member is required.
	AgentCount *int64

	// Version of the agent.
	//
	// This member is required.
	Version *string

	noSmithyDocumentSerde
}

// An Amazon CloudWatch alarm configured to monitor metrics on an endpoint.
type Alarm struct {

	// The name of a CloudWatch alarm in your account.
	AlarmName *string

	noSmithyDocumentSerde
}

// Specifies the training algorithm to use in a CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// request. For more information about algorithms provided by SageMaker, see
// Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html) . For
// information about using your own algorithms, see Using Your Own Algorithms with
// Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
// .
type AlgorithmSpecification struct {

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the algorithm resource to use for the training job. This must be an
	// algorithm resource that you created or subscribe to on Amazon Web Services
	// Marketplace. You must specify either the algorithm name to the AlgorithmName
	// parameter or the image URI of the algorithm container to the TrainingImage
	// parameter. Note that the AlgorithmName parameter is mutually exclusive with the
	// TrainingImage parameter. If you specify a value for the AlgorithmName
	// parameter, you can't specify a value for TrainingImage , and vice versa. If you
	// specify values for both parameters, the training job might break; if you don't
	// specify any value for both parameters, the training job might raise a null
	// error.
	AlgorithmName *string

	// The arguments for a container used to run a training job. See How Amazon
	// SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
	// for additional information.
	ContainerArguments []string

	// The entrypoint script for a Docker container (https://docs.docker.com/engine/reference/builder/)
	// used to run a training job. This script takes precedence over the default train
	// processing instructions. See How Amazon SageMaker Runs Your Training Image (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo-dockerfile.html)
	// for more information.
	ContainerEntrypoint []string

	// To generate and save time-series metrics during training, set to true . The
	// default is false and time-series metrics aren't generated except in the
	// following cases:
	//   - You use one of the SageMaker built-in algorithms
	//   - You use one of the following Prebuilt SageMaker Docker Images (https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html)
	//   :
	//   - Tensorflow (version >= 1.15)
	//   - MXNet (version >= 1.6)
	//   - PyTorch (version >= 1.3)
	//   - You specify at least one MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
	EnableSageMakerMetricsTimeSeries *bool

	// A list of metric definition objects. Each object specifies the metric name and
	// regular expressions used to parse algorithm logs. SageMaker publishes each
	// metric to Amazon CloudWatch.
	MetricDefinitions []MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about docker registry paths for SageMaker built-in algorithms, see
	// Docker Registry Paths and Example Code (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// in the Amazon SageMaker developer guide. SageMaker supports both
	// registry/repository[:tag] and registry/repository[@digest] image path formats.
	// For more information about using your custom training container, see Using Your
	// Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// . You must specify either the algorithm name to the AlgorithmName parameter or
	// the image URI of the algorithm container to the TrainingImage parameter. For
	// more information, see the note in the AlgorithmName parameter description.
	TrainingImage *string

	// The configuration to use an image from a private Docker registry for a training
	// job.
	TrainingImageConfig *TrainingImageConfig

	noSmithyDocumentSerde
}

// Specifies the validation and image scan statuses of the algorithm.
type AlgorithmStatusDetails struct {

	// The status of the scan of the algorithm's Docker image container.
	ImageScanStatuses []AlgorithmStatusItem

	// The status of algorithm validation.
	ValidationStatuses []AlgorithmStatusItem

	noSmithyDocumentSerde
}

// Represents the overall status of an algorithm.
type AlgorithmStatusItem struct {

	// The name of the algorithm for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedAlgorithmStatus

	// if the overall status is Failed , the reason for the failure.
	FailureReason *string

	noSmithyDocumentSerde
}

// Provides summary information about an algorithm.
type AlgorithmSummary struct {

	// The Amazon Resource Name (ARN) of the algorithm.
	//
	// This member is required.
	AlgorithmArn *string

	// The name of the algorithm that is described by the summary.
	//
	// This member is required.
	AlgorithmName *string

	// The overall status of the algorithm.
	//
	// This member is required.
	AlgorithmStatus AlgorithmStatus

	// A timestamp that shows when the algorithm was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A brief description of the algorithm.
	AlgorithmDescription *string

	noSmithyDocumentSerde
}

// Defines a training job and a batch transform job that SageMaker runs to
// validate your algorithm. The data provided in the validation profile is made
// available to your buyers on Amazon Web Services Marketplace.
type AlgorithmValidationProfile struct {

	// The name of the profile for the algorithm. The name must have 1 to 63
	// characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
	//
	// This member is required.
	ProfileName *string

	// The TrainingJobDefinition object that describes the training job that SageMaker
	// runs to validate your algorithm.
	//
	// This member is required.
	TrainingJobDefinition *TrainingJobDefinition

	// The TransformJobDefinition object that describes the transform job that
	// SageMaker runs to validate your algorithm.
	TransformJobDefinition *TransformJobDefinition

	noSmithyDocumentSerde
}

// Specifies configurations for one or more training jobs that SageMaker runs to
// test the algorithm.
type AlgorithmValidationSpecification struct {

	// An array of AlgorithmValidationProfile objects, each of which specifies a
	// training job and batch transform job that SageMaker runs to validate your
	// algorithm.
	//
	// This member is required.
	ValidationProfiles []AlgorithmValidationProfile

	// The IAM roles that SageMaker uses to run the training jobs.
	//
	// This member is required.
	ValidationRole *string

	noSmithyDocumentSerde
}

// Configures how labels are consolidated across human workers and processes
// output data.
type AnnotationConsolidationConfig struct {

	// The Amazon Resource Name (ARN) of a Lambda function implements the logic for
	// annotation consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
	// and to process output data. This parameter is required for all labeling jobs.
	// For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
	// for AnnotationConsolidationLambdaArn . For custom labeling workflows, see
	// Post-annotation Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-postlambda)
	// . Bounding box - Finds the most similar boxes from different workers based on
	// the Jaccard index of the boxes.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox
	// Image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of an image based on annotations from individual
	// workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass
	// Multi-label image classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of an image based on
	// annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel
	// Semantic segmentation - Treats each pixel in an image as a multi-class
	// classification and treats pixel annotations from workers as "votes" for the
	// correct label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation
	// Text classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of text based on annotations from individual workers.
	//
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass
	// Multi-label text classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of text based on annotations
	// from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel
	// Named entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition
	// Video Classification - Use this task type when you need workers to classify
	// videos using predefined labels that you specify. Workers are shown videos and
	// are asked to choose one label for each video.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass
	// Video Frame Object Detection - Use this task type to have workers identify and
	// locate objects in a sequence of video frames (images extracted from a video)
	// using bounding boxes. For example, you can use this task to ask workers to
	// identify and localize various objects in a series of video frames, such as cars,
	// bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection
	// Video Frame Object Tracking - Use this task type to have workers track the
	// movement of objects in a sequence of video frames (images extracted from a
	// video) using bounding boxes. For example, you can use this task to ask workers
	// to track the movement of objects, such as cars, bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking
	// 3D Point Cloud Object Detection - Use this task type when you want workers to
	// classify objects in a 3D point cloud by drawing 3D cuboids around objects. For
	// example, you can use this task type to ask workers to identify different types
	// of objects in a point cloud, such as cars, bikes, and pedestrians.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking - Use this task type when you want workers to
	// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
	// frames. For example, you can use this task type to ask workers to track the
	// movement of vehicles across multiple point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
	// to create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation
	// Use the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
	// . Semantic Segmentation Adjustment - Treats each pixel in an image as a
	// multi-class classification and treats pixel adjusted annotations from workers as
	// "votes" for the correct label.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation
	// Semantic Segmentation Verification - Uses a variant of the Expectation
	// Maximization approach to estimate the true class of verification judgment for
	// semantic segmentation labels based on annotations from individual workers.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation
	// Bounding Box Adjustment - Finds the most similar boxes from different workers
	// based on the Jaccard index of the adjusted annotations.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox
	// Bounding Box Verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgement for bounding box
	// labels based on annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox
	// Video Frame Object Detection Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// classify and localize objects in a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection
	// Video Frame Object Tracking Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// track object movement across a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking
	// 3D Point Cloud Object Detection Adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects in a 3D point cloud.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking Adjustment - Use this task type when you want
	// workers to adjust 3D cuboids around objects that appear in a sequence of 3D
	// point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you
	// want workers to adjust a point-level semantic segmentation masks using a paint
	// tool.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	AnnotationConsolidationLambdaArn *string

	noSmithyDocumentSerde
}

// Details about an Amazon SageMaker app.
type AppDetails struct {

	// The name of the app.
	AppName *string

	// The type of app.
	AppType AppType

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	ResourceSpec *ResourceSpec

	// The name of the space.
	SpaceName *string

	// The status.
	Status AppStatus

	// The user profile name.
	UserProfileName *string

	noSmithyDocumentSerde
}

// The configuration for running a SageMaker image as a KernelGateway app.
type AppImageConfigDetails struct {

	// The Amazon Resource Name (ARN) of the AppImageConfig.
	AppImageConfigArn *string

	// The name of the AppImageConfig. Must be unique to your account.
	AppImageConfigName *string

	// When the AppImageConfig was created.
	CreationTime *time.Time

	// The configuration for the file system and the runtime, such as the environment
	// variables and entry point.
	JupyterLabAppImageConfig *JupyterLabAppImageConfig

	// The configuration for the file system and kernels in the SageMaker image.
	KernelGatewayImageConfig *KernelGatewayImageConfig

	// When the AppImageConfig was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Configuration to run a processing job in a specified container image.
type AppSpecification struct {

	// The container image to be run by the processing job.
	//
	// This member is required.
	ImageUri *string

	// The arguments for a container used to run a processing job.
	ContainerArguments []string

	// The entrypoint for a container used to run a processing job.
	ContainerEntrypoint []string

	noSmithyDocumentSerde
}

// A structure describing the source of an artifact.
type ArtifactSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// A list of source types.
	SourceTypes []ArtifactSourceType

	noSmithyDocumentSerde
}

// The ID and ID type of an artifact source.
type ArtifactSourceType struct {

	// The type of ID.
	//
	// This member is required.
	SourceIdType ArtifactSourceIdType

	// The ID.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// Lists a summary of the properties of an artifact. An artifact represents a URI
// addressable object or data. Some examples are a dataset and a model.
type ArtifactSummary struct {

	// The Amazon Resource Name (ARN) of the artifact.
	ArtifactArn *string

	// The name of the artifact.
	ArtifactName *string

	// The type of the artifact.
	ArtifactType *string

	// When the artifact was created.
	CreationTime *time.Time

	// When the artifact was last modified.
	LastModifiedTime *time.Time

	// The source of the artifact.
	Source *ArtifactSource

	noSmithyDocumentSerde
}

// Lists a summary of the properties of an association. An association is an
// entity that links other lineage or experiment entities. An example would be an
// association between a training job and a model.
type AssociationSummary struct {

	// The type of the association.
	AssociationType AssociationEdgeType

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// When the association was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the destination.
	DestinationArn *string

	// The name of the destination.
	DestinationName *string

	// The destination type.
	DestinationType *string

	// The ARN of the source.
	SourceArn *string

	// The name of the source.
	SourceName *string

	// The source type.
	SourceType *string

	noSmithyDocumentSerde
}

// Configures the behavior of the client used by SageMaker to interact with the
// model container during asynchronous inference.
type AsyncInferenceClientConfig struct {

	// The maximum number of concurrent requests sent by the SageMaker client to the
	// model container. If no value is provided, SageMaker chooses an optimal value.
	MaxConcurrentInvocationsPerInstance *int32

	noSmithyDocumentSerde
}

// Specifies configuration for how an endpoint performs asynchronous inference.
type AsyncInferenceConfig struct {

	// Specifies the configuration for asynchronous inference invocation outputs.
	//
	// This member is required.
	OutputConfig *AsyncInferenceOutputConfig

	// Configures the behavior of the client used by SageMaker to interact with the
	// model container during asynchronous inference.
	ClientConfig *AsyncInferenceClientConfig

	noSmithyDocumentSerde
}

// Specifies the configuration for notifications of inference results for
// asynchronous inference.
type AsyncInferenceNotificationConfig struct {

	// Amazon SNS topic to post a notification to when inference fails. If no topic is
	// provided, no notification is sent on failure.
	ErrorTopic *string

	// The Amazon SNS topics where you want the inference response to be included. The
	// inference response is included only if the response size is less than or equal
	// to 128 KB.
	IncludeInferenceResponseIn []AsyncNotificationTopicTypes

	// Amazon SNS topic to post a notification to when inference completes
	// successfully. If no topic is provided, no notification is sent on success.
	SuccessTopic *string

	noSmithyDocumentSerde
}

// Specifies the configuration for asynchronous inference invocation outputs.
type AsyncInferenceOutputConfig struct {

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
	KmsKeyId *string

	// Specifies the configuration for notifications of inference results for
	// asynchronous inference.
	NotificationConfig *AsyncInferenceNotificationConfig

	// The Amazon S3 location to upload failure inference responses to.
	S3FailurePath *string

	// The Amazon S3 location to upload inference responses to.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// Configuration for Athena Dataset Definition input.
type AthenaDatasetDefinition struct {

	// The name of the data catalog used in Athena query execution.
	//
	// This member is required.
	Catalog *string

	// The name of the database used in the Athena query execution.
	//
	// This member is required.
	Database *string

	// The data storage format for Athena query results.
	//
	// This member is required.
	OutputFormat AthenaResultFormat

	// The location in Amazon S3 where Athena query results are stored.
	//
	// This member is required.
	OutputS3Uri *string

	// The SQL query statements, to be executed.
	//
	// This member is required.
	QueryString *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data generated from an Athena query
	// execution.
	KmsKeyId *string

	// The compression used for Athena query results.
	OutputCompression AthenaResultCompressionType

	// The name of the workgroup in which the Athena query is being started.
	WorkGroup *string

	noSmithyDocumentSerde
}

// The collection of algorithms run on a dataset for training the model candidates
// of an Autopilot job.
type AutoMLAlgorithmConfig struct {

	// The selection of algorithms run on a dataset to train the model candidates of
	// an Autopilot job. Selected algorithms must belong to the list corresponding to
	// the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html#sagemaker-Type-AutoMLJobConfig-Mode)
	// ( ENSEMBLING or HYPERPARAMETER_TUNING ). Choose a minimum of 1 algorithm.
	//   - In ENSEMBLING mode:
	//   - "catboost"
	//   - "extra-trees"
	//   - "fastai"
	//   - "lightgbm"
	//   - "linear-learner"
	//   - "nn-torch"
	//   - "randomforest"
	//   - "xgboost"
	//   - In HYPERPARAMETER_TUNING mode:
	//   - "linear-learner"
	//   - "mlp"
	//   - "xgboost"
	//
	// This member is required.
	AutoMLAlgorithms []AutoMLAlgorithm

	noSmithyDocumentSerde
}

// Information about a candidate produced by an AutoML training job, including its
// status, steps, and other properties.
type AutoMLCandidate struct {

	// The name of the candidate.
	//
	// This member is required.
	CandidateName *string

	// The candidate's status.
	//
	// This member is required.
	CandidateStatus CandidateStatus

	// Information about the candidate's steps.
	//
	// This member is required.
	CandidateSteps []AutoMLCandidateStep

	// The creation time.
	//
	// This member is required.
	CreationTime *time.Time

	// The last modified time.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The objective's status.
	//
	// This member is required.
	ObjectiveStatus ObjectiveStatus

	// The properties of an AutoML candidate job.
	CandidateProperties *CandidateProperties

	// The end time.
	EndTime *time.Time

	// The failure reason.
	FailureReason *string

	// The best candidate result from an AutoML training job.
	FinalAutoMLJobObjectiveMetric *FinalAutoMLJobObjectiveMetric

	// The mapping of all supported processing unit (CPU, GPU, etc...) to inference
	// container definitions for the candidate. This field is populated for the AutoML
	// jobs V2 (for example, for jobs created by calling CreateAutoMLJobV2 ) related to
	// image or text classification problem types only.
	InferenceContainerDefinitions map[string][]AutoMLContainerDefinition

	// Information about the recommended inference container definitions.
	InferenceContainers []AutoMLContainerDefinition

	noSmithyDocumentSerde
}

// Stores the configuration information for how a candidate is generated
// (optional).
type AutoMLCandidateGenerationConfig struct {

	// Stores the configuration information for the selection of algorithms used to
	// train the model candidates. The list of available algorithms to choose from
	// depends on the training mode set in AutoMLJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html)
	// .
	//   - AlgorithmsConfig should not be set in AUTO training mode.
	//   - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
	//   set and one only. If the list of algorithms provided as values for
	//   AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set
	//   of algorithms for the given training mode.
	//   - When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses
	//   the full set of algorithms for the given training mode.
	// For the list of all algorithms per training mode, see  AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// section in Autopilot developer guide.
	AlgorithmsConfig []AutoMLAlgorithmConfig

	// A URL to the Amazon S3 data source containing selected features from the input
	// data source to run an Autopilot job. You can input FeatureAttributeNames
	// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
	// "col2", ...] } . You can also specify the data type of the feature (optional) in
	// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
	// "col2":"categorical" ... } } These column keys may not include the target
	// column. In ensembling mode, Autopilot only supports the following data types:
	// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
	// numeric , categorical , text , datetime , and sequence . If only
	// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
	// subset of the column names in the input data. If both FeatureDataTypes and
	// FeatureAttributeNames are provided, then the column keys should be a subset of
	// the column names provided in FeatureAttributeNames . The key name
	// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
	// case sensitive and should be a list of strings containing unique values that are
	// a subset of the column names in the input data. The list of columns provided
	// must not include the target column.
	FeatureSpecificationS3Uri *string

	noSmithyDocumentSerde
}

// Information about the steps for a candidate and what step it is working on.
type AutoMLCandidateStep struct {

	// The ARN for the candidate's step.
	//
	// This member is required.
	CandidateStepArn *string

	// The name for the candidate's step.
	//
	// This member is required.
	CandidateStepName *string

	// Whether the candidate is at the transform, training, or processing step.
	//
	// This member is required.
	CandidateStepType CandidateStepType

	noSmithyDocumentSerde
}

// A channel is a named input source that training algorithms can consume. The
// validation dataset size is limited to less than 2 GB. The training dataset size
// must be less than 100 GB. For more information, see Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html)
// . A validation dataset must contain the same headers as the training dataset.
type AutoMLChannel struct {

	// The name of the target variable in supervised learning, usually represented by
	// 'y'.
	//
	// This member is required.
	TargetAttributeName *string

	// The channel type (optional) is an enum string. The default value is training .
	// Channels for training and validation must share the same ContentType and
	// TargetAttributeName . For information on specifying training and validation
	// channel types, see How to specify training and validation datasets (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation)
	// .
	ChannelType AutoMLChannelType

	// You can use Gzip or None . The default value is None .
	CompressionType CompressionType

	// The content type of the data from the input source. You can use
	// text/csv;header=present or x-application/vnd.amazon+parquet . The default value
	// is text/csv;header=present .
	ContentType *string

	// The data source for an AutoML channel.
	DataSource *AutoMLDataSource

	// If specified, this column name indicates which column of the dataset should be
	// treated as sample weights for use by the objective metric during the training,
	// evaluation, and the selection of the best model. This column is not considered
	// as a predictive feature. For more information on Autopilot metrics, see Metrics
	// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
	// . Sample weights should be numeric, non-negative, with larger values indicating
	// which rows are more important than others. Data points that have invalid or no
	// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// mode only.
	SampleWeightAttributeName *string

	noSmithyDocumentSerde
}

// A list of container definitions that describe the different containers that
// make up an AutoML candidate. For more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
// .
type AutoMLContainerDefinition struct {

	// The Amazon Elastic Container Registry (Amazon ECR) path of the container. For
	// more information, see ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	//
	// This member is required.
	Image *string

	// The location of the model artifacts. For more information, see
	// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	//
	// This member is required.
	ModelDataUrl *string

	// The environment variables to set in the container. For more information, see
	// ContainerDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContainerDefinition.html)
	// .
	Environment map[string]string

	noSmithyDocumentSerde
}

// The data source for the Autopilot job.
type AutoMLDataSource struct {

	// The Amazon S3 location of the input data.
	//
	// This member is required.
	S3DataSource *AutoMLS3DataSource

	noSmithyDocumentSerde
}

// This structure specifies how to split the data into train and validation
// datasets. The validation and training datasets must contain the same headers.
// For jobs created by calling CreateAutoMLJob , the validation dataset must be
// less than 2 GB in size.
type AutoMLDataSplitConfig struct {

	// The validation fraction (optional) is a float that specifies the portion of the
	// training dataset to be used for validation. The default value is 0.2, and values
	// must be greater than 0 and less than 1. We recommend setting this value to be
	// less than 0.5.
	ValidationFraction *float32

	noSmithyDocumentSerde
}

// The artifacts that are generated during an AutoML job.
type AutoMLJobArtifacts struct {

	// The URL of the notebook location.
	CandidateDefinitionNotebookLocation *string

	// The URL of the notebook location.
	DataExplorationNotebookLocation *string

	noSmithyDocumentSerde
}

// A channel is a named input source that training algorithms can consume. This
// channel is used for AutoML jobs V2 (jobs created by calling CreateAutoMLJobV2 (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html)
// ).
type AutoMLJobChannel struct {

	// The type of channel. Defines whether the data are used for training or
	// validation. The default value is training . Channels for training and validation
	// must share the same ContentType The type of channel defaults to training for
	// the time-series forecasting problem type.
	ChannelType AutoMLChannelType

	// The allowed compression types depend on the input format and problem type. We
	// allow the compression type Gzip for S3Prefix inputs on tabular data only. For
	// all other inputs, the compression type should be None . If no compression type
	// is provided, we default to None .
	CompressionType CompressionType

	// The content type of the data from the input source. The following are the
	// allowed content types for different problems:
	//   - For tabular problem types: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For image classification: image/png , image/jpeg , or image/* . The default
	//   value is image/* .
	//   - For text classification: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For time-series forecasting: text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	//   - For text generation (LLMs fine-tuning): text/csv;header=present or
	//   x-application/vnd.amazon+parquet . The default value is
	//   text/csv;header=present .
	ContentType *string

	// The data source for an AutoML channel (Required).
	DataSource *AutoMLDataSource

	noSmithyDocumentSerde
}

// How long a job is allowed to run, or how many candidates a job is allowed to
// generate.
type AutoMLJobCompletionCriteria struct {

	// The maximum runtime, in seconds, an AutoML job has to complete. If an AutoML
	// job exceeds the maximum runtime, the job is stopped automatically and its
	// processing is ended gracefully. The AutoML job identifies the best model whose
	// training was completed and marks it as the best-performing model. Any unfinished
	// steps of the job, such as automatic one-click Autopilot model deployment, are
	// not completed.
	MaxAutoMLJobRuntimeInSeconds *int32

	// The maximum number of times a training job is allowed to run. For text and
	// image classification, time-series forecasting, as well as text generation (LLMs
	// fine-tuning) problem types, the supported value is 1. For tabular problem types,
	// the maximum value is 750.
	MaxCandidates *int32

	// The maximum time, in seconds, that each training job executed inside
	// hyperparameter tuning is allowed to run as part of a hyperparameter tuning job.
	// For more information, see the StoppingCondition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StoppingCondition.html)
	// used by the CreateHyperParameterTuningJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html)
	// action. For job V2s (jobs created by calling CreateAutoMLJobV2 ), this field
	// controls the runtime of the job candidate. For TextGenerationJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TextClassificationJobConfig.html)
	// problem types, the maximum time defaults to 72 hours (259200 seconds).
	MaxRuntimePerTrainingJobInSeconds *int32

	noSmithyDocumentSerde
}

// A collection of settings used for an AutoML job.
type AutoMLJobConfig struct {

	// The configuration for generating a candidate for an AutoML job (optional).
	CandidateGenerationConfig *AutoMLCandidateGenerationConfig

	// How long an AutoML job is allowed to run, or how many candidates a job is
	// allowed to generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The configuration for splitting the input training dataset. Type:
	// AutoMLDataSplitConfig
	DataSplitConfig *AutoMLDataSplitConfig

	// The method that Autopilot uses to train the data. You can either specify the
	// mode manually or let Autopilot choose for you based on the dataset size by
	// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
	// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
	// mode uses a multi-stack ensemble model to predict classification and regression
	// tasks directly from your dataset. This machine learning mode combines several
	// base models to produce an optimal predictive model. It then uses a stacking
	// ensemble method to combine predictions from contributing members. A multi-stack
	// ensemble model can provide better performance over a single model by combining
	// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
	// (HPO) mode uses the best hyperparameters to train the best version of a model.
	// HPO automatically selects an algorithm for the type of problem you want to
	// solve. Then HPO finds the best hyperparameters according to your objective
	// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
	Mode AutoMLMode

	// The security configuration for traffic encryption or Amazon VPC settings.
	SecurityConfig *AutoMLSecurityConfig

	noSmithyDocumentSerde
}

// Specifies a metric to minimize or maximize as the objective of an AutoML job.
type AutoMLJobObjective struct {

	// The name of the objective metric used to measure the predictive quality of a
	// machine learning system. During training, the model's parameters are updated
	// iteratively to optimize its performance based on the feedback provided by the
	// objective metric when evaluating the model on the validation dataset. The list
	// of available metrics supported by Autopilot and the default metric applied when
	// you do not specify a metric name explicitly depend on the problem type.
	//   - For tabular problem types:
	//   - List of available metrics:
	//   - Regression: InferenceLatency , MAE , MSE , R2 , RMSE
	//   - Binary classification: Accuracy , AUC , BalancedAccuracy , F1 ,
	//   InferenceLatency , LogLoss , Precision , Recall
	//   - Multiclass classification: Accuracy , BalancedAccuracy , F1macro ,
	//   InferenceLatency , LogLoss , PrecisionMacro , RecallMacro For a description of
	//   each metric, see Autopilot metrics for classification and regression (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
	//   .
	//   - Default objective metrics:
	//   - Regression: MSE .
	//   - Binary classification: F1 .
	//   - Multiclass classification: Accuracy .
	//   - For image or text classification problem types:
	//   - List of available metrics: Accuracy For a description of each metric, see
	//   Autopilot metrics for text and image classification (https://docs.aws.amazon.com/sagemaker/latest/dg/text-classification-data-format-and-metric.html)
	//   .
	//   - Default objective metrics: Accuracy
	//   - For time-series forecasting problem types:
	//   - List of available metrics: RMSE , wQL , Average wQL , MASE , MAPE , WAPE For
	//   a description of each metric, see Autopilot metrics for time-series
	//   forecasting (https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-objective-metric.html)
	//   .
	//   - Default objective metrics: AverageWeightedQuantileLoss
	//   - For text generation problem types (LLMs fine-tuning): Fine-tuning language
	//   models in Autopilot does not require setting the AutoMLJobObjective field.
	//   Autopilot fine-tunes LLMs without requiring multiple candidates to be trained
	//   and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your
	//   target model to enhance a default objective metric, the cross-entropy loss.
	//   After fine-tuning a language model, you can evaluate the quality of its
	//   generated text using different metrics. For a list of the available metrics, see
	//   Metrics for fine-tuning LLMs in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html)
	//   .
	//
	// This member is required.
	MetricName AutoMLMetricEnum

	noSmithyDocumentSerde
}

// Metadata for an AutoML job step.
type AutoMLJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the AutoML job.
	Arn *string

	noSmithyDocumentSerde
}

// Provides a summary about an AutoML job.
type AutoMLJobSummary struct {

	// The ARN of the AutoML job.
	//
	// This member is required.
	AutoMLJobArn *string

	// The name of the AutoML job you are requesting.
	//
	// This member is required.
	AutoMLJobName *string

	// The secondary status of the AutoML job.
	//
	// This member is required.
	AutoMLJobSecondaryStatus AutoMLJobSecondaryStatus

	// The status of the AutoML job.
	//
	// This member is required.
	AutoMLJobStatus AutoMLJobStatus

	// When the AutoML job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// When the AutoML job was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The end time of an AutoML job.
	EndTime *time.Time

	// The failure reason of an AutoML job.
	FailureReason *string

	// The list of reasons for partial failures within an AutoML job.
	PartialFailureReasons []AutoMLPartialFailureReason

	noSmithyDocumentSerde
}

// The output data configuration.
type AutoMLOutputDataConfig struct {

	// The Amazon S3 output path. Must be 128 characters or less.
	//
	// This member is required.
	S3OutputPath *string

	// The Key Management Service (KMS) encryption key ID.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// The reason for a partial failure of an AutoML job.
type AutoMLPartialFailureReason struct {

	// The message containing the reason for a partial failure of an AutoML job.
	PartialFailureMessage *string

	noSmithyDocumentSerde
}

// A collection of settings specific to the problem type used to configure an
// AutoML job V2. There must be one and only one config of the following type.
//
// The following types satisfy this interface:
//
//	AutoMLProblemTypeConfigMemberImageClassificationJobConfig
//	AutoMLProblemTypeConfigMemberTabularJobConfig
//	AutoMLProblemTypeConfigMemberTextClassificationJobConfig
//	AutoMLProblemTypeConfigMemberTextGenerationJobConfig
//	AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig
type AutoMLProblemTypeConfig interface {
	isAutoMLProblemTypeConfig()
}

// Settings used to configure an AutoML job V2 for the image classification
// problem type.
type AutoMLProblemTypeConfigMemberImageClassificationJobConfig struct {
	Value ImageClassificationJobConfig

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeConfigMemberImageClassificationJobConfig) isAutoMLProblemTypeConfig() {}

// Settings used to configure an AutoML job V2 for the tabular problem type
// (regression, classification).
type AutoMLProblemTypeConfigMemberTabularJobConfig struct {
	Value TabularJobConfig

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeConfigMemberTabularJobConfig) isAutoMLProblemTypeConfig() {}

// Settings used to configure an AutoML job V2 for the text classification problem
// type.
type AutoMLProblemTypeConfigMemberTextClassificationJobConfig struct {
	Value TextClassificationJobConfig

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeConfigMemberTextClassificationJobConfig) isAutoMLProblemTypeConfig() {}

// Settings used to configure an AutoML job V2 for the text generation (LLMs
// fine-tuning) problem type. The text generation models that support fine-tuning
// in Autopilot are currently accessible exclusively in regions supported by
// Canvas. Refer to the documentation of Canvas for the full list of its supported
// Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html) .
type AutoMLProblemTypeConfigMemberTextGenerationJobConfig struct {
	Value TextGenerationJobConfig

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeConfigMemberTextGenerationJobConfig) isAutoMLProblemTypeConfig() {}

// Settings used to configure an AutoML job V2 for the time-series forecasting
// problem type.
type AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig struct {
	Value TimeSeriesForecastingJobConfig

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeConfigMemberTimeSeriesForecastingJobConfig) isAutoMLProblemTypeConfig() {}

// Stores resolved attributes specific to the problem type of an AutoML job V2.
//
// The following types satisfy this interface:
//
//	AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes
//	AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes
type AutoMLProblemTypeResolvedAttributes interface {
	isAutoMLProblemTypeResolvedAttributes()
}

// The resolved attributes for the tabular problem type.
type AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes struct {
	Value TabularResolvedAttributes

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeResolvedAttributesMemberTabularResolvedAttributes) isAutoMLProblemTypeResolvedAttributes() {
}

// The resolved attributes for the text generation problem type.
type AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes struct {
	Value TextGenerationResolvedAttributes

	noSmithyDocumentSerde
}

func (*AutoMLProblemTypeResolvedAttributesMemberTextGenerationResolvedAttributes) isAutoMLProblemTypeResolvedAttributes() {
}

// The resolved attributes used to configure an AutoML job V2.
type AutoMLResolvedAttributes struct {

	// Specifies a metric to minimize or maximize as the objective of an AutoML job.
	AutoMLJobObjective *AutoMLJobObjective

	// Defines the resolved attributes specific to a problem type.
	AutoMLProblemTypeResolvedAttributes AutoMLProblemTypeResolvedAttributes

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	noSmithyDocumentSerde
}

// Describes the Amazon S3 data source.
type AutoMLS3DataSource struct {

	// The data type.
	//   - If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses
	//   all objects that match the specified key name prefix for model training. The
	//   S3Prefix should have the following format:
	//   s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
	//   - If you choose ManifestFile , S3Uri identifies an object that is a manifest
	//   file containing a list of object keys that you want SageMaker to use for model
	//   training. A ManifestFile should have the format shown below: [ {"prefix":
	//   "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ...
	//   "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]
	//   - If you choose AugmentedManifestFile , S3Uri identifies an object that is an
	//   augmented manifest file in JSON lines format. This file contains the data you
	//   want to use for model training. AugmentedManifestFile is available for V2 API
	//   jobs only (for example, for jobs created by calling CreateAutoMLJobV2 ). Here
	//   is a minimal, single-record example of an AugmentedManifestFile :
	//   {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
	//   "label-metadata": {"class-name": "cat" } For more information on
	//   AugmentedManifestFile , see Provide Dataset Metadata to Training Jobs with an
	//   Augmented Manifest File (https://docs.aws.amazon.com/sagemaker/latest/dg/augmented-manifest.html)
	//   .
	//
	// This member is required.
	S3DataType AutoMLS3DataType

	// The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or
	// ManifestFile depending on the data type.
	//
	// This member is required.
	S3Uri *string

	noSmithyDocumentSerde
}

// Security options.
type AutoMLSecurityConfig struct {

	// Whether to use traffic encryption between the container layers.
	EnableInterContainerTrafficEncryption *bool

	// The key used to encrypt stored data.
	VolumeKmsKeyId *string

	// The VPC configuration.
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// The name and an example value of the hyperparameter that you want to use in
// Autotune. If Automatic model tuning (AMT) determines that your hyperparameter is
// eligible for Autotune, an optimal hyperparameter range is selected for you.
type AutoParameter struct {

	// The name of the hyperparameter to optimize using Autotune.
	//
	// This member is required.
	Name *string

	// An example value of the hyperparameter to optimize using Autotune.
	//
	// This member is required.
	ValueHint *string

	noSmithyDocumentSerde
}

// Automatic rollback configuration for handling endpoint deployment failures and
// recovery.
type AutoRollbackConfig struct {

	// List of CloudWatch alarms in your account that are configured to monitor
	// metrics on an endpoint. If any alarms are tripped during a deployment, SageMaker
	// rolls back the deployment.
	Alarms []Alarm

	noSmithyDocumentSerde
}

// A flag to indicate if you want to use Autotune to automatically find optimal
// values for the following fields:
//   - ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-ParameterRanges)
//     : The names and ranges of parameters that a hyperparameter tuning job can
//     optimize.
//   - ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
//     : The maximum resources that can be used for a training job. These resources
//     include the maximum number of training jobs, the maximum runtime of a tuning
//     job, and the maximum number of training jobs to run at the same time.
//   - TrainingJobEarlyStoppingType (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html#sagemaker-Type-HyperParameterTuningJobConfig-TrainingJobEarlyStoppingType)
//     : A flag that specifies whether or not to use early stopping for training jobs
//     launched by a hyperparameter tuning job.
//   - RetryStrategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-RetryStrategy)
//     : The number of times to retry a training job.
//   - Strategy (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
//     : Specifies how hyperparameter tuning chooses the combinations of hyperparameter
//     values to use for the training jobs that it launches.
//   - ConvergenceDetected (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ConvergenceDetected.html)
//     : A flag to indicate that Automatic model tuning (AMT) has detected model
//     convergence.
type Autotune struct {

	// Set Mode to Enabled if you want to use Autotune.
	//
	// This member is required.
	Mode AutotuneMode

	noSmithyDocumentSerde
}

// Configuration to control how SageMaker captures inference data for batch
// transform jobs.
type BatchDataCaptureConfig struct {

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// Flag that indicates whether to append inference id to the output.
	GenerateInferenceId *bool

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// key that SageMaker uses to encrypt data on the storage volume attached to the ML
	// compute instance that hosts the batch transform job. The KmsKeyId can be any of
	// the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string

	noSmithyDocumentSerde
}

// The error code and error description associated with the resource.
type BatchDescribeModelPackageError struct {

	//
	//
	// This member is required.
	ErrorCode *string

	//
	//
	// This member is required.
	ErrorResponse *string

	noSmithyDocumentSerde
}

// Provides summary information about the model package.
type BatchDescribeModelPackageSummary struct {

	// The creation time of the mortgage package summary.
	//
	// This member is required.
	CreationTime *time.Time

	// Defines how to perform inference generation after a training job is run.
	//
	// This member is required.
	InferenceSpecification *InferenceSpecification

	// The Amazon Resource Name (ARN) of the model package.
	//
	// This member is required.
	ModelPackageArn *string

	// The group name for the model package
	//
	// This member is required.
	ModelPackageGroupName *string

	// The status of the mortgage package.
	//
	// This member is required.
	ModelPackageStatus ModelPackageStatus

	// The approval status of the model.
	ModelApprovalStatus ModelApprovalStatus

	// The description of the model package.
	ModelPackageDescription *string

	// The version number of a versioned model.
	ModelPackageVersion *int32

	noSmithyDocumentSerde
}

// Input object for the batch transform job.
type BatchTransformInput struct {

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DataCapturedDestinationS3Uri *string

	// The dataset format for your batch transform job.
	//
	// This member is required.
	DatasetFormat *MonitoringDatasetFormat

	// Path to the filesystem where the batch transform data is available to the
	// container.
	//
	// This member is required.
	LocalPath *string

	// If specified, monitoring jobs subtract this time from the end time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	EndTimeOffset *string

	// The attributes of the input data to exclude from the analysis.
	ExcludeFeaturesAttribute *string

	// The attributes of the input data that are the input features.
	FeaturesAttribute *string

	// The attribute of the input data that represents the ground truth label.
	InferenceAttribute *string

	// In a classification problem, the attribute that represents the class
	// probability.
	ProbabilityAttribute *string

	// The threshold for the class probability to be evaluated as a positive result.
	ProbabilityThresholdAttribute *float64

	// Whether input data distributed in Amazon S3 is fully replicated or sharded by
	// an S3 key. Defaults to FullyReplicated
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether the Pipe or File is used as the input mode for transferring data for
	// the monitoring job. Pipe mode is recommended for large datasets. File mode is
	// useful for small files that fit in memory. Defaults to File .
	S3InputMode ProcessingS3InputMode

	// If specified, monitoring jobs substract this time from the start time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	StartTimeOffset *string

	noSmithyDocumentSerde
}

// A structure that keeps track of which training jobs launched by your
// hyperparameter tuning job are not improving model performance as evaluated
// against an objective function.
type BestObjectiveNotImproving struct {

	// The number of training jobs that have failed to improve model performance by 1%
	// or greater over prior training jobs as evaluated against an objective function.
	MaxNumberOfTrainingJobsNotImproving *int32

	noSmithyDocumentSerde
}

// Contains bias metrics for a model.
type Bias struct {

	// The post-training bias report for a model.
	PostTrainingReport *MetricsSource

	// The pre-training bias report for a model.
	PreTrainingReport *MetricsSource

	// The bias report for a model
	Report *MetricsSource

	noSmithyDocumentSerde
}

// Update policy for a blue/green deployment. If this update policy is specified,
// SageMaker creates a new fleet during the deployment while maintaining the old
// fleet. SageMaker flips traffic to the new fleet according to the specified
// traffic routing configuration. Only one update policy should be used in the
// deployment configuration. If no update policy is specified, SageMaker uses a
// blue/green deployment strategy with all at once traffic shifting by default.
type BlueGreenUpdatePolicy struct {

	// Defines the traffic routing strategy to shift traffic from the old fleet to the
	// new fleet during an endpoint deployment.
	//
	// This member is required.
	TrafficRoutingConfiguration *TrafficRoutingConfig

	// Maximum execution timeout for the deployment. Note that the timeout value
	// should be larger than the total waiting time specified in
	// TerminationWaitInSeconds and WaitIntervalInSeconds .
	MaximumExecutionTimeoutInSeconds *int32

	// Additional waiting time in seconds after the completion of an endpoint
	// deployment before terminating the old endpoint fleet. Default is 0.
	TerminationWaitInSeconds *int32

	noSmithyDocumentSerde
}

// Details on the cache hit of a pipeline execution step.
type CacheHitResult struct {

	// The Amazon Resource Name (ARN) of the pipeline execution.
	SourcePipelineExecutionArn *string

	noSmithyDocumentSerde
}

// Metadata about a callback step.
type CallbackStepMetadata struct {

	// The pipeline generated token from the Amazon SQS queue.
	CallbackToken *string

	// A list of the output parameters of the callback step.
	OutputParameters []OutputParameter

	// The URL of the Amazon Simple Queue Service (Amazon SQS) queue used by the
	// callback step.
	SqsQueueUrl *string

	noSmithyDocumentSerde
}

// The location of artifacts for an AutoML candidate job.
type CandidateArtifactLocations struct {

	// The Amazon S3 prefix to the explainability artifacts generated for the AutoML
	// candidate.
	//
	// This member is required.
	Explainability *string

	// The Amazon S3 prefix to the accuracy metrics and the inference results observed
	// over the testing window. Available only for the time-series forecasting problem
	// type.
	BacktestResults *string

	// The Amazon S3 prefix to the model insight artifacts generated for the AutoML
	// candidate.
	ModelInsights *string

	noSmithyDocumentSerde
}

// Stores the configuration information for how model candidates are generated
// using an AutoML job V2.
type CandidateGenerationConfig struct {

	// Stores the configuration information for the selection of algorithms used to
	// train model candidates on tabular data. The list of available algorithms to
	// choose from depends on the training mode set in TabularJobConfig.Mode (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html)
	// .
	//   - AlgorithmsConfig should not be set in AUTO training mode.
	//   - When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be
	//   set and one only. If the list of algorithms provided as values for
	//   AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of
	//   algorithms for the given training mode.
	//   - When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the
	//   full set of algorithms for the given training mode.
	// For the list of all algorithms per problem type and training mode, see
	// AutoMLAlgorithmConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// . For more information on each algorithm, see the Algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// section in Autopilot developer guide.
	AlgorithmsConfig []AutoMLAlgorithmConfig

	noSmithyDocumentSerde
}

// The properties of an AutoML candidate job.
type CandidateProperties struct {

	// The Amazon S3 prefix to the artifacts generated for an AutoML candidate.
	CandidateArtifactLocations *CandidateArtifactLocations

	// Information about the candidate metrics for an AutoML job.
	CandidateMetrics []MetricDatum

	noSmithyDocumentSerde
}

// The SageMaker Canvas application settings.
type CanvasAppSettings struct {

	// The model deployment settings for the SageMaker Canvas application.
	DirectDeploySettings *DirectDeploySettings

	// The settings for connecting to an external data source with OAuth.
	IdentityProviderOAuthSettings []IdentityProviderOAuthSetting

	// The settings for document querying.
	KendraSettings *KendraSettings

	// The model registry settings for the SageMaker Canvas application.
	ModelRegisterSettings *ModelRegisterSettings

	// Time series forecast settings for the SageMaker Canvas application.
	TimeSeriesForecastingSettings *TimeSeriesForecastingSettings

	// The workspace settings for the SageMaker Canvas application.
	WorkspaceSettings *WorkspaceSettings

	noSmithyDocumentSerde
}

// Specifies the type and size of the endpoint capacity to activate for a
// blue/green deployment, a rolling deployment, or a rollback strategy. You can
// specify your batches as either instance count or the overall percentage or your
// fleet. For a rollback strategy, if you don't specify the fields in this object,
// or if you set the Value to 100%, then SageMaker uses a blue/green rollback
// strategy and rolls all traffic back to the blue fleet.
type CapacitySize struct {

	// Specifies the endpoint capacity type.
	//   - INSTANCE_COUNT : The endpoint activates based on the number of instances.
	//   - CAPACITY_PERCENT : The endpoint activates based on the specified percentage
	//   of capacity.
	//
	// This member is required.
	Type CapacitySizeType

	// Defines the capacity size, either as a number of instances or a capacity
	// percentage.
	//
	// This member is required.
	Value *int32

	noSmithyDocumentSerde
}

// Configuration specifying how to treat different headers. If no headers are
// specified Amazon SageMaker will by default base64 encode when capturing the
// data.
type CaptureContentTypeHeader struct {

	// The list of all content type headers that Amazon SageMaker will treat as CSV
	// and capture accordingly.
	CsvContentTypes []string

	// The list of all content type headers that SageMaker will treat as JSON and
	// capture accordingly.
	JsonContentTypes []string

	noSmithyDocumentSerde
}

// Specifies data Model Monitor will capture.
type CaptureOption struct {

	// Specify the boundary of data to capture.
	//
	// This member is required.
	CaptureMode CaptureMode

	noSmithyDocumentSerde
}

// Environment parameters you want to benchmark your load test against.
type CategoricalParameter struct {

	// The Name of the environment variable.
	//
	// This member is required.
	Name *string

	// The list of values you can pass.
	//
	// This member is required.
	Value []string

	noSmithyDocumentSerde
}

// A list of categorical hyperparameters to tune.
type CategoricalParameterRange struct {

	// The name of the categorical hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// A list of the categories for the hyperparameter.
	//
	// This member is required.
	Values []string

	noSmithyDocumentSerde
}

// Defines the possible values for a categorical hyperparameter.
type CategoricalParameterRangeSpecification struct {

	// The allowed categories for the hyperparameter.
	//
	// This member is required.
	Values []string

	noSmithyDocumentSerde
}

// A channel is a named input source that training algorithms can consume.
type Channel struct {

	// The name of the channel.
	//
	// This member is required.
	ChannelName *string

	// The location of the channel data.
	//
	// This member is required.
	DataSource *DataSource

	// If training data is compressed, the compression type. The default value is None
	// . CompressionType is used only in Pipe input mode. In File mode, leave this
	// field unset or set it to None.
	CompressionType CompressionType

	// The MIME type of the data.
	ContentType *string

	// (Optional) The input mode to use for the data channel in a training job. If you
	// don't set a value for InputMode , SageMaker uses the value set for
	// TrainingInputMode . Use this parameter to override the TrainingInputMode
	// setting in a AlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AlgorithmSpecification.html)
	// request when you have a channel that needs a different input mode from the
	// training job's general setting. To download the data from Amazon Simple Storage
	// Service (Amazon S3) to the provisioned ML storage volume, and mount the
	// directory to a Docker volume, use File input mode. To stream data directly from
	// Amazon S3 to the container, choose Pipe input mode. To use a model for
	// incremental training, choose File input model.
	InputMode TrainingInputMode

	// Specify RecordIO as the value when input data is in raw format but the training
	// algorithm requires the RecordIO format. In this case, SageMaker wraps each
	// individual S3 object in a RecordIO record. If the input data is already in
	// RecordIO format, you don't need to set this attribute. For more information, see
	// Create a Dataset Using RecordIO (https://mxnet.apache.org/api/architecture/note_data_loading#data-format)
	// . In File mode, leave this field unset or set it to None.
	RecordWrapperType RecordWrapper

	// A configuration for a shuffle option for input data in a channel. If you use
	// S3Prefix for S3DataType , this shuffles the results of the S3 key prefix
	// matches. If you use ManifestFile , the order of the S3 object references in the
	// ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the
	// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
	// determined using the Seed value. For Pipe input mode, shuffling is done at the
	// start of every epoch. With large datasets this ensures that the order of the
	// training data is different for each epoch, it helps reduce bias and possible
	// overfitting. In a multi-node training job when ShuffleConfig is combined with
	// S3DataDistributionType of ShardedByS3Key , the data is shuffled across nodes so
	// that the content sent to a particular node on the first epoch might be sent to a
	// different node on the second epoch.
	ShuffleConfig *ShuffleConfig

	noSmithyDocumentSerde
}

// Defines a named input source, called a channel, to be used by an algorithm.
type ChannelSpecification struct {

	// The name of the channel.
	//
	// This member is required.
	Name *string

	// The supported MIME types for the data.
	//
	// This member is required.
	SupportedContentTypes []string

	// The allowed input mode, either FILE or PIPE. In FILE mode, Amazon SageMaker
	// copies the data from the input source onto the local Amazon Elastic Block Store
	// (Amazon EBS) volumes before starting your training algorithm. This is the most
	// commonly used input mode. In PIPE mode, Amazon SageMaker streams input data from
	// the source directly to your algorithm without using the EBS volume.
	//
	// This member is required.
	SupportedInputModes []TrainingInputMode

	// A brief description of the channel.
	Description *string

	// Indicates whether the channel is required by the algorithm.
	IsRequired *bool

	// The allowed compression types, if data compression is used.
	SupportedCompressionTypes []CompressionType

	noSmithyDocumentSerde
}

// Contains information about the output location for managed spot training
// checkpoint data.
type CheckpointConfig struct {

	// Identifies the S3 path where you want SageMaker to store checkpoints. For
	// example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3Uri *string

	// (Optional) The local directory where checkpoints are written. The default
	// directory is /opt/ml/checkpoints/ .
	LocalPath *string

	noSmithyDocumentSerde
}

// The container for the metadata for the ClarifyCheck step. For more information,
// see the topic on ClarifyCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-clarify-check)
// in the Amazon SageMaker Developer Guide.
type ClarifyCheckStepMetadata struct {

	// The Amazon S3 URI of baseline constraints file to be used for the drift check.
	BaselineUsedForDriftCheckConstraints *string

	// The Amazon S3 URI of the newly calculated baseline constraints file.
	CalculatedBaselineConstraints *string

	// The Amazon Resource Name (ARN) of the check processing job that was run by this
	// step's execution.
	CheckJobArn *string

	// The type of the Clarify Check step
	CheckType *string

	// The model package group name.
	ModelPackageGroupName *string

	// This flag indicates if a newly calculated baseline can be accessed through step
	// properties BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
	// baseline of the configured check type must also be available. These can be
	// accessed through the BaselineUsedForDriftCheckConstraints property.
	RegisterNewBaseline *bool

	// This flag indicates if the drift check against the previous baseline will be
	// skipped or not. If it is set to False , the previous baseline of the configured
	// check type must be available.
	SkipCheck *bool

	// The Amazon S3 URI of the violation report if violations are detected.
	ViolationReport *string

	noSmithyDocumentSerde
}

// The configuration parameters for the SageMaker Clarify explainer.
type ClarifyExplainerConfig struct {

	// The configuration for SHAP analysis.
	//
	// This member is required.
	ShapConfig *ClarifyShapConfig

	// A JMESPath boolean expression used to filter which records to explain.
	// Explanations are activated by default. See EnableExplanations (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable)
	// for additional information.
	EnableExplanations *string

	// The inference configuration parameter for the model container.
	InferenceConfig *ClarifyInferenceConfig

	noSmithyDocumentSerde
}

// The inference configuration parameter for the model container.
type ClarifyInferenceConfig struct {

	// A template string used to format a JSON record into an acceptable model
	// container input. For example, a ContentTemplate string
	// '{"myfeatures":$features}' will format a list of features [1,2,3] into the
	// record string '{"myfeatures":[1,2,3]}' . Required only when the model container
	// input is in JSON Lines format.
	ContentTemplate *string

	// The names of the features. If provided, these are included in the endpoint
	// response payload to help readability of the InvokeEndpoint output. See the
	// Response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	FeatureHeaders []string

	// A list of data types of the features (optional). Applicable only to NLP
	// explainability. If provided, FeatureTypes must have at least one 'text' string
	// (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers
	// the feature types based on the baseline data. The feature types are included in
	// the endpoint response payload. For additional information see the response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	FeatureTypes []ClarifyFeatureType

	// Provides the JMESPath expression to extract the features from a model container
	// input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath
	// expression 'myfeatures' , it extracts a list of features [1,2,3] from request
	// data '{"myfeatures":[1,2,3]}' .
	FeaturesAttribute *string

	// A JMESPath expression used to locate the list of label headers in the model
	// container output. Example: If the model container output of a batch request is
	// '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set
	// LabelAttribute to 'labels' to extract the list of label headers
	// ["cat","dog","fish"]
	LabelAttribute *string

	// For multiclass classification problems, the label headers are the names of the
	// classes. Otherwise, the label header is the name of the predicted label. These
	// are used to help readability for the output of the InvokeEndpoint API. See the
	// response (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-invoke-endpoint.html#clarify-online-explainability-response)
	// section under Invoke the endpoint in the Developer Guide for more information.
	// If there are no label headers in the model container output, provide them
	// manually using this parameter.
	LabelHeaders []string

	// A zero-based index used to extract a label header or list of label headers from
	// model container output in CSV format. Example for a multiclass model: If the
	// model container output consists of label headers followed by probabilities:
	// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select
	// the label headers ['cat','dog','fish'] .
	LabelIndex *int32

	// The maximum payload size (MB) allowed of a request from the explainer to the
	// model container. Defaults to 6 MB.
	MaxPayloadInMB *int32

	// The maximum number of records in a request that the model container can process
	// when querying the model container for the predictions of a synthetic dataset (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-synthetic)
	// . A record is a unit of input data that inference can be made on, for example, a
	// single line in CSV data. If MaxRecordCount is 1 , the model container expects
	// one record per request. A value of 2 or greater means that the model expects
	// batch requests, which can reduce overhead and speed up the inferencing process.
	// If this parameter is not provided, the explainer will tune the record count per
	// request according to the model container's capacity at runtime.
	MaxRecordCount *int32

	// A JMESPath expression used to extract the probability (or score) from the model
	// container output if the model container is in JSON Lines format. Example: If the
	// model container output of a single request is
	// '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to
	// 'probability' .
	ProbabilityAttribute *string

	// A zero-based index used to extract a probability value (score) or list from
	// model container output in CSV format. If this value is not provided, the entire
	// model container output will be treated as a probability value (score) or list.
	// Example for a single class model: If the model container output consists of a
	// string-formatted prediction label followed by its probability: '1,0.6' , set
	// ProbabilityIndex to 1 to select the probability value 0.6 . Example for a
	// multiclass model: If the model container output consists of a string-formatted
	// prediction label followed by its probability:
	// '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to
	// select the probability values [0.1,0.6,0.3] .
	ProbabilityIndex *int32

	noSmithyDocumentSerde
}

// The configuration for the SHAP baseline (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html)
// (also called the background or reference dataset) of the Kernal SHAP algorithm.
//   - The number of records in the baseline data determines the size of the
//     synthetic dataset, which has an impact on latency of explainability requests.
//     For more information, see the Synthetic data of Configure and create an
//     endpoint (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html)
//     .
//   - ShapBaseline and ShapBaselineUri are mutually exclusive parameters. One or
//     the either is required to configure a SHAP baseline.
type ClarifyShapBaselineConfig struct {

	// The MIME type of the baseline data. Choose from 'text/csv' or
	// 'application/jsonlines' . Defaults to 'text/csv' .
	MimeType *string

	// The inline SHAP baseline data in string format. ShapBaseline can have one or
	// multiple records to be used as the baseline dataset. The format of the SHAP
	// baseline file should be the same format as the training dataset. For example, if
	// the training dataset is in CSV format and each record contains four features,
	// and all features are numerical, then the format of the baseline data should also
	// share these characteristics. For natural language processing (NLP) of text
	// columns, the baseline value should be the value used to replace the unit of text
	// specified by the Granularity of the TextConfig parameter. The size limit for
	// ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide
	// more than 4 KB of baseline data.
	ShapBaseline *string

	// The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline
	// file is stored. The format of the SHAP baseline file should be the same format
	// as the format of the training dataset. For example, if the training dataset is
	// in CSV format, and each record in the training dataset has four features, and
	// all features are numerical, then the baseline file should also have this same
	// format. Each record should contain only the features. If you are using a virtual
	// private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For
	// more information about setting up endpoints with Amazon Virtual Private Cloud,
	// see Give SageMaker access to Resources in your Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	ShapBaselineUri *string

	noSmithyDocumentSerde
}

// The configuration for SHAP analysis using SageMaker Clarify Explainer.
type ClarifyShapConfig struct {

	// The configuration for the SHAP baseline of the Kernal SHAP algorithm.
	//
	// This member is required.
	ShapBaselineConfig *ClarifyShapBaselineConfig

	// The number of samples to be used for analysis by the Kernal SHAP algorithm. The
	// number of samples determines the size of the synthetic dataset, which has an
	// impact on latency of explainability requests. For more information, see the
	// Synthetic data of Configure and create an endpoint (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html)
	// .
	NumberOfSamples *int32

	// The starting value used to initialize the random number generator in the
	// explainer. Provide a value for this parameter to obtain a deterministic SHAP
	// result.
	Seed *int32

	// A parameter that indicates if text features are treated as text and
	// explanations are provided for individual units of text. Required for natural
	// language processing (NLP) explainability only.
	TextConfig *ClarifyTextConfig

	// A Boolean toggle to indicate if you want to use the logit function (true) or
	// log-odds units (false) for model predictions. Defaults to false.
	UseLogit *bool

	noSmithyDocumentSerde
}

// A parameter used to configure the SageMaker Clarify explainer to treat text
// features as text so that explanations are provided for individual units of text.
// Required only for natural language processing (NLP) explainability.
type ClarifyTextConfig struct {

	// The unit of granularity for the analysis of text features. For example, if the
	// unit is 'token' , then each token (like a word in English) of the text is
	// treated as a feature. SHAP values are computed for each unit/feature.
	//
	// This member is required.
	Granularity ClarifyTextGranularity

	// Specifies the language of the text features in ISO 639-1 (https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes)
	// or ISO 639-3 (https://en.wikipedia.org/wiki/ISO_639-3) code of a supported
	// language. For a mix of multiple languages, use code 'xx' .
	//
	// This member is required.
	Language ClarifyTextLanguage

	noSmithyDocumentSerde
}

// Details of an instance group in a SageMaker HyperPod cluster.
type ClusterInstanceGroupDetails struct {

	// The number of instances that are currently in the instance group of a SageMaker
	// HyperPod cluster.
	CurrentCount *int32

	// The execution role for the instance group to assume.
	ExecutionRole *string

	// The name of the instance group of a SageMaker HyperPod cluster.
	InstanceGroupName *string

	// The instance type of the instance group of a SageMaker HyperPod cluster.
	InstanceType ClusterInstanceType

	// Details of LifeCycle configuration for the instance group.
	LifeCycleConfig *ClusterLifeCycleConfig

	// The number of instances you specified to add to the instance group of a
	// SageMaker HyperPod cluster.
	TargetCount *int32

	// The number you specified to TreadsPerCore in CreateCluster for enabling or
	// disabling multithreading. For instance types that support multithreading, you
	// can specify 1 for disabling multithreading and 2 for enabling multithreading.
	// For more information, see the reference table of CPU cores and threads per CPU
	// core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
	// in the Amazon Elastic Compute Cloud User Guide.
	ThreadsPerCore *int32

	noSmithyDocumentSerde
}

// The specifications of an instance group that you need to define.
type ClusterInstanceGroupSpecification struct {

	// Specifies an IAM execution role to be assumed by the instance group.
	//
	// This member is required.
	ExecutionRole *string

	// Specifies the number of instances to add to the instance group of a SageMaker
	// HyperPod cluster.
	//
	// This member is required.
	InstanceCount *int32

	// Specifies the name of the instance group.
	//
	// This member is required.
	InstanceGroupName *string

	// Specifies the instance type of the instance group.
	//
	// This member is required.
	InstanceType ClusterInstanceType

	// Specifies the LifeCycle configuration for the instance group.
	//
	// This member is required.
	LifeCycleConfig *ClusterLifeCycleConfig

	// Specifies the value for Threads per core. For instance types that support
	// multithreading, you can specify 1 for disabling multithreading and 2 for
	// enabling multithreading. For instance types that doesn't support multithreading,
	// specify 1 . For more information, see the reference table of CPU cores and
	// threads per CPU core per instance type (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html)
	// in the Amazon Elastic Compute Cloud User Guide.
	ThreadsPerCore *int32

	noSmithyDocumentSerde
}

// Details of an instance in a SageMaker HyperPod cluster.
type ClusterInstanceStatusDetails struct {

	// The status of an instance in a SageMaker HyperPod cluster.
	//
	// This member is required.
	Status ClusterInstanceStatus

	// The message from an instance in a SageMaker HyperPod cluster.
	Message *string

	noSmithyDocumentSerde
}

// The LifeCycle configuration for a SageMaker HyperPod cluster.
type ClusterLifeCycleConfig struct {

	// The directory of the LifeCycle script under SourceS3Uri . This LifeCycle script
	// runs during cluster creation.
	//
	// This member is required.
	OnCreate *string

	// An Amazon S3 bucket path where your LifeCycle scripts are stored.
	//
	// This member is required.
	SourceS3Uri *string

	noSmithyDocumentSerde
}

// Details of an instance (also called a node interchangeably) in a SageMaker
// HyperPod cluster.
type ClusterNodeDetails struct {

	// The instance group name in which the instance is.
	InstanceGroupName *string

	// The ID of the instance.
	InstanceId *string

	// The status of the instance.
	InstanceStatus *ClusterInstanceStatusDetails

	// The type of the instance.
	InstanceType ClusterInstanceType

	// The time when the instance is launched.
	LaunchTime *time.Time

	// The LifeCycle configuration applied to the instance.
	LifeCycleConfig *ClusterLifeCycleConfig

	// The number of threads per CPU core you specified under CreateCluster .
	ThreadsPerCore *int32

	noSmithyDocumentSerde
}

// Lists a summary of the properties of an instance (also called a node
// interchangeably) of a SageMaker HyperPod cluster.
type ClusterNodeSummary struct {

	// The name of the instance group in which the instance is.
	//
	// This member is required.
	InstanceGroupName *string

	// The ID of the instance.
	//
	// This member is required.
	InstanceId *string

	// The status of the instance.
	//
	// This member is required.
	InstanceStatus *ClusterInstanceStatusDetails

	// The type of the instance.
	//
	// This member is required.
	InstanceType ClusterInstanceType

	// The time when the instance is launched.
	//
	// This member is required.
	LaunchTime *time.Time

	noSmithyDocumentSerde
}

// Lists a summary of the properties of a SageMaker HyperPod cluster.
type ClusterSummary struct {

	// The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterArn *string

	// The name of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterName *string

	// The status of the SageMaker HyperPod cluster.
	//
	// This member is required.
	ClusterStatus ClusterStatus

	// The time when the SageMaker HyperPod cluster is created.
	//
	// This member is required.
	CreationTime *time.Time

	noSmithyDocumentSerde
}

// The Code Editor application settings. For more information about Code Editor,
// see Get started with Code Editor in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/code-editor.html)
// .
type CodeEditorAppSettings struct {

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Code Editor application lifecycle
	// configuration.
	LifecycleConfigArns []string

	noSmithyDocumentSerde
}

// A Git repository that SageMaker automatically displays to users for cloning in
// the JupyterServer application.
type CodeRepository struct {

	// The URL of the Git repository.
	//
	// This member is required.
	RepositoryUrl *string

	noSmithyDocumentSerde
}

// Specifies summary information about a Git repository.
type CodeRepositorySummary struct {

	// The Amazon Resource Name (ARN) of the Git repository.
	//
	// This member is required.
	CodeRepositoryArn *string

	// The name of the Git repository.
	//
	// This member is required.
	CodeRepositoryName *string

	// The date and time that the Git repository was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The date and time that the Git repository was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// Configuration details for the Git repository, including the URL where it is
	// located and the ARN of the Amazon Web Services Secrets Manager secret that
	// contains the credentials used to access the repository.
	GitConfig *GitConfig

	noSmithyDocumentSerde
}

// Use this parameter to configure your Amazon Cognito workforce. A single Cognito
// workforce is created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
// .
type CognitoConfig struct {

	// The client ID for your Amazon Cognito user pool.
	//
	// This member is required.
	ClientId *string

	// A  user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
	// is a user directory in Amazon Cognito. With a user pool, your users can sign in
	// to your web or mobile app through Amazon Cognito. Your users can also sign in
	// through social identity providers like Google, Facebook, Amazon, or Apple, and
	// through SAML identity providers.
	//
	// This member is required.
	UserPool *string

	noSmithyDocumentSerde
}

// Identifies a Amazon Cognito user group. A user group can be used in on or more
// work teams.
type CognitoMemberDefinition struct {

	// An identifier for an application client. You must create the app client ID
	// using Amazon Cognito.
	//
	// This member is required.
	ClientId *string

	// An identifier for a user group.
	//
	// This member is required.
	UserGroup *string

	// An identifier for a user pool. The user pool must be in the same region as the
	// service that you are calling.
	//
	// This member is required.
	UserPool *string

	noSmithyDocumentSerde
}

// Configuration for your collection.
//
// The following types satisfy this interface:
//
//	CollectionConfigMemberVectorConfig
type CollectionConfig interface {
	isCollectionConfig()
}

// Configuration for your vector collection type.
//   - Dimension : The number of elements in your vector.
type CollectionConfigMemberVectorConfig struct {
	Value VectorConfig

	noSmithyDocumentSerde
}

func (*CollectionConfigMemberVectorConfig) isCollectionConfig() {}

// Configuration information for the Amazon SageMaker Debugger output tensor
// collections.
type CollectionConfiguration struct {

	// The name of the tensor collection. The name must be unique relative to other
	// rule configuration names.
	CollectionName *string

	// Parameter values for the tensor collection. The allowed parameters are "name" ,
	// "include_regex" , "reduction_config" , "save_config" , "tensor_names" , and
	// "save_histogram" .
	CollectionParameters map[string]string

	noSmithyDocumentSerde
}

// A summary of a model compilation job.
type CompilationJobSummary struct {

	// The Amazon Resource Name (ARN) of the model compilation job.
	//
	// This member is required.
	CompilationJobArn *string

	// The name of the model compilation job that you want a summary for.
	//
	// This member is required.
	CompilationJobName *string

	// The status of the model compilation job.
	//
	// This member is required.
	CompilationJobStatus CompilationJobStatus

	// The time when the model compilation job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The time when the model compilation job completed.
	CompilationEndTime *time.Time

	// The time when the model compilation job started.
	CompilationStartTime *time.Time

	// The type of device that the model will run on after the compilation job has
	// completed.
	CompilationTargetDevice TargetDevice

	// The type of accelerator that the model will run on after the compilation job
	// has completed.
	CompilationTargetPlatformAccelerator TargetPlatformAccelerator

	// The type of architecture that the model will run on after the compilation job
	// has completed.
	CompilationTargetPlatformArch TargetPlatformArch

	// The type of OS that the model will run on after the compilation job has
	// completed.
	CompilationTargetPlatformOs TargetPlatformOs

	// The time when the model compilation job was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Metadata for a Condition step.
type ConditionStepMetadata struct {

	// The outcome of the Condition step evaluation.
	Outcome ConditionOutcome

	noSmithyDocumentSerde
}

// The configuration used to run the application image container.
type ContainerConfig struct {

	// The arguments for the container when you're running the application.
	ContainerArguments []string

	// The entrypoint used to run the application in the container.
	ContainerEntrypoint []string

	// The environment variables to set in the container
	ContainerEnvironmentVariables map[string]string

	noSmithyDocumentSerde
}

// Describes the container, as part of model definition.
type ContainerDefinition struct {

	// This parameter is ignored for models that contain only a PrimaryContainer . When
	// a ContainerDefinition is part of an inference pipeline, the value of the
	// parameter uniquely identifies the container for the purposes of logging and
	// metrics. For information, see Use Logs and Metrics to Monitor an Inference
	// Pipeline (https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html)
	// . If you don't specify a value for this parameter for a ContainerDefinition
	// that is part of an inference pipeline, a unique name is automatically assigned
	// based on the position of the ContainerDefinition in the pipeline. If you
	// specify a value for the ContainerHostName for any ContainerDefinition that is
	// part of an inference pipeline, you must specify a value for the
	// ContainerHostName parameter of every ContainerDefinition in that pipeline.
	ContainerHostname *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string to string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The path where inference code is stored. This can be either in Amazon EC2
	// Container Registry or in a Docker registry that is accessible from the same VPC
	// that you configure for your endpoint. If you are using your own custom algorithm
	// instead of an algorithm provided by SageMaker, the inference code must meet
	// SageMaker requirements. SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
	// container in Amazon EC2 Container Registry must be in the same region as the
	// model or endpoint you are creating.
	Image *string

	// Specifies whether the model container is in Amazon ECR or a private Docker
	// registry accessible from your Amazon Virtual Private Cloud (VPC). For
	// information about storing containers in a private Docker registry, see Use a
	// Private Docker Registry for Real-Time Inference Containers (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-containers-inference-private.html)
	// . The model artifacts in an Amazon S3 bucket and the Docker image for inference
	// container in Amazon EC2 Container Registry must be in the same region as the
	// model or endpoint you are creating.
	ImageConfig *ImageConfig

	// The inference specification name in the model package version.
	InferenceSpecificationName *string

	// Whether the container hosts a single model or multiple models.
	Mode ContainerMode

	// Specifies the location of ML model data to deploy. Currently you cannot use
	// ModelDataSource in conjunction with SageMaker batch transform, SageMaker
	// serverless endpoints, SageMaker multi-model endpoints, and SageMaker
	// Marketplace.
	ModelDataSource *ModelDataSource

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix). The S3 path is required for SageMaker built-in algorithms, but not if
	// you use your own algorithms. For more information on built-in algorithms, see
	// Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// . The model artifacts must be in an S3 bucket that is in the same region as the
	// model or endpoint you are creating. If you provide a value for this parameter,
	// SageMaker uses Amazon Web Services Security Token Service to download model
	// artifacts from the S3 path you provide. Amazon Web Services STS is activated in
	// your Amazon Web Services account by default. If you previously deactivated
	// Amazon Web Services STS for a region, you need to reactivate Amazon Web Services
	// STS for that region. For more information, see Activating and Deactivating
	// Amazon Web Services STS in an Amazon Web Services Region (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html)
	// in the Amazon Web Services Identity and Access Management User Guide. If you use
	// a built-in algorithm to create a model, SageMaker requires that you provide a S3
	// path to the model artifacts in ModelDataUrl .
	ModelDataUrl *string

	// The name or Amazon Resource Name (ARN) of the model package to use to create
	// the model.
	ModelPackageName *string

	// Specifies additional configuration for multi-model endpoints.
	MultiModelConfig *MultiModelConfig

	noSmithyDocumentSerde
}

// A structure describing the source of a context.
type ContextSource struct {

	// The URI of the source.
	//
	// This member is required.
	SourceUri *string

	// The ID of the source.
	SourceId *string

	// The type of the source.
	SourceType *string

	noSmithyDocumentSerde
}

// Lists a summary of the properties of a context. A context provides a logical
// grouping of other entities.
type ContextSummary struct {

	// The Amazon Resource Name (ARN) of the context.
	ContextArn *string

	// The name of the context.
	ContextName *string

	// The type of the context.
	ContextType *string

	// When the context was created.
	CreationTime *time.Time

	// When the context was last modified.
	LastModifiedTime *time.Time

	// The source of the context.
	Source *ContextSource

	noSmithyDocumentSerde
}

// A list of continuous hyperparameters to tune.
type ContinuousParameterRange struct {

	// The maximum value for the hyperparameter. The tuning job uses floating-point
	// values between MinValue value and this value for tuning.
	//
	// This member is required.
	MaxValue *string

	// The minimum value for the hyperparameter. The tuning job uses floating-point
	// values between this value and MaxValue for tuning.
	//
	// This member is required.
	MinValue *string

	// The name of the continuous hyperparameter to tune.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
	// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
	// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0. ReverseLogarithmic Hyperparameter tuning searches the
	// values in the hyperparameter range by using a reverse logarithmic scale. Reverse
	// logarithmic scaling works only for ranges that are entirely within the range
	// 0<=x<1.0.
	ScalingType HyperParameterScalingType

	noSmithyDocumentSerde
}

// Defines the possible values for a continuous hyperparameter.
type ContinuousParameterRangeSpecification struct {

	// The maximum floating-point value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum floating-point value allowed.
	//
	// This member is required.
	MinValue *string

	noSmithyDocumentSerde
}

// A flag to indicating that automatic model tuning (AMT) has detected model
// convergence, defined as a lack of significant improvement (1% or less) against
// an objective metric.
type ConvergenceDetected struct {

	// A flag to stop a tuning job once AMT has detected that the job has converged.
	CompleteOnConvergence CompleteOnConvergence

	noSmithyDocumentSerde
}

// A file system, created by you, that you assign to a user profile or space for
// an Amazon SageMaker Domain. Permitted users can access this file system in
// Amazon SageMaker Studio.
//
// The following types satisfy this interface:
//
//	CustomFileSystemMemberEFSFileSystem
type CustomFileSystem interface {
	isCustomFileSystem()
}

// A custom file system in Amazon EFS.
type CustomFileSystemMemberEFSFileSystem struct {
	Value EFSFileSystem

	noSmithyDocumentSerde
}

func (*CustomFileSystemMemberEFSFileSystem) isCustomFileSystem() {}

// The settings for assigning a custom file system to a user profile or space for
// an Amazon SageMaker Domain. Permitted users can access this file system in
// Amazon SageMaker Studio.
//
// The following types satisfy this interface:
//
//	CustomFileSystemConfigMemberEFSFileSystemConfig
type CustomFileSystemConfig interface {
	isCustomFileSystemConfig()
}

// The settings for a custom Amazon EFS file system.
type CustomFileSystemConfigMemberEFSFileSystemConfig struct {
	Value EFSFileSystemConfig

	noSmithyDocumentSerde
}

func (*CustomFileSystemConfigMemberEFSFileSystemConfig) isCustomFileSystemConfig() {}

// A custom SageMaker image. For more information, see Bring your own SageMaker
// image (https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html) .
type CustomImage struct {

	// The name of the AppImageConfig.
	//
	// This member is required.
	AppImageConfigName *string

	// The name of the CustomImage. Must be unique to your account.
	//
	// This member is required.
	ImageName *string

	// The version number of the CustomImage.
	ImageVersionNumber *int32

	noSmithyDocumentSerde
}

// A customized metric.
type CustomizedMetricSpecification struct {

	// The name of the customized metric.
	MetricName *string

	// The namespace of the customized metric.
	Namespace *string

	// The statistic of the customized metric.
	Statistic Statistic

	noSmithyDocumentSerde
}

// Details about the POSIX identity that is used for file system operations.
type CustomPosixUserConfig struct {

	// The POSIX group ID.
	//
	// This member is required.
	Gid *int64

	// The POSIX user ID.
	//
	// This member is required.
	Uid *int64

	noSmithyDocumentSerde
}

// Configuration to control how SageMaker captures inference data.
type DataCaptureConfig struct {

	// Specifies data Model Monitor will capture. You can configure whether to collect
	// only input, only output, or both
	//
	// This member is required.
	CaptureOptions []CaptureOption

	// The Amazon S3 location used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// The percentage of requests SageMaker will capture. A lower value is recommended
	// for Endpoints with high traffic.
	//
	// This member is required.
	InitialSamplingPercentage *int32

	// Configuration specifying how to treat different headers. If no headers are
	// specified SageMaker will by default base64 encode when capturing the data.
	CaptureContentTypeHeader *CaptureContentTypeHeader

	// Whether data capture should be enabled or disabled (defaults to enabled).
	EnableCapture *bool

	// The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker
	// uses to encrypt the captured data at rest using Amazon S3 server-side
	// encryption. The KmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string

	noSmithyDocumentSerde
}

// The currently active data capture configuration used by your Endpoint.
type DataCaptureConfigSummary struct {

	// Whether data capture is currently functional.
	//
	// This member is required.
	CaptureStatus CaptureStatus

	// The percentage of requests being captured by your Endpoint.
	//
	// This member is required.
	CurrentSamplingPercentage *int32

	// The Amazon S3 location being used to capture the data.
	//
	// This member is required.
	DestinationS3Uri *string

	// Whether data capture is enabled or disabled.
	//
	// This member is required.
	EnableCapture *bool

	// The KMS key being used to encrypt the data in Amazon S3.
	//
	// This member is required.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// The meta data of the Glue table which serves as data catalog for the
// OfflineStore .
type DataCatalogConfig struct {

	// The name of the Glue table catalog.
	//
	// This member is required.
	Catalog *string

	// The name of the Glue table database.
	//
	// This member is required.
	Database *string

	// The name of the Glue table.
	//
	// This member is required.
	TableName *string

	noSmithyDocumentSerde
}

// The data structure used to specify the data to be used for inference in a batch
// transform job and to associate the data that is relevant to the prediction
// results in the output. The input filter provided allows you to exclude input
// data that is not needed for inference in a batch transform job. The output
// filter provided allows you to include input data relevant to interpreting the
// predictions in the output from the job. For more information, see Associate
// Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html)
// .
type DataProcessing struct {

	// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the input data to pass to the algorithm.
	// Use the InputFilter parameter to exclude fields, such as an ID column, from the
	// input. If you want SageMaker to pass the entire input dataset to the algorithm,
	// accept the default value $ . Examples: "$" , "$[1:]" , "$.features"
	InputFilter *string

	// Specifies the source of the data to join with the transformed data. The valid
	// values are None and Input . The default value is None , which specifies not to
	// join the input with the transformed data. If you want the batch transform job to
	// join the original input data with the transformed data, set JoinSource to Input
	// . You can specify OutputFilter as an additional filter to select a portion of
	// the joined dataset and store it in the output file. For JSON or JSONLines
	// objects, such as a JSON array, SageMaker adds the transformed data to the input
	// JSON object in an attribute called SageMakerOutput . The joined result for JSON
	// must be a key-value pair object. If the input is not a key-value pair object,
	// SageMaker creates a new JSON file. In the new JSON file, and the input data is
	// stored under the SageMakerInput key and the results are stored in
	// SageMakerOutput . For CSV data, SageMaker takes each row as a JSON array and
	// joins the transformed data with the input by appending each transformed row to
	// the end of the input. The joined data has the original input data followed by
	// the transformed data and the output is a CSV file. For information on how
	// joining in applied, see Workflow for Associating Inferences with Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#batch-transform-data-processing-workflow)
	// .
	JoinSource JoinSource

	// A JSONPath (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators)
	// expression used to select a portion of the joined dataset to save in the output
	// file for a batch transform job. If you want SageMaker to store the entire input
	// dataset in the output file, leave the default value, $ . If you specify indexes
	// that aren't within the dimension size of the joined dataset, you get an error.
	// Examples: "$" , "$[0,5:]" , "$['id','SageMakerOutput']"
	OutputFilter *string

	noSmithyDocumentSerde
}

// Information about the container that a data quality monitoring job runs.
type DataQualityAppSpecification struct {

	// The container image that the data quality monitoring job runs.
	//
	// This member is required.
	ImageUri *string

	// The arguments to send to the container that the monitoring job runs.
	ContainerArguments []string

	// The entrypoint for a container used to run a monitoring job.
	ContainerEntrypoint []string

	// Sets the environment variables in the container that the monitoring job runs.
	Environment map[string]string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string

	noSmithyDocumentSerde
}

// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type DataQualityBaselineConfig struct {

	// The name of the job that performs baselining for the data quality monitoring
	// job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource

	// The statistics resource for a monitoring job.
	StatisticsResource *MonitoringStatisticsResource

	noSmithyDocumentSerde
}

// The input for the data quality monitoring job. Currently endpoints are
// supported for input.
type DataQualityJobInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput

	noSmithyDocumentSerde
}

// Configuration for Dataset Definition inputs. The Dataset Definition input must
// specify exactly one of either AthenaDatasetDefinition or
// RedshiftDatasetDefinition types.
type DatasetDefinition struct {

	// Configuration for Athena Dataset Definition input.
	AthenaDatasetDefinition *AthenaDatasetDefinition

	// Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
	DataDistributionType DataDistributionType

	// Whether to use File or Pipe input mode. In File (default) mode, Amazon
	// SageMaker copies the data from the input source onto the local Amazon Elastic
	// Block Store (Amazon EBS) volumes before starting your training algorithm. This
	// is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams
	// input data from the source directly to your algorithm without using the EBS
	// volume.
	InputMode InputMode

	// The local path where you want Amazon SageMaker to download the Dataset
	// Definition inputs to run a processing job. LocalPath is an absolute path to the
	// input data. This is a required parameter when AppManaged is False (default).
	LocalPath *string

	// Configuration for Redshift Dataset Definition input.
	RedshiftDatasetDefinition *RedshiftDatasetDefinition

	noSmithyDocumentSerde
}

// Describes the location of the channel data.
type DataSource struct {

	// The file system that is associated with a channel.
	FileSystemDataSource *FileSystemDataSource

	// The S3 location of the data source that is associated with a channel.
	S3DataSource *S3DataSource

	noSmithyDocumentSerde
}

// Configuration information for the Amazon SageMaker Debugger hook parameters,
// metric and tensor collections, and storage paths. To learn more about how to
// configure the DebugHookConfig parameter, see Use the SageMaker and Debugger
// Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
type DebugHookConfig struct {

	// Path to Amazon S3 storage location for metrics and tensors.
	//
	// This member is required.
	S3OutputPath *string

	// Configuration information for Amazon SageMaker Debugger tensor collections. To
	// learn more about how to configure the CollectionConfiguration parameter, see
	// Use the SageMaker and Debugger Configuration API Operations to Create, Update,
	// and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	CollectionConfigurations []CollectionConfiguration

	// Configuration information for the Amazon SageMaker Debugger hook parameters.
	HookParameters map[string]string

	// Path to local storage location for metrics and tensors. Defaults to
	// /opt/ml/output/tensors/ .
	LocalPath *string

	noSmithyDocumentSerde
}

// Configuration information for SageMaker Debugger rules for debugging. To learn
// more about how to configure the DebugRuleConfiguration parameter, see Use the
// SageMaker and Debugger Configuration API Operations to Create, Update, and Debug
// Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
// .
type DebugRuleConfiguration struct {

	// The name of the rule configuration. It must be unique relative to other rule
	// configuration names.
	//
	// This member is required.
	RuleConfigurationName *string

	// The Amazon Elastic Container (ECR) Image for the managed rule evaluation.
	//
	// This member is required.
	RuleEvaluatorImage *string

	// The instance type to deploy a custom rule for debugging a training job.
	InstanceType ProcessingInstanceType

	// Path to local storage location for output of rules. Defaults to
	// /opt/ml/processing/output/rule/ .
	LocalPath *string

	// Runtime configuration for rule container.
	RuleParameters map[string]string

	// Path to Amazon S3 storage location for rules.
	S3OutputPath *string

	// The size, in GB, of the ML storage volume attached to the processing instance.
	VolumeSizeInGB *int32

	noSmithyDocumentSerde
}

// Information about the status of the rule evaluation.
type DebugRuleEvaluationStatus struct {

	// Timestamp when the rule evaluation status was last modified.
	LastModifiedTime *time.Time

	// The name of the rule configuration.
	RuleConfigurationName *string

	// The Amazon Resource Name (ARN) of the rule evaluation job.
	RuleEvaluationJobArn *string

	// Status of the rule evaluation.
	RuleEvaluationStatus RuleEvaluationStatus

	// Details from the rule evaluation.
	StatusDetails *string

	noSmithyDocumentSerde
}

// A collection of default EBS storage settings that applies to private spaces
// created within a domain or user profile.
type DefaultEbsStorageSettings struct {

	// The default size of the EBS storage volume for a private space.
	//
	// This member is required.
	DefaultEbsVolumeSizeInGb *int32

	// The maximum size of the EBS storage volume for a private space.
	//
	// This member is required.
	MaximumEbsVolumeSizeInGb *int32

	noSmithyDocumentSerde
}

// A collection of settings that apply to spaces created in the Domain.
type DefaultSpaceSettings struct {

	// The ARN of the execution role for the space.
	ExecutionRole *string

	// The JupyterServer app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The KernelGateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// The security group IDs for the Amazon Virtual Private Cloud that the space uses
	// for communication.
	SecurityGroups []string

	noSmithyDocumentSerde
}

// The default storage settings for a private space.
type DefaultSpaceStorageSettings struct {

	// The default EBS storage settings for a private space.
	DefaultEbsStorageSettings *DefaultEbsStorageSettings

	noSmithyDocumentSerde
}

// Gets the Amazon EC2 Container Registry path of the docker image of the model
// that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html)
// . If you used the registry/repository[:tag] form to specify the image path of
// the primary container when you created the model hosted in this
// ProductionVariant , the path resolves to a path of the form
// registry/repository[@digest] . A digest is a hash value that identifies a
// specific version of an image. For information about Amazon ECR paths, see
// Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html)
// in the Amazon ECR User Guide.
type DeployedImage struct {

	// The date and time when the image path for the model resolved to the
	// ResolvedImage
	ResolutionTime *time.Time

	// The specific digest path of the image hosted in this ProductionVariant .
	ResolvedImage *string

	// The image path you specified when you created the model.
	SpecifiedImage *string

	noSmithyDocumentSerde
}

// The deployment configuration for an endpoint, which contains the desired
// deployment strategy and rollback configurations.
type DeploymentConfig struct {

	// Automatic rollback configuration for handling endpoint deployment failures and
	// recovery.
	AutoRollbackConfiguration *AutoRollbackConfig

	// Update policy for a blue/green deployment. If this update policy is specified,
	// SageMaker creates a new fleet during the deployment while maintaining the old
	// fleet. SageMaker flips traffic to the new fleet according to the specified
	// traffic routing configuration. Only one update policy should be used in the
	// deployment configuration. If no update policy is specified, SageMaker uses a
	// blue/green deployment strategy with all at once traffic shifting by default.
	BlueGreenUpdatePolicy *BlueGreenUpdatePolicy

	// Specifies a rolling deployment strategy for updating a SageMaker endpoint.
	RollingUpdatePolicy *RollingUpdatePolicy

	noSmithyDocumentSerde
}

// A set of recommended deployment configurations for the model. To get more
// advanced recommendations, see CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
// to create an inference recommendation job.
type DeploymentRecommendation struct {

	// Status of the deployment recommendation. The status NOT_APPLICABLE means that
	// SageMaker is unable to provide a default recommendation for the model using the
	// information provided. If the deployment status is IN_PROGRESS , retry your API
	// call after a few seconds to get a COMPLETED deployment recommendation.
	//
	// This member is required.
	RecommendationStatus RecommendationStatus

	// A list of RealTimeInferenceRecommendation (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_RealTimeInferenceRecommendation.html)
	// items.
	RealTimeInferenceRecommendations []RealTimeInferenceRecommendation

	noSmithyDocumentSerde
}

// Contains information about a stage in an edge deployment plan.
type DeploymentStage struct {

	// Configuration of the devices in the stage.
	//
	// This member is required.
	DeviceSelectionConfig *DeviceSelectionConfig

	// The name of the stage.
	//
	// This member is required.
	StageName *string

	// Configuration of the deployment details.
	DeploymentConfig *EdgeDeploymentConfig

	noSmithyDocumentSerde
}

// Contains information summarizing the deployment stage results.
type DeploymentStageStatusSummary struct {

	// Configuration of the deployment details.
	//
	// This member is required.
	DeploymentConfig *EdgeDeploymentConfig

	// General status of the current state.
	//
	// This member is required.
	DeploymentStatus *EdgeDeploymentStatus

	// Configuration of the devices in the stage.
	//
	// This member is required.
	DeviceSelectionConfig *DeviceSelectionConfig

	// The name of the stage.
	//
	// This member is required.
	StageName *string

	noSmithyDocumentSerde
}

// Information that SageMaker Neo automatically derived about the model.
type DerivedInformation struct {

	// The data input configuration that SageMaker Neo automatically derived for the
	// model. When SageMaker Neo derives this information, you don't need to specify
	// the data input configuration when you create a compilation job.
	DerivedDataInputConfig *string

	noSmithyDocumentSerde
}

// Specifies weight and capacity values for a production variant.
type DesiredWeightAndCapacity struct {

	// The name of the variant to update.
	//
	// This member is required.
	VariantName *string

	// The variant's capacity.
	DesiredInstanceCount *int32

	// The variant's weight.
	DesiredWeight *float32

	// Specifies the serverless update concurrency configuration for an endpoint
	// variant.
	ServerlessUpdateConfig *ProductionVariantServerlessUpdateConfig

	noSmithyDocumentSerde
}

// Information of a particular device.
type Device struct {

	// The name of the device.
	//
	// This member is required.
	DeviceName *string

	// Description of the device.
	Description *string

	// Amazon Web Services Internet of Things (IoT) object name.
	IotThingName *string

	noSmithyDocumentSerde
}

// Contains information summarizing device details and deployment status.
type DeviceDeploymentSummary struct {

	// The ARN of the device.
	//
	// This member is required.
	DeviceArn *string

	// The name of the device.
	//
	// This member is required.
	DeviceName *string

	// The ARN of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanArn *string

	// The name of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanName *string

	// The name of the stage in the edge deployment plan.
	//
	// This member is required.
	StageName *string

	// The name of the deployed stage.
	DeployedStageName *string

	// The time when the deployment on the device started.
	DeploymentStartTime *time.Time

	// The description of the device.
	Description *string

	// The deployment status of the device.
	DeviceDeploymentStatus DeviceDeploymentStatus

	// The detailed error message for the deployoment status result.
	DeviceDeploymentStatusMessage *string

	// The name of the fleet to which the device belongs to.
	DeviceFleetName *string

	noSmithyDocumentSerde
}

// Summary of the device fleet.
type DeviceFleetSummary struct {

	// Amazon Resource Name (ARN) of the device fleet.
	//
	// This member is required.
	DeviceFleetArn *string

	// Name of the device fleet.
	//
	// This member is required.
	DeviceFleetName *string

	// Timestamp of when the device fleet was created.
	CreationTime *time.Time

	// Timestamp of when the device fleet was last updated.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Contains information about the configurations of selected devices.
type DeviceSelectionConfig struct {

	// Type of device subsets to deploy to the current stage.
	//
	// This member is required.
	DeviceSubsetType DeviceSubsetType

	// A filter to select devices with names containing this name.
	DeviceNameContains *string

	// List of devices chosen to deploy.
	DeviceNames []string

	// Percentage of devices in the fleet to deploy to the current stage.
	Percentage *int32

	noSmithyDocumentSerde
}

// Status of devices.
type DeviceStats struct {

	// The number of devices connected with a heartbeat.
	//
	// This member is required.
	ConnectedDeviceCount *int64

	// The number of registered devices.
	//
	// This member is required.
	RegisteredDeviceCount *int64

	noSmithyDocumentSerde
}

// Summary of the device.
type DeviceSummary struct {

	// Amazon Resource Name (ARN) of the device.
	//
	// This member is required.
	DeviceArn *string

	// The unique identifier of the device.
	//
	// This member is required.
	DeviceName *string

	// Edge Manager agent version.
	AgentVersion *string

	// A description of the device.
	Description *string

	// The name of the fleet the device belongs to.
	DeviceFleetName *string

	// The Amazon Web Services Internet of Things (IoT) object thing name associated
	// with the device..
	IotThingName *string

	// The last heartbeat received from the device.
	LatestHeartbeat *time.Time

	// Models on the device.
	Models []EdgeModelSummary

	// The timestamp of the last registration or de-reregistration.
	RegistrationTime *time.Time

	noSmithyDocumentSerde
}

// The model deployment settings for the SageMaker Canvas application. In order to
// enable model deployment for Canvas, the SageMaker Domain's or user profile's
// Amazon Web Services IAM execution role must have the
// AmazonSageMakerCanvasDirectDeployAccess policy attached. You can also turn on
// model deployment permissions through the SageMaker Domain's or user profile's
// settings in the SageMaker console.
type DirectDeploySettings struct {

	// Describes whether model deployment permissions are enabled or disabled in the
	// Canvas application.
	Status FeatureStatus

	noSmithyDocumentSerde
}

// A collection of settings that configure the domain's Docker interaction.
type DockerSettings struct {

	// Indicates whether the domain can access Docker.
	EnableDockerAccess FeatureStatus

	// The list of Amazon Web Services accounts that are trusted when the domain is
	// created in VPC-only mode.
	VpcOnlyTrustedAccounts []string

	noSmithyDocumentSerde
}

// The domain's details.
type DomainDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain's Amazon Resource Name (ARN).
	DomainArn *string

	// The domain ID.
	DomainId *string

	// The domain name.
	DomainName *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status DomainStatus

	// The domain's URL.
	Url *string

	noSmithyDocumentSerde
}

// A collection of settings that apply to the SageMaker Domain . These settings are
// specified through the CreateDomain API call.
type DomainSettings struct {

	// A collection of settings that configure the domain's Docker interaction.
	DockerSettings *DockerSettings

	// The configuration for attaching a SageMaker user profile name to the execution
	// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
	// .
	ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig

	// A collection of settings that configure the RStudioServerPro Domain-level app.
	RStudioServerProDomainSettings *RStudioServerProDomainSettings

	// The security groups for the Amazon Virtual Private Cloud that the Domain uses
	// for communication between Domain-level apps and user apps.
	SecurityGroupIds []string

	noSmithyDocumentSerde
}

// A collection of Domain configuration settings to update.
type DomainSettingsForUpdate struct {

	// A collection of settings that configure the domain's Docker interaction.
	DockerSettings *DockerSettings

	// The configuration for attaching a SageMaker user profile name to the execution
	// role as a sts:SourceIdentity key (https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html)
	// . This configuration can only be modified if there are no apps in the InService
	// or Pending state.
	ExecutionRoleIdentityConfig ExecutionRoleIdentityConfig

	// A collection of RStudioServerPro Domain-level app settings to update. A single
	// RStudioServerPro application is created for a domain.
	RStudioServerProDomainSettingsForUpdate *RStudioServerProDomainSettingsForUpdate

	// The security groups for the Amazon Virtual Private Cloud that the Domain uses
	// for communication between Domain-level apps and user apps.
	SecurityGroupIds []string

	noSmithyDocumentSerde
}

// Represents the drift check baselines that can be used when the model monitor is
// set using the model package.
type DriftCheckBaselines struct {

	// Represents the drift check bias baselines that can be used when the model
	// monitor is set using the model package.
	Bias *DriftCheckBias

	// Represents the drift check explainability baselines that can be used when the
	// model monitor is set using the model package.
	Explainability *DriftCheckExplainability

	// Represents the drift check model data quality baselines that can be used when
	// the model monitor is set using the model package.
	ModelDataQuality *DriftCheckModelDataQuality

	// Represents the drift check model quality baselines that can be used when the
	// model monitor is set using the model package.
	ModelQuality *DriftCheckModelQuality

	noSmithyDocumentSerde
}

// Represents the drift check bias baselines that can be used when the model
// monitor is set using the model package.
type DriftCheckBias struct {

	// The bias config file for a model.
	ConfigFile *FileSource

	// The post-training constraints.
	PostTrainingConstraints *MetricsSource

	// The pre-training constraints.
	PreTrainingConstraints *MetricsSource

	noSmithyDocumentSerde
}

// Represents the drift check explainability baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckExplainability struct {

	// The explainability config file for the model.
	ConfigFile *FileSource

	// The drift check explainability constraints.
	Constraints *MetricsSource

	noSmithyDocumentSerde
}

// Represents the drift check data quality baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckModelDataQuality struct {

	// The drift check model data quality constraints.
	Constraints *MetricsSource

	// The drift check model data quality statistics.
	Statistics *MetricsSource

	noSmithyDocumentSerde
}

// Represents the drift check model quality baselines that can be used when the
// model monitor is set using the model package.
type DriftCheckModelQuality struct {

	// The drift check model quality constraints.
	Constraints *MetricsSource

	// The drift check model quality statistics.
	Statistics *MetricsSource

	noSmithyDocumentSerde
}

// An object with the recommended values for you to specify when creating an
// autoscaling policy.
type DynamicScalingConfiguration struct {

	// The recommended maximum capacity to specify for your autoscaling policy.
	MaxCapacity *int32

	// The recommended minimum capacity to specify for your autoscaling policy.
	MinCapacity *int32

	// The recommended scale in cooldown time for your autoscaling policy.
	ScaleInCooldown *int32

	// The recommended scale out cooldown time for your autoscaling policy.
	ScaleOutCooldown *int32

	// An object of the scaling policies for each metric.
	ScalingPolicies []ScalingPolicy

	noSmithyDocumentSerde
}

// A collection of EBS storage settings that applies to private spaces.
type EbsStorageSettings struct {

	// The size of an EBS storage volume for a private space.
	//
	// This member is required.
	EbsVolumeSizeInGb *int32

	noSmithyDocumentSerde
}

// A directed edge connecting two lineage entities.
type Edge struct {

	// The type of the Association(Edge) between the source and destination. For
	// example ContributedTo , Produced , or DerivedFrom .
	AssociationType AssociationEdgeType

	// The Amazon Resource Name (ARN) of the destination lineage entity of the
	// directed edge.
	DestinationArn *string

	// The Amazon Resource Name (ARN) of the source lineage entity of the directed
	// edge.
	SourceArn *string

	noSmithyDocumentSerde
}

// Contains information about the configuration of a deployment.
type EdgeDeploymentConfig struct {

	// Toggle that determines whether to rollback to previous configuration if the
	// current deployment fails. By default this is turned on. You may turn this off if
	// you want to investigate the errors yourself.
	//
	// This member is required.
	FailureHandlingPolicy FailureHandlingPolicy

	noSmithyDocumentSerde
}

// Contains information about the configuration of a model in a deployment.
type EdgeDeploymentModelConfig struct {

	// The edge packaging job associated with this deployment.
	//
	// This member is required.
	EdgePackagingJobName *string

	// The name the device application uses to reference this model.
	//
	// This member is required.
	ModelHandle *string

	noSmithyDocumentSerde
}

// Contains information summarizing an edge deployment plan.
type EdgeDeploymentPlanSummary struct {

	// The name of the device fleet used for the deployment.
	//
	// This member is required.
	DeviceFleetName *string

	// The number of edge devices that failed the deployment.
	//
	// This member is required.
	EdgeDeploymentFailed *int32

	// The number of edge devices yet to pick up the deployment, or in progress.
	//
	// This member is required.
	EdgeDeploymentPending *int32

	// The ARN of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanArn *string

	// The name of the edge deployment plan.
	//
	// This member is required.
	EdgeDeploymentPlanName *string

	// The number of edge devices with the successful deployment.
	//
	// This member is required.
	EdgeDeploymentSuccess *int32

	// The time when the edge deployment plan was created.
	CreationTime *time.Time

	// The time when the edge deployment plan was last updated.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Contains information summarizing the deployment stage results.
type EdgeDeploymentStatus struct {

	// The number of edge devices that failed the deployment in current stage.
	//
	// This member is required.
	EdgeDeploymentFailedInStage *int32

	// The number of edge devices yet to pick up the deployment in current stage, or
	// in progress.
	//
	// This member is required.
	EdgeDeploymentPendingInStage *int32

	// The number of edge devices with the successful deployment in the current stage.
	//
	// This member is required.
	EdgeDeploymentSuccessInStage *int32

	// The general status of the current stage.
	//
	// This member is required.
	StageStatus StageStatus

	// The time when the deployment API started.
	EdgeDeploymentStageStartTime *time.Time

	// A detailed message about deployment status in current stage.
	EdgeDeploymentStatusMessage *string

	noSmithyDocumentSerde
}

// The model on the edge device.
type EdgeModel struct {

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The model version.
	//
	// This member is required.
	ModelVersion *string

	// The timestamp of the last inference that was made.
	LatestInference *time.Time

	// The timestamp of the last data sample taken.
	LatestSampleTime *time.Time

	noSmithyDocumentSerde
}

// Status of edge devices with this model.
type EdgeModelStat struct {

	// The number of devices that have this model version, a heart beat, and are
	// currently running.
	//
	// This member is required.
	ActiveDeviceCount *int64

	// The number of devices that have this model version and have a heart beat.
	//
	// This member is required.
	ConnectedDeviceCount *int64

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The model version.
	//
	// This member is required.
	ModelVersion *string

	// The number of devices that have this model version and do not have a heart beat.
	//
	// This member is required.
	OfflineDeviceCount *int64

	// The number of devices with this model version and are producing sample data.
	//
	// This member is required.
	SamplingDeviceCount *int64

	noSmithyDocumentSerde
}

// Summary of model on edge device.
type EdgeModelSummary struct {

	// The name of the model.
	//
	// This member is required.
	ModelName *string

	// The version model.
	//
	// This member is required.
	ModelVersion *string

	noSmithyDocumentSerde
}

// The output configuration.
type EdgeOutputConfig struct {

	// The Amazon Simple Storage (S3) bucker URI.
	//
	// This member is required.
	S3OutputLocation *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume after
	// compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the
	// default KMS key for Amazon S3 for your role's account.
	KmsKeyId *string

	// The configuration used to create deployment artifacts. Specify configuration
	// options with a JSON string. The available configuration options for each type
	// are:
	//   - ComponentName (optional) - Name of the GreenGrass V2 component. If not
	//   specified, the default name generated consists of "SagemakerEdgeManager" and the
	//   name of your SageMaker Edge Manager packaging job.
	//   - ComponentDescription (optional) - Description of the component.
	//   - ComponentVersion (optional) - The version of the component. Amazon Web
	//   Services IoT Greengrass uses semantic versions for components. Semantic versions
	//   follow a major.minor.patch number system. For example, version 1.0.0 represents
	//   the first major release for a component. For more information, see the
	//   semantic version specification (https://semver.org/) .
	//   - PlatformOS (optional) - The name of the operating system for the platform.
	//   Supported platforms include Windows and Linux.
	//   - PlatformArchitecture (optional) - The processor architecture for the
	//   platform. Supported architectures Windows include: Windows32_x86, Windows64_x64.
	//   Supported architectures for Linux include: Linux x86_64, Linux ARMV8.
	PresetDeploymentConfig *string

	// The deployment type SageMaker Edge Manager will create. Currently only supports
	// Amazon Web Services IoT Greengrass Version 2 components.
	PresetDeploymentType EdgePresetDeploymentType

	noSmithyDocumentSerde
}

// Summary of edge packaging job.
type EdgePackagingJobSummary struct {

	// The Amazon Resource Name (ARN) of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobArn *string

	// The name of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobName *string

	// The status of the edge packaging job.
	//
	// This member is required.
	EdgePackagingJobStatus EdgePackagingJobStatus

	// The name of the SageMaker Neo compilation job.
	CompilationJobName *string

	// The timestamp of when the job was created.
	CreationTime *time.Time

	// The timestamp of when the edge packaging job was last updated.
	LastModifiedTime *time.Time

	// The name of the model.
	ModelName *string

	// The version of the model.
	ModelVersion *string

	noSmithyDocumentSerde
}

// The output of a SageMaker Edge Manager deployable resource.
type EdgePresetDeploymentOutput struct {

	// The deployment type created by SageMaker Edge Manager. Currently only supports
	// Amazon Web Services IoT Greengrass Version 2 components.
	//
	// This member is required.
	Type EdgePresetDeploymentType

	// The Amazon Resource Name (ARN) of the generated deployable resource.
	Artifact *string

	// The status of the deployable resource.
	Status EdgePresetDeploymentStatus

	// Returns a message describing the status of the deployed resource.
	StatusMessage *string

	noSmithyDocumentSerde
}

// A file system, created by you in Amazon EFS, that you assign to a user profile
// or space for an Amazon SageMaker Domain. Permitted users can access this file
// system in Amazon SageMaker Studio.
type EFSFileSystem struct {

	// The ID of your Amazon EFS file system.
	//
	// This member is required.
	FileSystemId *string

	noSmithyDocumentSerde
}

// The settings for assigning a custom Amazon EFS file system to a user profile or
// space for an Amazon SageMaker Domain.
type EFSFileSystemConfig struct {

	// The ID of your Amazon EFS file system.
	//
	// This member is required.
	FileSystemId *string

	// The path to the file system directory that is accessible in Amazon SageMaker
	// Studio. Permitted users can access only this directory and below.
	FileSystemPath *string

	noSmithyDocumentSerde
}

// The configurations and outcomes of an Amazon EMR step execution.
type EMRStepMetadata struct {

	// The identifier of the EMR cluster.
	ClusterId *string

	// The path to the log file where the cluster step's failure root cause is
	// recorded.
	LogFilePath *string

	// The identifier of the EMR cluster step.
	StepId *string

	// The name of the EMR cluster step.
	StepName *string

	noSmithyDocumentSerde
}

// A hosted endpoint for real-time inference.
type Endpoint struct {

	// The time that the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The endpoint configuration associated with the endpoint.
	//
	// This member is required.
	EndpointConfigName *string

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The status of the endpoint.
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// The last time the endpoint was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The currently active data capture configuration used by your Endpoint.
	DataCaptureConfig *DataCaptureConfigSummary

	// If the endpoint failed, the reason it failed.
	FailureReason *string

	// A list of monitoring schedules for the endpoint. For information about model
	// monitoring, see Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
	// .
	MonitoringSchedules []MonitoringSchedule

	// A list of the production variants hosted on the endpoint. Each production
	// variant is a model.
	ProductionVariants []ProductionVariantSummary

	// A list of the shadow variants hosted on the endpoint. Each shadow variant is a
	// model in shadow mode with production traffic replicated from the production
	// variant.
	ShadowProductionVariants []ProductionVariantSummary

	// A list of the tags associated with the endpoint. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	noSmithyDocumentSerde
}

// Provides summary information for an endpoint configuration.
type EndpointConfigSummary struct {

	// A timestamp that shows when the endpoint configuration was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigArn *string

	// The name of the endpoint configuration.
	//
	// This member is required.
	EndpointConfigName *string

	noSmithyDocumentSerde
}

// Details about a customer endpoint that was compared in an Inference Recommender
// job.
type EndpointInfo struct {

	// The name of a customer's endpoint.
	EndpointName *string

	noSmithyDocumentSerde
}

// Input object for the endpoint
type EndpointInput struct {

	// An endpoint in customer's account which has enabled DataCaptureConfig enabled.
	//
	// This member is required.
	EndpointName *string

	// Path to the filesystem where the endpoint data is available to the container.
	//
	// This member is required.
	LocalPath *string

	// If specified, monitoring jobs substract this time from the end time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	EndTimeOffset *string

	// The attributes of the input data to exclude from the analysis.
	ExcludeFeaturesAttribute *string

	// The attributes of the input data that are the input features.
	FeaturesAttribute *string

	// The attribute of the input data that represents the ground truth label.
	InferenceAttribute *string

	// In a classification problem, the attribute that represents the class
	// probability.
	ProbabilityAttribute *string

	// The threshold for the class probability to be evaluated as a positive result.
	ProbabilityThresholdAttribute *float64

	// Whether input data distributed in Amazon S3 is fully replicated or sharded by
	// an Amazon S3 key. Defaults to FullyReplicated
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether the Pipe or File is used as the input mode for transferring data for
	// the monitoring job. Pipe mode is recommended for large datasets. File mode is
	// useful for small files that fit in memory. Defaults to File .
	S3InputMode ProcessingS3InputMode

	// If specified, monitoring jobs substract this time from the start time. For
	// information about using offsets for scheduling monitoring jobs, see Schedule
	// Model Quality Monitoring Jobs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-model-quality-schedule.html)
	// .
	StartTimeOffset *string

	noSmithyDocumentSerde
}

// The endpoint configuration for the load test.
type EndpointInputConfiguration struct {

	// The parameter you want to benchmark against.
	EnvironmentParameterRanges *EnvironmentParameterRanges

	// The inference specification name in the model package version.
	InferenceSpecificationName *string

	// The instance types to use for the load test.
	InstanceType ProductionVariantInstanceType

	// Specifies the serverless configuration for an endpoint variant.
	ServerlessConfig *ProductionVariantServerlessConfig

	noSmithyDocumentSerde
}

// The metadata of the endpoint.
type EndpointMetadata struct {

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The name of the endpoint configuration.
	EndpointConfigName *string

	// The status of the endpoint. For possible values of the status of an endpoint,
	// see EndpointSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_EndpointSummary.html)
	// .
	EndpointStatus EndpointStatus

	// If the status of the endpoint is Failed , or the status is InService but update
	// operation fails, this provides the reason why it failed.
	FailureReason *string

	noSmithyDocumentSerde
}

// The endpoint configuration made by Inference Recommender during a
// recommendation job.
type EndpointOutputConfiguration struct {

	// The name of the endpoint made during a recommendation job.
	//
	// This member is required.
	EndpointName *string

	// The name of the production variant (deployed model) made during a
	// recommendation job.
	//
	// This member is required.
	VariantName *string

	// The number of instances recommended to launch initially.
	InitialInstanceCount *int32

	// The instance type recommended by Amazon SageMaker Inference Recommender.
	InstanceType ProductionVariantInstanceType

	// Specifies the serverless configuration for an endpoint variant.
	ServerlessConfig *ProductionVariantServerlessConfig

	noSmithyDocumentSerde
}

// The performance results from running an Inference Recommender job on an
// existing endpoint.
type EndpointPerformance struct {

	// Details about a customer endpoint that was compared in an Inference Recommender
	// job.
	//
	// This member is required.
	EndpointInfo *EndpointInfo

	// The metrics for an existing endpoint.
	//
	// This member is required.
	Metrics *InferenceMetrics

	noSmithyDocumentSerde
}

// Provides summary information for an endpoint.
type EndpointSummary struct {

	// A timestamp that shows when the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The name of the endpoint.
	//
	// This member is required.
	EndpointName *string

	// The status of the endpoint.
	//   - OutOfService : Endpoint is not available to take incoming requests.
	//   - Creating : CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html)
	//   is executing.
	//   - Updating : UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
	//   or UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   is executing.
	//   - SystemUpdating : Endpoint is undergoing maintenance and cannot be updated or
	//   deleted or re-scaled until it has completed. This maintenance operation does not
	//   change any customer-specified values such as VPC config, KMS encryption, model,
	//   instance type, or instance count.
	//   - RollingBack : Endpoint fails to scale up or down or change its variant
	//   weight and is in the process of rolling back to its previous configuration. Once
	//   the rollback completes, endpoint returns to an InService status. This
	//   transitional status only applies to an endpoint that has autoscaling enabled and
	//   is undergoing variant weight or capacity changes as part of an
	//   UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   call or when the UpdateEndpointWeightsAndCapacities (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpointWeightsAndCapacities.html)
	//   operation is called explicitly.
	//   - InService : Endpoint is available to process incoming requests.
	//   - Deleting : DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
	//   is executing.
	//   - Failed : Endpoint could not be created, updated, or re-scaled. Use
	//   DescribeEndpointOutput$FailureReason for information about the failure.
	//   DeleteEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DeleteEndpoint.html)
	//   is the only operation that can be performed on a failed endpoint.
	// To get a list of endpoints with a specified status, use the StatusEquals filter
	// with a call to ListEndpoints (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListEndpoints.html)
	// .
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// A timestamp that shows when the endpoint was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// A list of environment parameters suggested by the Amazon SageMaker Inference
// Recommender.
type EnvironmentParameter struct {

	// The environment key suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	Key *string

	// The value suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	Value *string

	// The value type suggested by the Amazon SageMaker Inference Recommender.
	//
	// This member is required.
	ValueType *string

	noSmithyDocumentSerde
}

// Specifies the range of environment parameters
type EnvironmentParameterRanges struct {

	// Specified a list of parameters for each category.
	CategoricalParameterRanges []CategoricalParameter

	noSmithyDocumentSerde
}

// The properties of an experiment as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Experiment struct {

	// Who created the experiment.
	CreatedBy *UserContext

	// When the experiment was created.
	CreationTime *time.Time

	// The description of the experiment.
	Description *string

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// When the experiment was last modified.
	LastModifiedTime *time.Time

	// The source of the experiment.
	Source *ExperimentSource

	// The list of tags that are associated with the experiment. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag

	noSmithyDocumentSerde
}

// Associates a SageMaker job as a trial component with an experiment and trial.
// Specified when you call the following APIs:
//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
type ExperimentConfig struct {

	// The name of an existing experiment to associate with the trial component.
	ExperimentName *string

	// The name of the experiment run to associate with the trial component.
	RunName *string

	// The display name for the trial component. If this key isn't specified, the
	// display name is the trial component name.
	TrialComponentDisplayName *string

	// The name of an existing trial to associate the trial component with. If not
	// specified, a new trial is created.
	TrialName *string

	noSmithyDocumentSerde
}

// The source of the experiment.
type ExperimentSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source type.
	SourceType *string

	noSmithyDocumentSerde
}

// A summary of the properties of an experiment. To get the complete set of
// properties, call the DescribeExperiment (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html)
// API and provide the ExperimentName .
type ExperimentSummary struct {

	// When the experiment was created.
	CreationTime *time.Time

	// The name of the experiment as displayed. If DisplayName isn't specified,
	// ExperimentName is displayed.
	DisplayName *string

	// The Amazon Resource Name (ARN) of the experiment.
	ExperimentArn *string

	// The name of the experiment.
	ExperimentName *string

	// The source of the experiment.
	ExperimentSource *ExperimentSource

	// When the experiment was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Contains explainability metrics for a model.
type Explainability struct {

	// The explainability report for a model.
	Report *MetricsSource

	noSmithyDocumentSerde
}

// A parameter to activate explainers.
type ExplainerConfig struct {

	// A member of ExplainerConfig that contains configuration parameters for the
	// SageMaker Clarify explainer.
	ClarifyExplainerConfig *ClarifyExplainerConfig

	noSmithyDocumentSerde
}

// The container for the metadata for Fail step.
type FailStepMetadata struct {

	// A message that you define and then is processed and rendered by the Fail step
	// when the error occurs.
	ErrorMessage *string

	noSmithyDocumentSerde
}

// A list of features. You must include FeatureName and FeatureType . Valid feature
// FeatureType s are Integral , Fractional and String .
type FeatureDefinition struct {

	// The name of a feature. The type must be a string. FeatureName cannot be any of
	// the following: is_deleted , write_time , api_invocation_time .
	//
	// This member is required.
	FeatureName *string

	// The value type of a feature. Valid values are Integral, Fractional, or String.
	//
	// This member is required.
	FeatureType FeatureType

	// Configuration for your collection.
	CollectionConfig CollectionConfig

	// A grouping of elements where each element within the collection must have the
	// same feature type ( String , Integral , or Fractional ).
	//   - List : An ordered collection of elements.
	//   - Set : An unordered collection of unique elements.
	//   - Vector : A specialized list that represents a fixed-size array of elements.
	//   The vector dimension is determined by you. Must have elements with fractional
	//   feature types.
	CollectionType CollectionType

	noSmithyDocumentSerde
}

// Amazon SageMaker Feature Store stores features in a collection called Feature
// Group. A Feature Group can be visualized as a table which has rows, with a
// unique identifier for each row where each column in the table is a feature. In
// principle, a Feature Group is composed of features and values per features.
type FeatureGroup struct {

	// The time a FeatureGroup was created.
	CreationTime *time.Time

	// A free form description of a FeatureGroup .
	Description *string

	// The name of the feature that stores the EventTime of a Record in a FeatureGroup
	// . A EventTime is point in time when a new event occurs that corresponds to the
	// creation or update of a Record in FeatureGroup . All Records in the FeatureGroup
	// must have a corresponding EventTime .
	EventTimeFeatureName *string

	// The reason that the FeatureGroup failed to be replicated in the OfflineStore .
	// This is failure may be due to a failure to create a FeatureGroup in or delete a
	// FeatureGroup from the OfflineStore .
	FailureReason *string

	// A list of Feature s. Each Feature must include a FeatureName and a FeatureType .
	// Valid FeatureType s are Integral , Fractional and String . FeatureName s cannot
	// be any of the following: is_deleted , write_time , api_invocation_time . You can
	// create up to 2,500 FeatureDefinition s per FeatureGroup .
	FeatureDefinitions []FeatureDefinition

	// The Amazon Resource Name (ARN) of a FeatureGroup .
	FeatureGroupArn *string

	// The name of the FeatureGroup .
	FeatureGroupName *string

	// A FeatureGroup status.
	FeatureGroupStatus FeatureGroupStatus

	// A timestamp indicating the last time you updated the feature group.
	LastModifiedTime *time.Time

	// A value that indicates whether the feature group was updated successfully.
	LastUpdateStatus *LastUpdateStatus

	// The configuration of an OfflineStore . Provide an OfflineStoreConfig in a
	// request to CreateFeatureGroup to create an OfflineStore . To encrypt an
	// OfflineStore using at rest data encryption, specify Amazon Web Services Key
	// Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .
	OfflineStoreConfig *OfflineStoreConfig

	// The status of OfflineStore .
	OfflineStoreStatus *OfflineStoreStatus

	// Use this to specify the Amazon Web Services Key Management Service (KMS) Key
	// ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or
	// off by specifying the EnableOnlineStore flag at General Assembly. The default
	// value is False .
	OnlineStoreConfig *OnlineStoreConfig

	// The name of the Feature whose value uniquely identifies a Record defined in the
	// FeatureGroup FeatureDefinitions .
	RecordIdentifierFeatureName *string

	// The Amazon Resource Name (ARN) of the IAM execution role used to create the
	// feature group.
	RoleArn *string

	// Tags used to define a FeatureGroup .
	Tags []Tag

	noSmithyDocumentSerde
}

// The name, ARN, CreationTime , FeatureGroup values, LastUpdatedTime and
// EnableOnlineStorage status of a FeatureGroup .
type FeatureGroupSummary struct {

	// A timestamp indicating the time of creation time of the FeatureGroup .
	//
	// This member is required.
	CreationTime *time.Time

	// Unique identifier for the FeatureGroup .
	//
	// This member is required.
	FeatureGroupArn *string

	// The name of FeatureGroup .
	//
	// This member is required.
	FeatureGroupName *string

	// The status of a FeatureGroup. The status can be any of the following: Creating ,
	// Created , CreateFail , Deleting or DetailFail .
	FeatureGroupStatus FeatureGroupStatus

	// Notifies you if replicating data into the OfflineStore has failed. Returns
	// either: Active or Blocked .
	OfflineStoreStatus *OfflineStoreStatus

	noSmithyDocumentSerde
}

// The metadata for a feature. It can either be metadata that you specify, or
// metadata that is updated automatically.
type FeatureMetadata struct {

	// A timestamp indicating when the feature was created.
	CreationTime *time.Time

	// An optional description that you specify to better describe the feature.
	Description *string

	// The Amazon Resource Number (ARN) of the feature group.
	FeatureGroupArn *string

	// The name of the feature group containing the feature.
	FeatureGroupName *string

	// The name of feature.
	FeatureName *string

	// The data type of the feature.
	FeatureType FeatureType

	// A timestamp indicating when the feature was last modified.
	LastModifiedTime *time.Time

	// Optional key-value pairs that you specify to better describe the feature.
	Parameters []FeatureParameter

	noSmithyDocumentSerde
}

// A key-value pair that you specify to describe the feature.
type FeatureParameter struct {

	// A key that must contain a value to describe the feature.
	Key *string

	// The value that belongs to a key.
	Value *string

	noSmithyDocumentSerde
}

// Contains details regarding the file source.
type FileSource struct {

	// The Amazon S3 URI for the file source.
	//
	// This member is required.
	S3Uri *string

	// The digest of the file source.
	ContentDigest *string

	// The type of content stored in the file source.
	ContentType *string

	noSmithyDocumentSerde
}

// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
// image.
type FileSystemConfig struct {

	// The default POSIX group ID (GID). If not specified, defaults to 100 .
	DefaultGid *int32

	// The default POSIX user ID (UID). If not specified, defaults to 1000 .
	DefaultUid *int32

	// The path within the image to mount the user's EFS home directory. The directory
	// should be empty. If not specified, defaults to /home/sagemaker-user.
	MountPath *string

	noSmithyDocumentSerde
}

// Specifies a file system data source for a channel.
type FileSystemDataSource struct {

	// The full path to the directory to associate with the channel.
	//
	// This member is required.
	DirectoryPath *string

	// The access mode of the mount of the directory associated with the channel. A
	// directory can be mounted either in ro (read-only) or rw (read-write) mode.
	//
	// This member is required.
	FileSystemAccessMode FileSystemAccessMode

	// The file system id.
	//
	// This member is required.
	FileSystemId *string

	// The file system type.
	//
	// This member is required.
	FileSystemType FileSystemType

	noSmithyDocumentSerde
}

// A conditional statement for a search expression that includes a resource
// property, a Boolean operator, and a value. Resources that match the statement
// are returned in the results from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API. If you specify a Value , but not an Operator , SageMaker uses the equals
// operator. In search, there are several property types: Metrics To define a
// metric filter, enter a value using the form "Metrics." , where  is a metric
// name. For example, the following filter searches for training jobs with an
//
//	"accuracy" metric greater than "0.9" : {
//	    "Name": "Metrics.accuracy",
//
//	    "Operator": "GreaterThan",
//
//	    "Value": "0.9"
//	} HyperParameters To define a hyperparameter filter, enter a value with the
//
// form "HyperParameters." . Decimal hyperparameter values are treated as a decimal
// in a comparison if the specified Value is also a decimal value. If the
// specified Value is an integer, the decimal hyperparameter values are treated as
// integers. For example, the following filter is satisfied by training jobs with a
//
//	"learning_rate" hyperparameter that is less than "0.5" :  {
//	    "Name": "HyperParameters.learning_rate",
//
//	    "Operator": "LessThan",
//
//	    "Value": "0.5"
//	} Tags To define a tag filter, enter a value with the form Tags. .
type Filter struct {

	// A resource property name. For example, TrainingJobName . For valid property
	// names, see SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html)
	// . You must specify a valid property for the resource.
	//
	// This member is required.
	Name *string

	// A Boolean binary operator that is used to evaluate the filter. The operator
	// field contains one of the following values: Equals The value of Name equals
	// Value . NotEquals The value of Name doesn't equal Value . Exists The Name
	// property exists. NotExists The Name property does not exist. GreaterThan The
	// value of Name is greater than Value . Not supported for text properties.
	// GreaterThanOrEqualTo The value of Name is greater than or equal to Value . Not
	// supported for text properties. LessThan The value of Name is less than Value .
	// Not supported for text properties. LessThanOrEqualTo The value of Name is less
	// than or equal to Value . Not supported for text properties. In The value of Name
	// is one of the comma delimited strings in Value . Only supported for text
	// properties. Contains The value of Name contains the string Value . Only
	// supported for text properties. A SearchExpression can include the Contains
	// operator multiple times when the value of Name is one of the following:
	//   - Experiment.DisplayName
	//   - Experiment.ExperimentName
	//   - Experiment.Tags
	//   - Trial.DisplayName
	//   - Trial.TrialName
	//   - Trial.Tags
	//   - TrialComponent.DisplayName
	//   - TrialComponent.TrialComponentName
	//   - TrialComponent.Tags
	//   - TrialComponent.InputArtifacts
	//   - TrialComponent.OutputArtifacts
	// A SearchExpression can include only one Contains operator for all other values
	// of Name . In these cases, if you include multiple Contains operators in the
	// SearchExpression , the result is the following error message: " 'CONTAINS'
	// operator usage limit of 1 exceeded. "
	Operator Operator

	// A value used with Name and Operator to determine which resources satisfy the
	// filter's condition. For numerical properties, Value must be an integer or
	// floating-point decimal. For timestamp properties, Value must be an ISO 8601
	// date-time string of the following format: YYYY-mm-dd'T'HH:MM:SS .
	Value *string

	noSmithyDocumentSerde
}

// The best candidate result from an AutoML training job.
type FinalAutoMLJobObjectiveMetric struct {

	// The name of the metric with the best result. For a description of the possible
	// objective metrics, see AutoMLJobObjective$MetricName (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html)
	// .
	//
	// This member is required.
	MetricName AutoMLMetricEnum

	// The value of the metric with the best result.
	//
	// This member is required.
	Value *float32

	// The name of the standard metric. For a description of the standard metrics, see
	// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics)
	// .
	StandardMetricName AutoMLMetricEnum

	// The type of metric with the best result.
	Type AutoMLJobObjectiveType

	noSmithyDocumentSerde
}

// Shows the latest objective metric emitted by a training job that was launched
// by a hyperparameter tuning job. You define the objective metric in the
// HyperParameterTuningJobObjective parameter of HyperParameterTuningJobConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobConfig.html)
// .
type FinalHyperParameterTuningJobObjectiveMetric struct {

	// The name of the objective metric. For SageMaker built-in algorithms, metrics
	// are defined per algorithm. See the metrics for XGBoost (https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-tuning.html)
	// as an example. You can also use a custom algorithm for training and define your
	// own metrics. For more information, see Define metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	//
	// This member is required.
	MetricName *string

	// The value of the objective metric.
	//
	// This member is required.
	Value *float32

	// Select if you want to minimize or maximize the objective metric during
	// hyperparameter tuning.
	Type HyperParameterTuningJobObjectiveType

	noSmithyDocumentSerde
}

// Contains information about where human output will be stored.
type FlowDefinitionOutputConfig struct {

	// The Amazon S3 path where the object containing human output will be made
	// available. To learn more about the format of Amazon A2I output data, see Amazon
	// A2I Output Data (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-output-data.html)
	// .
	//
	// This member is required.
	S3OutputPath *string

	// The Amazon Key Management Service (KMS) key ID for server-side encryption.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Contains summary information about the flow definition.
type FlowDefinitionSummary struct {

	// The timestamp when SageMaker created the flow definition.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the flow definition.
	//
	// This member is required.
	FlowDefinitionArn *string

	// The name of the flow definition.
	//
	// This member is required.
	FlowDefinitionName *string

	// The status of the flow definition. Valid values:
	//
	// This member is required.
	FlowDefinitionStatus FlowDefinitionStatus

	// The reason why the flow definition creation failed. A failure reason is
	// returned only when the flow definition status is Failed .
	FailureReason *string

	noSmithyDocumentSerde
}

// Specifies configuration details for a Git repository in your Amazon Web
// Services account.
type GitConfig struct {

	// The URL where the Git repository is located.
	//
	// This member is required.
	RepositoryUrl *string

	// The default branch for the Git repository.
	Branch *string

	// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
	// secret that contains the credentials used to access the git repository. The
	// secret must have a staging label of AWSCURRENT and must be in the following
	// format: {"username": UserName, "password": Password}
	SecretArn *string

	noSmithyDocumentSerde
}

// Specifies configuration details for a Git repository when the repository is
// updated.
type GitConfigForUpdate struct {

	// The Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager
	// secret that contains the credentials used to access the git repository. The
	// secret must have a staging label of AWSCURRENT and must be in the following
	// format: {"username": UserName, "password": Password}
	SecretArn *string

	noSmithyDocumentSerde
}

// Stores the holiday featurization attributes applicable to each item of
// time-series datasets during the training of a forecasting model. This allows the
// model to identify patterns associated with specific holidays.
type HolidayConfigAttributes struct {

	// The country code for the holiday calendar. For the list of public holiday
	// calendars supported by AutoML job V2, see Country Codes (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-timeseries-forecasting-holiday-calendars.html#holiday-country-codes)
	// . Use the country code corresponding to the country of your choice.
	CountryCode *string

	noSmithyDocumentSerde
}

// Any dependencies related to hub content, such as scripts, model artifacts,
// datasets, or notebooks.
type HubContentDependency struct {

	// The hub content dependency copy path.
	DependencyCopyPath *string

	// The hub content dependency origin path.
	DependencyOriginPath *string

	noSmithyDocumentSerde
}

// Information about hub content.
type HubContentInfo struct {

	// The date and time that the hub content was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The version of the hub content document schema.
	//
	// This member is required.
	DocumentSchemaVersion *string

	// The Amazon Resource Name (ARN) of the hub content.
	//
	// This member is required.
	HubContentArn *string

	// The name of the hub content.
	//
	// This member is required.
	HubContentName *string

	// The status of the hub content.
	//
	// This member is required.
	HubContentStatus HubContentStatus

	// The type of hub content.
	//
	// This member is required.
	HubContentType HubContentType

	// The version of the hub content.
	//
	// This member is required.
	HubContentVersion *string

	// A description of the hub content.
	HubContentDescription *string

	// The display name of the hub content.
	HubContentDisplayName *string

	// The searchable keywords for the hub content.
	HubContentSearchKeywords []string

	noSmithyDocumentSerde
}

// Information about a hub.
type HubInfo struct {

	// The date and time that the hub was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the hub.
	//
	// This member is required.
	HubArn *string

	// The name of the hub.
	//
	// This member is required.
	HubName *string

	// The status of the hub.
	//
	// This member is required.
	HubStatus HubStatus

	// The date and time that the hub was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// A description of the hub.
	HubDescription *string

	// The display name of the hub.
	HubDisplayName *string

	// The searchable keywords for the hub.
	HubSearchKeywords []string

	noSmithyDocumentSerde
}

// The Amazon S3 storage configuration of a hub.
type HubS3StorageConfig struct {

	// The Amazon S3 bucket prefix for hosting hub content.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// Defines under what conditions SageMaker creates a human loop. Used within
// CreateFlowDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateFlowDefinition.html)
// . See HumanLoopActivationConditionsConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HumanLoopActivationConditionsConfig.html)
// for the required format of activation conditions.
type HumanLoopActivationConditionsConfig struct {

	// JSON expressing use-case specific conditions declaratively. If any condition is
	// matched, atomic tasks are created against the configured work team. The set of
	// conditions is different for Rekognition and Textract. For more information about
	// how to structure the JSON, see JSON Schema for Human Loop Activation Conditions
	// in Amazon Augmented AI (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html)
	// in the Amazon SageMaker Developer Guide.
	//
	// This value conforms to the media type: application/json
	//
	// This member is required.
	HumanLoopActivationConditions *string

	noSmithyDocumentSerde
}

// Provides information about how and under what conditions SageMaker creates a
// human loop. If HumanLoopActivationConfig is not given, then all requests go to
// humans.
type HumanLoopActivationConfig struct {

	// Container structure for defining under what conditions SageMaker creates a
	// human loop.
	//
	// This member is required.
	HumanLoopActivationConditionsConfig *HumanLoopActivationConditionsConfig

	noSmithyDocumentSerde
}

// Describes the work to be performed by human workers.
type HumanLoopConfig struct {

	// The Amazon Resource Name (ARN) of the human task user interface. You can use
	// standard HTML and Crowd HTML Elements to create a custom worker task template.
	// You use this template to create a human task UI. To learn how to create a custom
	// HTML template, see Create Custom Worker Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-custom-templates.html)
	// . To learn how to create a human task UI, which is a worker task template that
	// can be used in a flow definition, see Create and Delete a Worker Task Templates (https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-worker-template-console.html)
	// .
	//
	// This member is required.
	HumanTaskUiArn *string

	// The number of distinct workers who will perform the same task on each object.
	// For example, if TaskCount is set to 3 for an image classification labeling job,
	// three workers will classify each input image. Increasing TaskCount can improve
	// label accuracy.
	//
	// This member is required.
	TaskCount *int32

	// A description for the human worker task.
	//
	// This member is required.
	TaskDescription *string

	// A title for the human worker task.
	//
	// This member is required.
	TaskTitle *string

	// Amazon Resource Name (ARN) of a team of workers. To learn more about the types
	// of workforces and work teams you can create and use with Amazon A2I, see Create
	// and Manage Workforces (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-management.html)
	// .
	//
	// This member is required.
	WorkteamArn *string

	// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
	// task performed. Use one of the following prices for bounding box tasks. Prices
	// are in US dollars and should be based on the complexity of the task; the longer
	// it takes in your initial testing, the more you should offer.
	//   - 0.036
	//   - 0.048
	//   - 0.060
	//   - 0.072
	//   - 0.120
	//   - 0.240
	//   - 0.360
	//   - 0.480
	//   - 0.600
	//   - 0.720
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for image classification, text classification,
	// and custom tasks. Prices are in US dollars.
	//   - 0.012
	//   - 0.024
	//   - 0.036
	//   - 0.048
	//   - 0.060
	//   - 0.072
	//   - 0.120
	//   - 0.240
	//   - 0.360
	//   - 0.480
	//   - 0.600
	//   - 0.720
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for semantic segmentation tasks. Prices are in
	// US dollars.
	//   - 0.840
	//   - 0.960
	//   - 1.080
	//   - 1.200
	// Use one of the following prices for Textract AnalyzeDocument Important Form Key
	// Amazon Augmented AI review tasks. Prices are in US dollars.
	//   - 2.400
	//   - 2.280
	//   - 2.160
	//   - 2.040
	//   - 1.920
	//   - 1.800
	//   - 1.680
	//   - 1.560
	//   - 1.440
	//   - 1.320
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	// Use one of the following prices for Rekognition DetectModerationLabels Amazon
	// Augmented AI review tasks. Prices are in US dollars.
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	// Use one of the following prices for Amazon Augmented AI custom human review
	// tasks. Prices are in US dollars.
	//   - 1.200
	//   - 1.080
	//   - 0.960
	//   - 0.840
	//   - 0.720
	//   - 0.600
	//   - 0.480
	//   - 0.360
	//   - 0.240
	//   - 0.120
	//   - 0.072
	//   - 0.060
	//   - 0.048
	//   - 0.036
	//   - 0.024
	//   - 0.012
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for review by human workers.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers can discover the task.
	TaskKeywords []string

	// The amount of time that a worker has to complete a task. The default value is
	// 3,600 seconds (1 hour).
	TaskTimeLimitInSeconds *int32

	noSmithyDocumentSerde
}

// Container for configuring the source of human task requests.
type HumanLoopRequestSource struct {

	// Specifies whether Amazon Rekognition or Amazon Textract are used as the
	// integration source. The default field settings and JSON parsing rules are
	// different based on the integration source. Valid values:
	//
	// This member is required.
	AwsManagedHumanLoopRequestSource AwsManagedHumanLoopRequestSource

	noSmithyDocumentSerde
}

// Information required for human workers to complete a labeling task.
type HumanTaskConfig struct {

	// Configures how labels are consolidated across human workers.
	//
	// This member is required.
	AnnotationConsolidationConfig *AnnotationConsolidationConfig

	// The number of human workers that will label an object.
	//
	// This member is required.
	NumberOfHumanWorkersPerDataObject *int32

	// The Amazon Resource Name (ARN) of a Lambda function that is run before a data
	// object is sent to a human worker. Use this function to provide input to a custom
	// labeling job. For built-in task types (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// , use one of the following Amazon SageMaker Ground Truth Lambda function ARNs
	// for PreHumanTaskLambdaArn . For custom labeling workflows, see Pre-annotation
	// Lambda (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step3.html#sms-custom-templates-step3-prelambda)
	// . Bounding box - Finds the most similar boxes from different workers based on
	// the Jaccard index of the boxes.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox
	// Image classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of an image based on annotations from individual
	// workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass
	// Multi-label image classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of an image based on
	// annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel
	// Semantic segmentation - Treats each pixel in an image as a multi-class
	// classification and treats pixel annotations from workers as "votes" for the
	// correct label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation
	// Text classification - Uses a variant of the Expectation Maximization approach
	// to estimate the true class of text based on annotations from individual workers.
	//
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass
	// Multi-label text classification - Uses a variant of the Expectation
	// Maximization approach to estimate the true classes of text based on annotations
	// from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel
	// Named entity recognition - Groups similar selections and calculates aggregate
	// boundaries, resolving to most-assigned label.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition
	// Video Classification - Use this task type when you need workers to classify
	// videos using predefined labels that you specify. Workers are shown videos and
	// are asked to choose one label for each video.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass
	// Video Frame Object Detection - Use this task type to have workers identify and
	// locate objects in a sequence of video frames (images extracted from a video)
	// using bounding boxes. For example, you can use this task to ask workers to
	// identify and localize various objects in a series of video frames, such as cars,
	// bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection
	// Video Frame Object Tracking - Use this task type to have workers track the
	// movement of objects in a sequence of video frames (images extracted from a
	// video) using bounding boxes. For example, you can use this task to ask workers
	// to track the movement of objects, such as cars, bikes, and pedestrians.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking
	// 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point
	// cloud labeling modality tasks. See 3D Point Cloud Task types  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-task-types.html)
	// to learn more. 3D Point Cloud Object Detection - Use this task type when you
	// want workers to classify objects in a 3D point cloud by drawing 3D cuboids
	// around objects. For example, you can use this task type to ask workers to
	// identify different types of objects in a point cloud, such as cars, bikes, and
	// pedestrians.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection
	// 3D Point Cloud Object Tracking - Use this task type when you want workers to
	// draw 3D cuboids around objects that appear in a sequence of 3D point cloud
	// frames. For example, you can use this task type to ask workers to track the
	// movement of vehicles across multiple point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking
	// 3D Point Cloud Semantic Segmentation - Use this task type when you want workers
	// to create a point-level semantic segmentation masks by painting objects in a 3D
	// point cloud using different colors where each color is assigned to one of the
	// classes you specify.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation
	// Use the following ARNs for Label Verification and Adjustment Jobs Use label
	// verification and adjustment jobs to review and adjust labels. To learn more, see
	// Verify and Adjust Labels  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html)
	// . Bounding box verification - Uses a variant of the Expectation Maximization
	// approach to estimate the true class of verification judgement for bounding box
	// labels based on annotations from individual workers.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox
	// Bounding box adjustment - Finds the most similar boxes from different workers
	// based on the Jaccard index of the adjusted annotations.
	//   - arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox
	//   - arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox
	// Semantic segmentation verification - Uses a variant of the Expectation
	// Maximization approach to estimate the true class of verification judgment for
	// semantic segmentation labels based on annotations from individual workers.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation
	// Semantic segmentation adjustment - Treats each pixel in an image as a
	// multi-class classification and treats pixel adjusted annotations from workers as
	// "votes" for the correct label.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation
	// Video Frame Object Detection Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// classify and localize objects in a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection
	// Video Frame Object Tracking Adjustment - Use this task type when you want
	// workers to adjust bounding boxes that workers have added to video frames to
	// track object movement across a sequence of video frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking
	// 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud
	// frame.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection
	// 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence
	// of point cloud frames.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking
	// 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation
	// masks in a 3D point cloud.
	//   -
	//   arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//   -
	//   arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// A description of the task for your human workers.
	//
	// This member is required.
	TaskDescription *string

	// The amount of time that a worker has to complete a task. If you create a custom
	// labeling job, the maximum value for this parameter is 8 hours (28,800 seconds).
	// If you create a labeling job using a built-in task type (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html)
	// the maximum for this parameter depends on the task type you use:
	//   - For image (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-images.html)
	//   and text (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-label-text.html)
	//   labeling jobs, the maximum is 8 hours (28,800 seconds).
	//   - For 3D point cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud.html)
	//   and video frame (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video.html)
	//   labeling jobs, the maximum is 30 days (2952,000 seconds) for non-AL mode. For
	//   most users, the maximum is also 30 days.
	//
	// This member is required.
	TaskTimeLimitInSeconds *int32

	// A title for the task for your human workers.
	//
	// This member is required.
	TaskTitle *string

	// Information about the user interface that workers use to complete the labeling
	// task.
	//
	// This member is required.
	UiConfig *UiConfig

	// The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
	//
	// This member is required.
	WorkteamArn *string

	// Defines the maximum number of data objects that can be labeled by human workers
	// at the same time. Also referred to as batch size. Each object may have more than
	// one worker at one time. The default value is 1000 objects. To increase the
	// maximum value to 5000 objects, contact Amazon Web Services Support.
	MaxConcurrentTaskCount *int32

	// The price that you pay for each task performed by an Amazon Mechanical Turk
	// worker.
	PublicWorkforceTaskPrice *PublicWorkforceTaskPrice

	// The length of time that a task remains available for labeling by human workers.
	// The default and maximum values for this parameter depend on the type of
	// workforce you use.
	//   - If you choose the Amazon Mechanical Turk workforce, the maximum is 12 hours
	//   (43,200 seconds). The default is 6 hours (21,600 seconds).
	//   - If you choose a private or vendor workforce, the default value is 30 days
	//   (2592,000 seconds) for non-AL mode. For most users, the maximum is also 30 days.
	TaskAvailabilityLifetimeInSeconds *int32

	// Keywords used to describe the task so that workers on Amazon Mechanical Turk
	// can discover the task.
	TaskKeywords []string

	noSmithyDocumentSerde
}

// Container for human task user interface information.
type HumanTaskUiSummary struct {

	// A timestamp when SageMaker created the human task user interface.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the human task user interface.
	//
	// This member is required.
	HumanTaskUiArn *string

	// The name of the human task user interface.
	//
	// This member is required.
	HumanTaskUiName *string

	noSmithyDocumentSerde
}

// The configuration for Hyperband , a multi-fidelity based hyperparameter tuning
// strategy. Hyperband uses the final and intermediate results of a training job
// to dynamically allocate resources to utilized hyperparameter configurations
// while automatically stopping under-performing configurations. This parameter
// should be provided only if Hyperband is selected as the StrategyConfig under
// the HyperParameterTuningJobConfig API.
type HyperbandStrategyConfig struct {

	// The maximum number of resources (such as epochs) that can be used by a training
	// job launched by a hyperparameter tuning job. Once a job reaches the MaxResource
	// value, it is stopped. If a value for MaxResource is not provided, and Hyperband
	// is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts
	// to infer MaxResource from the following keys (if present) in
	// StaticsHyperParameters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-StaticHyperParameters)
	// :
	//   - epochs
	//   - numepochs
	//   - n-epochs
	//   - n_epochs
	//   - num_epochs
	// If HyperbandStrategyConfig is unable to infer a value for MaxResource , it
	// generates a validation error. The maximum value is 20,000 epochs. All metrics
	// that correspond to an objective metric are used to derive early stopping
	// decisions (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
	// . For distributive (https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html)
	// training jobs, ensure that duplicate metrics are not printed in the logs across
	// the individual nodes in a training job. If multiple nodes are publishing
	// duplicate or incorrect metrics, training jobs may make an incorrect stopping
	// decision and stop the job prematurely.
	MaxResource *int32

	// The minimum number of resources (such as epochs) that can be used by a training
	// job launched by a hyperparameter tuning job. If the value for MinResource has
	// not been reached, the training job is not stopped by Hyperband .
	MinResource *int32

	noSmithyDocumentSerde
}

// Specifies which training algorithm to use for training jobs that a
// hyperparameter tuning job launches and the metrics to monitor.
type HyperParameterAlgorithmSpecification struct {

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The name of the resource algorithm to use for the hyperparameter tuning job. If
	// you specify a value for this parameter, do not specify a value for TrainingImage
	// .
	AlgorithmName *string

	// An array of MetricDefinition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_MetricDefinition.html)
	// objects that specify the metrics that the algorithm emits.
	MetricDefinitions []MetricDefinition

	// The registry path of the Docker image that contains the training algorithm. For
	// information about Docker registry paths for built-in algorithms, see Algorithms
	// Provided by Amazon SageMaker: Common Parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html)
	// . SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// .
	TrainingImage *string

	noSmithyDocumentSerde
}

// Defines a hyperparameter to be used by an algorithm.
type HyperParameterSpecification struct {

	// The name of this hyperparameter. The name must be unique.
	//
	// This member is required.
	Name *string

	// The type of this hyperparameter. The valid types are Integer , Continuous ,
	// Categorical , and FreeText .
	//
	// This member is required.
	Type ParameterType

	// The default value for this hyperparameter. If a default value is specified, a
	// hyperparameter cannot be required.
	DefaultValue *string

	// A brief description of the hyperparameter.
	Description *string

	// Indicates whether this hyperparameter is required.
	IsRequired *bool

	// Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.
	IsTunable *bool

	// The allowed range for this hyperparameter.
	Range *ParameterRange

	noSmithyDocumentSerde
}

// Defines the training jobs launched by a hyperparameter tuning job.
type HyperParameterTrainingJobDefinition struct {

	// The HyperParameterAlgorithmSpecification (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterAlgorithmSpecification.html)
	// object that specifies the resource algorithm to use for the training jobs that
	// the tuning job launches.
	//
	// This member is required.
	AlgorithmSpecification *HyperParameterAlgorithmSpecification

	// Specifies the path to the Amazon S3 bucket where you store model artifacts from
	// the training jobs that the tuning job launches.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The Amazon Resource Name (ARN) of the IAM role associated with the training
	// jobs that the tuning job launches.
	//
	// This member is required.
	RoleArn *string

	// Specifies a limit to how long a model hyperparameter training job can run. It
	// also specifies how long a managed spot training job has to complete. When the
	// job reaches the time limit, SageMaker ends the training job. Use this API to cap
	// model training costs.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// The job definition name.
	DefinitionName *string

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True . Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// A Boolean indicating whether managed spot training is enabled ( True ) or not (
	// False ).
	EnableManagedSpotTraining *bool

	// Isolates the training container. No inbound or outbound network calls can be
	// made, except for calls between peers within a training cluster for distributed
	// training. If network isolation is used for training jobs that are configured to
	// use a VPC, SageMaker downloads and uploads customer data and model artifacts
	// through the specified VPC, but the training container does not have network
	// access.
	EnableNetworkIsolation *bool

	// An environment variable that you can pass into the SageMaker CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	// API. You can use an existing environment variable from the training container (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html#sagemaker-CreateTrainingJob-request-Environment)
	// or use your own. See Define metrics and variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// for more information. The maximum number of items specified for Map Entries
	// refers to the maximum number of environment variables for each
	// TrainingJobDefinition and also the maximum for the hyperparameter tuning job
	// itself. That is, the sum of the number of environment variables for all the
	// training job definitions can't exceed the maximum number specified.
	Environment map[string]string

	// Specifies ranges of integer, continuous, and categorical hyperparameters that a
	// hyperparameter tuning job searches. The hyperparameter tuning job launches
	// training jobs with hyperparameter values within these ranges to find the
	// combination of values that result in the training job with the best performance
	// as measured by the objective metric of the hyperparameter tuning job. The
	// maximum number of items specified for Array Members refers to the maximum
	// number of hyperparameters for each range and also the maximum for the
	// hyperparameter tuning job itself. That is, the sum of the number of
	// hyperparameters for all the ranges can't exceed the maximum number specified.
	HyperParameterRanges *ParameterRanges

	// The configuration for the hyperparameter tuning resources, including the
	// compute instances and storage volumes, used for training jobs launched by the
	// tuning job. By default, storage volumes hold model artifacts and incremental
	// states. Choose File for TrainingInputMode in the AlgorithmSpecification
	// parameter to additionally store training data in the storage volume (optional).
	HyperParameterTuningResourceConfig *HyperParameterTuningResourceConfig

	// An array of Channel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Channel.html)
	// objects that specify the input for the training jobs that the tuning job
	// launches.
	InputDataConfig []Channel

	// The resources, including the compute instances and storage volumes, to use for
	// the training jobs that the tuning job launches. Storage volumes store model
	// artifacts and incremental states. Training algorithms might also use storage
	// volumes for scratch space. If you want SageMaker to use the storage volume to
	// store the training data, choose File as the TrainingInputMode in the algorithm
	// specification. For distributed training algorithms, specify an instance count
	// greater than 1. If you want to use hyperparameter optimization with instance
	// type flexibility, use HyperParameterTuningResourceConfig instead.
	ResourceConfig *ResourceConfig

	// The number of times to retry the job when the job fails due to an
	// InternalServerError .
	RetryStrategy *RetryStrategy

	// Specifies the values of hyperparameters that do not change for the tuning job.
	StaticHyperParameters map[string]string

	// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
	// tuning uses the value of this metric to evaluate the training jobs it launches,
	// and returns the training job that results in either the highest or lowest value
	// for this metric, depending on the value you specify for the Type parameter. If
	// you want to define a custom objective metric, see Define metrics and
	// environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	TuningObjective *HyperParameterTuningJobObjective

	// The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
	// object that specifies the VPC that you want the training jobs that this
	// hyperparameter tuning job launches to connect to. Control access to and from
	// your training container by configuring the VPC. For more information, see
	// Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// The container for the summary information about a training job.
type HyperParameterTrainingJobSummary struct {

	// The date and time that the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// A list of the hyperparameters for which you specified ranges to search.
	//
	// This member is required.
	TunedHyperParameters map[string]string

	// The reason that the training job failed.
	FailureReason *string

	// The FinalHyperParameterTuningJobObjectiveMetric (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_FinalHyperParameterTuningJobObjectiveMetric.html)
	// object that specifies the value of the objective metric of the tuning job that
	// launched this training job.
	FinalHyperParameterTuningJobObjectiveMetric *FinalHyperParameterTuningJobObjectiveMetric

	// The status of the objective metric for the training job:
	//   - Succeeded: The final objective metric for the training job was evaluated by
	//   the hyperparameter tuning job and used in the hyperparameter tuning process.
	//
	//   - Pending: The training job is in progress and evaluation of its final
	//   objective metric is pending.
	//
	//   - Failed: The final objective metric for the training job was not evaluated,
	//   and was not used in the hyperparameter tuning process. This typically occurs
	//   when the training job failed or did not emit an objective metric.
	ObjectiveStatus ObjectiveStatus

	// Specifies the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
	// a job failure.
	TrainingEndTime *time.Time

	// The training job definition name.
	TrainingJobDefinitionName *string

	// The date and time that the training job started.
	TrainingStartTime *time.Time

	// The HyperParameter tuning job that launched the training job.
	TuningJobName *string

	noSmithyDocumentSerde
}

// The configuration for hyperparameter tuning resources for use in training jobs
// launched by the tuning job. These resources include compute instances and
// storage volumes. Specify one or more compute instance configurations and
// allocation strategies to select resources (optional).
type HyperParameterTuningInstanceConfig struct {

	// The number of instances of the type specified by InstanceType . Choose an
	// instance count larger than 1 for distributed training algorithms. See Step 2:
	// Launch a SageMaker Distributed Training Job Using the SageMaker Python SDK (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
	// for more information.
	//
	// This member is required.
	InstanceCount *int32

	// The instance type used for processing of hyperparameter optimization jobs.
	// Choose from general purpose (no GPUs) instance types: ml.m5.xlarge,
	// ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types:
	// ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see
	// instance type descriptions (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
	// .
	//
	// This member is required.
	InstanceType TrainingInstanceType

	// The volume size in GB of the data to be processed for hyperparameter
	// optimization (optional).
	//
	// This member is required.
	VolumeSizeInGB *int32

	noSmithyDocumentSerde
}

// A structure that contains runtime information about both current and completed
// hyperparameter tuning jobs.
type HyperParameterTuningJobCompletionDetails struct {

	// The time in timestamp format that AMT detected model convergence, as defined by
	// a lack of significant improvement over time based on criteria developed over a
	// wide range of diverse benchmarking tests.
	ConvergenceDetectedTime *time.Time

	// The number of training jobs launched by a tuning job that are not improving (1%
	// or less) as measured by model performance evaluated against an objective
	// function.
	NumberOfTrainingJobsObjectiveNotImproving *int32

	noSmithyDocumentSerde
}

// Configures a hyperparameter tuning job.
type HyperParameterTuningJobConfig struct {

	// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
	// object that specifies the maximum number of training and parallel training jobs
	// that can be used for this hyperparameter tuning job.
	//
	// This member is required.
	ResourceLimits *ResourceLimits

	// Specifies how hyperparameter tuning chooses the combinations of hyperparameter
	// values to use for the training job it launches. For information about search
	// strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
	// .
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The HyperParameterTuningJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html)
	// specifies the objective metric used to evaluate the performance of training jobs
	// launched by this tuning job.
	HyperParameterTuningJobObjective *HyperParameterTuningJobObjective

	// The ParameterRanges (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html)
	// object that specifies the ranges of hyperparameters that this tuning job
	// searches over to find the optimal configuration for the highest model
	// performance against your chosen objective metric.
	ParameterRanges *ParameterRanges

	// A value used to initialize a pseudo-random number generator. Setting a random
	// seed and using the same seed later for the same tuning job will allow
	// hyperparameter optimization to find more a consistent hyperparameter
	// configuration between the two runs.
	RandomSeed *int32

	// The configuration for the Hyperband optimization strategy. This parameter
	// should be provided only if Hyperband is selected as the strategy for
	// HyperParameterTuningJobConfig .
	StrategyConfig *HyperParameterTuningJobStrategyConfig

	// Specifies whether to use early stopping for training jobs launched by the
	// hyperparameter tuning job. Because the Hyperband strategy has its own advanced
	// internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to
	// use Hyperband . This parameter can take on one of the following values (the
	// default value is OFF ): OFF Training jobs launched by the hyperparameter tuning
	// job do not use early stopping. AUTO SageMaker stops training jobs launched by
	// the hyperparameter tuning job when they are unlikely to perform better than
	// previously completed training jobs. For more information, see Stop Training
	// Jobs Early (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html)
	// .
	TrainingJobEarlyStoppingType TrainingJobEarlyStoppingType

	// The tuning job's completion criteria.
	TuningJobCompletionCriteria *TuningJobCompletionCriteria

	noSmithyDocumentSerde
}

// The total resources consumed by your hyperparameter tuning job.
type HyperParameterTuningJobConsumedResources struct {

	// The wall clock runtime in seconds used by your hyperparameter tuning job.
	RuntimeInSeconds *int32

	noSmithyDocumentSerde
}

// Defines the objective metric for a hyperparameter tuning job. Hyperparameter
// tuning uses the value of this metric to evaluate the training jobs it launches,
// and returns the training job that results in either the highest or lowest value
// for this metric, depending on the value you specify for the Type parameter. If
// you want to define a custom objective metric, see Define metrics and
// environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
// .
type HyperParameterTuningJobObjective struct {

	// The name of the metric to use for the objective metric.
	//
	// This member is required.
	MetricName *string

	// Whether to minimize or maximize the objective metric.
	//
	// This member is required.
	Type HyperParameterTuningJobObjectiveType

	noSmithyDocumentSerde
}

// An entity returned by the SearchRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchRecord.html)
// API containing the properties of a hyperparameter tuning job.
type HyperParameterTuningJobSearchEntity struct {

	// The container for the summary information about a training job.
	BestTrainingJob *HyperParameterTrainingJobSummary

	// The total amount of resources consumed by a hyperparameter tuning job.
	ConsumedResources *HyperParameterTuningJobConsumedResources

	// The time that a hyperparameter tuning job was created.
	CreationTime *time.Time

	// The error that was created when a hyperparameter tuning job failed.
	FailureReason *string

	// The time that a hyperparameter tuning job ended.
	HyperParameterTuningEndTime *time.Time

	// The Amazon Resource Name (ARN) of a hyperparameter tuning job.
	HyperParameterTuningJobArn *string

	// Configures a hyperparameter tuning job.
	HyperParameterTuningJobConfig *HyperParameterTuningJobConfig

	// The name of a hyperparameter tuning job.
	HyperParameterTuningJobName *string

	// The status of a hyperparameter tuning job.
	HyperParameterTuningJobStatus HyperParameterTuningJobStatus

	// The time that a hyperparameter tuning job was last modified.
	LastModifiedTime *time.Time

	// Specifies the number of training jobs that this hyperparameter tuning job
	// launched, categorized by the status of their objective metric. The objective
	// metric status shows whether the final objective metric for the training job has
	// been evaluated by the tuning job and used in the hyperparameter tuning process.
	ObjectiveStatusCounters *ObjectiveStatusCounters

	// The container for the summary information about a training job.
	OverallBestTrainingJob *HyperParameterTrainingJobSummary

	// The tags associated with a hyperparameter tuning job. For more information see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag

	// Defines the training jobs launched by a hyperparameter tuning job.
	TrainingJobDefinition *HyperParameterTrainingJobDefinition

	// The job definitions included in a hyperparameter tuning job.
	TrainingJobDefinitions []HyperParameterTrainingJobDefinition

	// The numbers of training jobs launched by a hyperparameter tuning job,
	// categorized by status.
	TrainingJobStatusCounters *TrainingJobStatusCounters

	// Information about either a current or completed hyperparameter tuning job.
	TuningJobCompletionDetails *HyperParameterTuningJobCompletionDetails

	// Specifies the configuration for a hyperparameter tuning job that uses one or
	// more previous hyperparameter tuning jobs as a starting point. The results of
	// previous tuning jobs are used to inform which combinations of hyperparameters to
	// search over in the new tuning job. All training jobs launched by the new
	// hyperparameter tuning job are evaluated by using the objective metric, and the
	// training job that performs the best is compared to the best training jobs from
	// the parent tuning jobs. From these, the training job that performs the best as
	// measured by the objective metric is returned as the overall best training job.
	// All training jobs launched by parent hyperparameter tuning jobs and the new
	// hyperparameter tuning jobs count against the limit of training jobs for the
	// tuning job.
	WarmStartConfig *HyperParameterTuningJobWarmStartConfig

	noSmithyDocumentSerde
}

// The configuration for a training job launched by a hyperparameter tuning job.
// Choose Bayesian for Bayesian optimization, and Random for random search
// optimization. For more advanced use cases, use Hyperband , which evaluates
// objective metrics for training jobs after every epoch. For more information
// about strategies, see How Hyperparameter Tuning Works (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html)
// .
type HyperParameterTuningJobStrategyConfig struct {

	// The configuration for the object that specifies the Hyperband strategy. This
	// parameter is only supported for the Hyperband selection for Strategy within the
	// HyperParameterTuningJobConfig API.
	HyperbandStrategyConfig *HyperbandStrategyConfig

	noSmithyDocumentSerde
}

// Provides summary information about a hyperparameter tuning job.
type HyperParameterTuningJobSummary struct {

	// The date and time that the tuning job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobArn *string

	// The name of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobName *string

	// The status of the tuning job.
	//
	// This member is required.
	HyperParameterTuningJobStatus HyperParameterTuningJobStatus

	// The ObjectiveStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ObjectiveStatusCounters.html)
	// object that specifies the numbers of training jobs, categorized by objective
	// metric status, that this tuning job launched.
	//
	// This member is required.
	ObjectiveStatusCounters *ObjectiveStatusCounters

	// Specifies the search strategy hyperparameter tuning uses to choose which
	// hyperparameters to evaluate at each iteration.
	//
	// This member is required.
	Strategy HyperParameterTuningJobStrategyType

	// The TrainingJobStatusCounters (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobStatusCounters.html)
	// object that specifies the numbers of training jobs, categorized by status, that
	// this tuning job launched.
	//
	// This member is required.
	TrainingJobStatusCounters *TrainingJobStatusCounters

	// The date and time that the tuning job ended.
	HyperParameterTuningEndTime *time.Time

	// The date and time that the tuning job was modified.
	LastModifiedTime *time.Time

	// The ResourceLimits (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html)
	// object that specifies the maximum number of training jobs and parallel training
	// jobs allowed for this tuning job.
	ResourceLimits *ResourceLimits

	noSmithyDocumentSerde
}

// Specifies the configuration for a hyperparameter tuning job that uses one or
// more previous hyperparameter tuning jobs as a starting point. The results of
// previous tuning jobs are used to inform which combinations of hyperparameters to
// search over in the new tuning job. All training jobs launched by the new
// hyperparameter tuning job are evaluated by using the objective metric, and the
// training job that performs the best is compared to the best training jobs from
// the parent tuning jobs. From these, the training job that performs the best as
// measured by the objective metric is returned as the overall best training job.
// All training jobs launched by parent hyperparameter tuning jobs and the new
// hyperparameter tuning jobs count against the limit of training jobs for the
// tuning job.
type HyperParameterTuningJobWarmStartConfig struct {

	// An array of hyperparameter tuning jobs that are used as the starting point for
	// the new hyperparameter tuning job. For more information about warm starting a
	// hyperparameter tuning job, see Using a Previous Hyperparameter Tuning Job as a
	// Starting Point (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html)
	// . Hyperparameter tuning jobs created before October 1, 2018 cannot be used as
	// parent jobs for warm start tuning jobs.
	//
	// This member is required.
	ParentHyperParameterTuningJobs []ParentHyperParameterTuningJob

	// Specifies one of the following: IDENTICAL_DATA_AND_ALGORITHM The new
	// hyperparameter tuning job uses the same input data and training image as the
	// parent tuning jobs. You can change the hyperparameter ranges to search and the
	// maximum number of training jobs that the hyperparameter tuning job launches. You
	// cannot use a new version of the training algorithm, unless the changes in the
	// new version do not affect the algorithm itself. For example, changes that
	// improve logging or adding support for a different data format are allowed. You
	// can also change hyperparameters from tunable to static, and from static to
	// tunable, but the total number of static plus tunable hyperparameters must remain
	// the same as it is in all parent jobs. The objective metric for the new tuning
	// job must be the same as for all parent jobs. TRANSFER_LEARNING The new
	// hyperparameter tuning job can include input data, hyperparameter ranges, maximum
	// number of concurrent training jobs, and maximum number of training jobs that are
	// different than those of its parent hyperparameter tuning jobs. The training
	// image can also be a different version from the version used in the parent
	// hyperparameter tuning job. You can also change hyperparameters from tunable to
	// static, and from static to tunable, but the total number of static plus tunable
	// hyperparameters must remain the same as it is in all parent jobs. The objective
	// metric for the new tuning job must be the same as for all parent jobs.
	//
	// This member is required.
	WarmStartType HyperParameterTuningJobWarmStartType

	noSmithyDocumentSerde
}

// The configuration of resources, including compute instances and storage volumes
// for use in training jobs launched by hyperparameter tuning jobs.
// HyperParameterTuningResourceConfig is similar to ResourceConfig , but has the
// additional InstanceConfigs and AllocationStrategy fields to allow for flexible
// instance management. Specify one or more instance types, count, and the
// allocation strategy for instance selection. HyperParameterTuningResourceConfig
// supports the capabilities of ResourceConfig with the exception of
// KeepAlivePeriodInSeconds . Hyperparameter tuning jobs use warm pools by default,
// which reuse clusters between training jobs.
type HyperParameterTuningResourceConfig struct {

	// The strategy that determines the order of preference for resources specified in
	// InstanceConfigs used in hyperparameter optimization.
	AllocationStrategy HyperParameterTuningAllocationStrategy

	// A list containing the configuration(s) for one or more resources for processing
	// hyperparameter jobs. These resources include compute instances and storage
	// volumes to use in model training jobs launched by hyperparameter tuning jobs.
	// The AllocationStrategy controls the order in which multiple configurations
	// provided in InstanceConfigs are used. If you only want to use a single instance
	// configuration inside the HyperParameterTuningResourceConfig API, do not provide
	// a value for InstanceConfigs . Instead, use InstanceType , VolumeSizeInGB and
	// InstanceCount . If you use InstanceConfigs , do not provide values for
	// InstanceType , VolumeSizeInGB or InstanceCount .
	InstanceConfigs []HyperParameterTuningInstanceConfig

	// The number of compute instances of type InstanceType to use. For distributed
	// training (https://docs.aws.amazon.com/sagemaker/latest/dg/data-parallel-use-api.html)
	// , select a value greater than 1.
	InstanceCount *int32

	// The instance type used to run hyperparameter optimization tuning jobs. See
	// descriptions of instance types (https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html)
	// for more information.
	InstanceType TrainingInstanceType

	// A key used by Amazon Web Services Key Management Service to encrypt data on the
	// storage volume attached to the compute instances used to run the training job.
	// You can use either of the following formats to specify a key. KMS Key ID:
	// "1234abcd-12ab-34cd-56ef-1234567890ab" Amazon Resource Name (ARN) of a KMS key:
	// "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	// Some instances use local storage, which use a hardware module to encrypt (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// storage volumes. If you choose one of these instance types, you cannot request a
	// VolumeKmsKeyId . For a list of instance types that use local storage, see
	// instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
	// . For more information about Amazon Web Services Key Management Service, see
	// KMS encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-kms-permissions.html)
	// for more information.
	VolumeKmsKeyId *string

	// The volume size in GB for the storage volume to be used in processing
	// hyperparameter optimization jobs (optional). These volumes store model
	// artifacts, incremental states and optionally, scratch space for training
	// algorithms. Do not provide a value for this parameter if a value for
	// InstanceConfigs is also specified. Some instance types have a fixed total local
	// storage size. If you select one of these instances for training, VolumeSizeInGB
	// cannot be greater than this total size. For a list of instance types with local
	// instance storage and their sizes, see instance store volumes (http://aws.amazon.com/releasenotes/host-instance-storage-volumes-table/)
	// . SageMaker supports only the General Purpose SSD (gp2) (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html)
	// storage volume type.
	VolumeSizeInGB *int32

	noSmithyDocumentSerde
}

// The IAM Identity details associated with the user. These details are associated
// with model package groups, model packages and project entities only.
type IamIdentity struct {

	// The Amazon Resource Name (ARN) of the IAM identity.
	Arn *string

	// The ID of the principal that assumes the IAM identity.
	PrincipalId *string

	// The person or application which assumes the IAM identity.
	SourceIdentity *string

	noSmithyDocumentSerde
}

// The Amazon SageMaker Canvas application setting where you configure OAuth for
// connecting to an external data source, such as Snowflake.
type IdentityProviderOAuthSetting struct {

	// The name of the data source that you're connecting to. Canvas currently
	// supports OAuth for Snowflake and Salesforce Data Cloud.
	DataSourceName DataSourceName

	// The ARN of an Amazon Web Services Secrets Manager secret that stores the
	// credentials from your identity provider, such as the client ID and secret,
	// authorization URL, and token URL.
	SecretArn *string

	// Describes whether OAuth for a data source is enabled or disabled in the Canvas
	// application.
	Status FeatureStatus

	noSmithyDocumentSerde
}

// A SageMaker image. A SageMaker image represents a set of container images that
// are derived from a common base container image. Each of these container images
// is represented by a SageMaker ImageVersion .
type Image struct {

	// When the image was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The ARN of the image.
	//
	// This member is required.
	ImageArn *string

	// The name of the image.
	//
	// This member is required.
	ImageName *string

	// The status of the image.
	//
	// This member is required.
	ImageStatus ImageStatus

	// When the image was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The description of the image.
	Description *string

	// The name of the image as displayed.
	DisplayName *string

	// When a create, update, or delete operation fails, the reason for the failure.
	FailureReason *string

	noSmithyDocumentSerde
}

// The collection of settings used by an AutoML job V2 for the image
// classification problem type.
type ImageClassificationJobConfig struct {

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	noSmithyDocumentSerde
}

// Specifies whether the model container is in Amazon ECR or a private Docker
// registry accessible from your Amazon Virtual Private Cloud (VPC).
type ImageConfig struct {

	// Set this to one of the following values:
	//   - Platform - The model image is hosted in Amazon ECR.
	//   - Vpc - The model image is hosted in a private Docker registry in your VPC.
	//
	// This member is required.
	RepositoryAccessMode RepositoryAccessMode

	// (Optional) Specifies an authentication configuration for the private docker
	// registry where your model image is hosted. Specify a value for this property
	// only if you specified Vpc as the value for the RepositoryAccessMode field, and
	// the private Docker registry where the model image is hosted requires
	// authentication.
	RepositoryAuthConfig *RepositoryAuthConfig

	noSmithyDocumentSerde
}

// A version of a SageMaker Image . A version represents an existing container
// image.
type ImageVersion struct {

	// When the version was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The ARN of the image the version is based on.
	//
	// This member is required.
	ImageArn *string

	// The ARN of the version.
	//
	// This member is required.
	ImageVersionArn *string

	// The status of the version.
	//
	// This member is required.
	ImageVersionStatus ImageVersionStatus

	// When the version was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The version number.
	//
	// This member is required.
	Version *int32

	// When a create or delete operation fails, the reason for the failure.
	FailureReason *string

	noSmithyDocumentSerde
}

// Defines the compute resources to allocate to run a model that you assign to an
// inference component. These resources include CPU cores, accelerators, and
// memory.
type InferenceComponentComputeResourceRequirements struct {

	// The minimum MB of memory to allocate to run a model that you assign to an
	// inference component.
	//
	// This member is required.
	MinMemoryRequiredInMb *int32

	// The maximum MB of memory to allocate to run a model that you assign to an
	// inference component.
	MaxMemoryRequiredInMb *int32

	// The number of accelerators to allocate to run a model that you assign to an
	// inference component. Accelerators include GPUs and Amazon Web Services
	// Inferentia.
	NumberOfAcceleratorDevicesRequired *float32

	// The number of CPU cores to allocate to run a model that you assign to an
	// inference component.
	NumberOfCpuCoresRequired *float32

	noSmithyDocumentSerde
}

// Defines a container that provides the runtime environment for a model that you
// deploy with an inference component.
type InferenceComponentContainerSpecification struct {

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive
	// (.tar.gz suffix).
	ArtifactUrl *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string-to-string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The Amazon Elastic Container Registry (Amazon ECR) path where the Docker image
	// for the model is stored.
	Image *string

	noSmithyDocumentSerde
}

// Details about the resources that are deployed with this inference component.
type InferenceComponentContainerSpecificationSummary struct {

	// The Amazon S3 path where the model artifacts are stored.
	ArtifactUrl *string

	// Gets the Amazon EC2 Container Registry path of the docker image of the model
	// that is hosted in this ProductionVariant (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ProductionVariant.html)
	// . If you used the registry/repository[:tag] form to specify the image path of
	// the primary container when you created the model hosted in this
	// ProductionVariant , the path resolves to a path of the form
	// registry/repository[@digest] . A digest is a hash value that identifies a
	// specific version of an image. For information about Amazon ECR paths, see
	// Pulling an Image (https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-pull-ecr-image.html)
	// in the Amazon ECR User Guide.
	DeployedImage *DeployedImage

	// The environment variables to set in the Docker container.
	Environment map[string]string

	noSmithyDocumentSerde
}

// Runtime settings for a model that is deployed with an inference component.
type InferenceComponentRuntimeConfig struct {

	// The number of runtime copies of the model container to deploy with the
	// inference component. Each copy can serve inference requests.
	//
	// This member is required.
	CopyCount *int32

	noSmithyDocumentSerde
}

// Details about the runtime settings for the model that is deployed with the
// inference component.
type InferenceComponentRuntimeConfigSummary struct {

	// The number of runtime copies of the model container that are currently deployed.
	CurrentCopyCount *int32

	// The number of runtime copies of the model container that you requested to
	// deploy with the inference component.
	DesiredCopyCount *int32

	noSmithyDocumentSerde
}

// Details about the resources to deploy with this inference component, including
// the model, container, and compute resources.
type InferenceComponentSpecification struct {

	// The compute resources allocated to run the model assigned to the inference
	// component.
	//
	// This member is required.
	ComputeResourceRequirements *InferenceComponentComputeResourceRequirements

	// Defines a container that provides the runtime environment for a model that you
	// deploy with an inference component.
	Container *InferenceComponentContainerSpecification

	// The name of an existing SageMaker model object in your account that you want to
	// deploy with the inference component.
	ModelName *string

	// Settings that take effect while the model container starts up.
	StartupParameters *InferenceComponentStartupParameters

	noSmithyDocumentSerde
}

// Details about the resources that are deployed with this inference component.
type InferenceComponentSpecificationSummary struct {

	// The compute resources allocated to run the model assigned to the inference
	// component.
	ComputeResourceRequirements *InferenceComponentComputeResourceRequirements

	// Details about the container that provides the runtime environment for the model
	// that is deployed with the inference component.
	Container *InferenceComponentContainerSpecificationSummary

	// The name of the SageMaker model object that is deployed with the inference
	// component.
	ModelName *string

	// Settings that take effect while the model container starts up.
	StartupParameters *InferenceComponentStartupParameters

	noSmithyDocumentSerde
}

// Settings that take effect while the model container starts up.
type InferenceComponentStartupParameters struct {

	// The timeout value, in seconds, for your inference container to pass health
	// check by Amazon S3 Hosting. For more information about health check, see How
	// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
	// .
	ContainerStartupHealthCheckTimeoutInSeconds *int32

	// The timeout value, in seconds, to download and extract the model that you want
	// to host from Amazon S3 to the individual inference instance associated with this
	// inference component.
	ModelDataDownloadTimeoutInSeconds *int32

	noSmithyDocumentSerde
}

// A summary of the properties of an inference component.
type InferenceComponentSummary struct {

	// The time when the inference component was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint that hosts the inference
	// component.
	//
	// This member is required.
	EndpointArn *string

	// The name of the endpoint that hosts the inference component.
	//
	// This member is required.
	EndpointName *string

	// The Amazon Resource Name (ARN) of the inference component.
	//
	// This member is required.
	InferenceComponentArn *string

	// The name of the inference component.
	//
	// This member is required.
	InferenceComponentName *string

	// The time when the inference component was last updated.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of the production variant that hosts the inference component.
	//
	// This member is required.
	VariantName *string

	// The status of the inference component.
	InferenceComponentStatus InferenceComponentStatus

	noSmithyDocumentSerde
}

// Specifies details about how containers in a multi-container endpoint are run.
type InferenceExecutionConfig struct {

	// How containers in a multi-container are run. The following values are valid.
	//   - SERIAL - Containers run as a serial pipeline.
	//   - DIRECT - Only the individual container that you specify is run.
	//
	// This member is required.
	Mode InferenceExecutionMode

	noSmithyDocumentSerde
}

// The Amazon S3 location and configuration for storing inference request and
// response data.
type InferenceExperimentDataStorageConfig struct {

	// The Amazon S3 bucket where the inference request and response data is stored.
	//
	// This member is required.
	Destination *string

	// Configuration specifying how to treat different headers. If no headers are
	// specified Amazon SageMaker will by default base64 encode when capturing the
	// data.
	ContentType *CaptureContentTypeHeader

	// The Amazon Web Services Key Management Service key that Amazon SageMaker uses
	// to encrypt captured data at rest using Amazon S3 server-side encryption.
	KmsKey *string

	noSmithyDocumentSerde
}

// The start and end times of an inference experiment. The maximum duration that
// you can set for an inference experiment is 30 days.
type InferenceExperimentSchedule struct {

	// The timestamp at which the inference experiment ended or will end.
	EndTime *time.Time

	// The timestamp at which the inference experiment started or will start.
	StartTime *time.Time

	noSmithyDocumentSerde
}

// Lists a summary of properties of an inference experiment.
type InferenceExperimentSummary struct {

	// The timestamp at which the inference experiment was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The timestamp when you last modified the inference experiment.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of the inference experiment.
	//
	// This member is required.
	Name *string

	// The status of the inference experiment.
	//
	// This member is required.
	Status InferenceExperimentStatus

	// The type of the inference experiment.
	//
	// This member is required.
	Type InferenceExperimentType

	// The timestamp at which the inference experiment was completed.
	CompletionTime *time.Time

	// The description of the inference experiment.
	Description *string

	// The ARN of the IAM role that Amazon SageMaker can assume to access model
	// artifacts and container images, and manage Amazon SageMaker Inference endpoints
	// for model deployment.
	RoleArn *string

	// The duration for which the inference experiment ran or will run. The maximum
	// duration that you can set for an inference experiment is 30 days.
	Schedule *InferenceExperimentSchedule

	// The error message for the inference experiment status result.
	StatusReason *string

	noSmithyDocumentSerde
}

// The metrics for an existing endpoint compared in an Inference Recommender job.
type InferenceMetrics struct {

	// The expected maximum number of requests per minute for the instance.
	//
	// This member is required.
	MaxInvocations *int32

	// The expected model latency at maximum invocations per minute for the instance.
	//
	// This member is required.
	ModelLatency *int32

	noSmithyDocumentSerde
}

// A list of recommendations made by Amazon SageMaker Inference Recommender.
type InferenceRecommendation struct {

	// Defines the endpoint configuration parameters.
	//
	// This member is required.
	EndpointConfiguration *EndpointOutputConfiguration

	// The metrics used to decide what recommendation to make.
	//
	// This member is required.
	Metrics *RecommendationMetrics

	// Defines the model configuration.
	//
	// This member is required.
	ModelConfiguration *ModelConfiguration

	// A timestamp that shows when the benchmark completed.
	InvocationEndTime *time.Time

	// A timestamp that shows when the benchmark started.
	InvocationStartTime *time.Time

	// The recommendation ID which uniquely identifies each recommendation.
	RecommendationId *string

	noSmithyDocumentSerde
}

// A structure that contains a list of recommendation jobs.
type InferenceRecommendationsJob struct {

	// A timestamp that shows when the job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the recommendation job.
	//
	// This member is required.
	JobArn *string

	// The job description.
	//
	// This member is required.
	JobDescription *string

	// The name of the job.
	//
	// This member is required.
	JobName *string

	// The recommendation job type.
	//
	// This member is required.
	JobType RecommendationJobType

	// A timestamp that shows when the job was last modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to
	// perform tasks on your behalf.
	//
	// This member is required.
	RoleArn *string

	// The status of the job.
	//
	// This member is required.
	Status RecommendationJobStatus

	// A timestamp that shows when the job completed.
	CompletionTime *time.Time

	// If the job fails, provides information why the job failed.
	FailureReason *string

	// The name of the created model.
	ModelName *string

	// The Amazon Resource Name (ARN) of a versioned model package.
	ModelPackageVersionArn *string

	// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	SamplePayloadUrl *string

	noSmithyDocumentSerde
}

// A returned array object for the Steps response field in the
// ListInferenceRecommendationsJobSteps (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListInferenceRecommendationsJobSteps.html)
// API command.
type InferenceRecommendationsJobStep struct {

	// The name of the Inference Recommender job.
	//
	// This member is required.
	JobName *string

	// The current status of the benchmark.
	//
	// This member is required.
	Status RecommendationJobStatus

	// The type of the subtask. BENCHMARK : Evaluate the performance of your model on
	// different instance types.
	//
	// This member is required.
	StepType RecommendationStepType

	// The details for a specific benchmark.
	InferenceBenchmark *RecommendationJobInferenceBenchmark

	noSmithyDocumentSerde
}

// Defines how to perform inference generation after a training job is run.
type InferenceSpecification struct {

	// The Amazon ECR registry path of the Docker image that contains the inference
	// code.
	//
	// This member is required.
	Containers []ModelPackageContainerDefinition

	// The supported MIME types for the input data.
	SupportedContentTypes []string

	// A list of the instance types that are used to generate inferences in real-time.
	// This parameter is required for unversioned models, and optional for versioned
	// models.
	SupportedRealtimeInferenceInstanceTypes []ProductionVariantInstanceType

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// A list of the instance types on which a transformation job can be run or on
	// which an endpoint can be deployed. This parameter is required for unversioned
	// models, and optional for versioned models.
	SupportedTransformInstanceTypes []TransformInstanceType

	noSmithyDocumentSerde
}

// Configuration information for the infrastructure health check of a training
// job. A SageMaker-provided health check tests the health of instance hardware and
// cluster network connectivity.
type InfraCheckConfig struct {

	// Enables an infrastructure health check.
	EnableInfraCheck *bool

	noSmithyDocumentSerde
}

// Contains information about the location of input model artifacts, the name and
// shape of the expected data inputs, and the framework in which the model was
// trained.
type InputConfig struct {

	// Identifies the framework in which the model was trained. For example:
	// TENSORFLOW.
	//
	// This member is required.
	Framework Framework

	// The S3 path where the model artifacts, which result from model training, are
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	//
	// This member is required.
	S3Uri *string

	// Specifies the name and shape of the expected data inputs for your trained model
	// with a JSON dictionary form. The data inputs are Framework specific.
	//   - TensorFlow : You must specify the name and shape (NHWC format) of the
	//   expected data inputs using a dictionary format for your trained model. The
	//   dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"input":[1,1024,1024,3]}
	//   - If using the CLI, {\"input\":[1,1024,1024,3]}
	//   - Examples for two inputs:
	//   - If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}
	//   - If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
	//   - KERAS : You must specify the name and shape (NCHW format) of expected data
	//   inputs using a dictionary format for your trained model. Note that while Keras
	//   model artifacts should be uploaded in NHWC (channel-last) format,
	//   DataInputConfig should be specified in NCHW (channel-first) format. The
	//   dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"input_1":[1,3,224,224]}
	//   - If using the CLI, {\"input_1\":[1,3,224,224]}
	//   - Examples for two inputs:
	//   - If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}
	//   - If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
	//   - MXNET/ONNX/DARKNET : You must specify the name and shape (NCHW format) of
	//   the expected data inputs in order using a dictionary format for your trained
	//   model. The dictionary formats required for the console and CLI are different.
	//   - Examples for one input:
	//   - If using the console, {"data":[1,3,1024,1024]}
	//   - If using the CLI, {\"data\":[1,3,1024,1024]}
	//   - Examples for two inputs:
	//   - If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}
	//   - If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
	//   - PyTorch : You can either specify the name and shape (NCHW format) of
	//   expected data inputs in order using a dictionary format for your trained model
	//   or you can specify the shape only using a list format. The dictionary formats
	//   required for the console and CLI are different. The list formats for the console
	//   and CLI are the same.
	//   - Examples for one input in dictionary format:
	//   - If using the console, {"input0":[1,3,224,224]}
	//   - If using the CLI, {\"input0\":[1,3,224,224]}
	//   - Example for one input in list format: [[1,3,224,224]]
	//   - Examples for two inputs in dictionary format:
	//   - If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}
	//   - If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
	//   - Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]
	//   - XGBOOST : input data name and shape are not needed.
	// DataInputConfig supports the following parameters for CoreML TargetDevice (ML
	// Model format):
	//   - shape : Input shape, for example {"input_1": {"shape": [1,224,224,3]}} . In
	//   addition to static input shapes, CoreML converter supports Flexible input
	//   shapes:
	//   - Range Dimension. You can use the Range Dimension feature if you know the
	//   input shape will be within some specific interval in that dimension, for
	//   example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}
	//   - Enumerated shapes. Sometimes, the models are trained to work only on a
	//   select set of inputs. You can enumerate all supported input shapes, for example:
	//   {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
	//   - default_shape : Default input shape. You can set a default shape during
	//   conversion for both Range Dimension and Enumerated Shapes. For example
	//   {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224,
	//   3]}}
	//   - type : Input type. Allowed values: Image and Tensor . By default, the
	//   converter generates an ML Model with inputs of type Tensor (MultiArray). User
	//   can set input type to be Image. Image input type requires additional input
	//   parameters such as bias and scale .
	//   - bias : If the input type is an Image, you need to provide the bias vector.
	//   - scale : If the input type is an Image, you need to provide a scale factor.
	// CoreML ClassifierConfig parameters can be specified using OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
	// CompilerOptions . CoreML converter supports Tensorflow and PyTorch models.
	// CoreML conversion examples:
	//   - Tensor type input:
	//   - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
	//   "default_shape": [1,224,224,3]}}
	//   - Tensor type input without input name (PyTorch):
	//   - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
	//   "default_shape": [1,3,224,224]}]
	//   - Image type input:
	//   - "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]],
	//   "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale":
	//   0.007843137255}}
	//   - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
	//   - Image type input without input name (PyTorch):
	//   - "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]],
	//   "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale":
	//   0.007843137255}]
	//   - "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
	// Depending on the model format, DataInputConfig requires the following
	// parameters for ml_eia2 OutputConfig:TargetDevice (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice)
	// .
	//   - For TensorFlow models saved in the SavedModel format, specify the input
	//   names from signature_def_key and the input model shapes for DataInputConfig .
	//   Specify the signature_def_key in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
	//   if the model does not use TensorFlow's default signature def key. For example:
	//   - "DataInputConfig": {"inputs": [1, 224, 224, 3]}
	//   - "CompilerOptions": {"signature_def_key": "serving_custom"}
	//   - For TensorFlow models saved as a frozen graph, specify the input tensor
	//   names and shapes in DataInputConfig and the output tensor names for
	//   output_names in OutputConfig:CompilerOptions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions)
	//   . For example:
	//   - "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}
	//   - "CompilerOptions": {"output_names": ["output_tensor:0"]}
	DataInputConfig *string

	// Specifies the framework version to use. This API field is only supported for
	// the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks. For information
	// about framework versions supported for cloud targets and edge devices, see
	// Cloud Supported Instance Types and Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html)
	// and Edge Supported Frameworks (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html)
	// .
	FrameworkVersion *string

	noSmithyDocumentSerde
}

// Defines an instance group for heterogeneous cluster training. When requesting a
// training job using the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// API, you can configure multiple instance groups .
type InstanceGroup struct {

	// Specifies the number of instances of the instance group.
	//
	// This member is required.
	InstanceCount *int32

	// Specifies the name of the instance group.
	//
	// This member is required.
	InstanceGroupName *string

	// Specifies the instance type of the instance group.
	//
	// This member is required.
	InstanceType TrainingInstanceType

	noSmithyDocumentSerde
}

// Information on the IMDS configuration of the notebook instance
type InstanceMetadataServiceConfiguration struct {

	// Indicates the minimum IMDS version that the notebook instance supports. When
	// passed as part of CreateNotebookInstance , if no value is selected, then it
	// defaults to IMDSv1. This means that both IMDSv1 and IMDSv2 are supported. If
	// passed as part of UpdateNotebookInstance , there is no default.
	//
	// This member is required.
	MinimumInstanceMetadataServiceVersion *string

	noSmithyDocumentSerde
}

// For a hyperparameter of the integer type, specifies the range that a
// hyperparameter tuning job searches.
type IntegerParameterRange struct {

	// The maximum value of the hyperparameter to search.
	//
	// This member is required.
	MaxValue *string

	// The minimum value of the hyperparameter to search.
	//
	// This member is required.
	MinValue *string

	// The name of the hyperparameter to search.
	//
	// This member is required.
	Name *string

	// The scale that hyperparameter tuning uses to search the hyperparameter range.
	// For information about choosing a hyperparameter scale, see Hyperparameter
	// Scaling (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type)
	// . One of the following values: Auto SageMaker hyperparameter tuning chooses the
	// best scale for the hyperparameter. Linear Hyperparameter tuning searches the
	// values in the hyperparameter range by using a linear scale. Logarithmic
	// Hyperparameter tuning searches the values in the hyperparameter range by using a
	// logarithmic scale. Logarithmic scaling works only for ranges that have only
	// values greater than 0.
	ScalingType HyperParameterScalingType

	noSmithyDocumentSerde
}

// Defines the possible values for an integer hyperparameter.
type IntegerParameterRangeSpecification struct {

	// The maximum integer value allowed.
	//
	// This member is required.
	MaxValue *string

	// The minimum integer value allowed.
	//
	// This member is required.
	MinValue *string

	noSmithyDocumentSerde
}

// The configuration for the file system and kernels in a SageMaker image running
// as a JupyterLab app.
type JupyterLabAppImageConfig struct {

	// The configuration used to run the application image container.
	ContainerConfig *ContainerConfig

	// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
	// image.
	FileSystemConfig *FileSystemConfig

	noSmithyDocumentSerde
}

// The settings for the JupyterLab application.
type JupyterLabAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterLab application.
	CodeRepositories []CodeRepository

	// A list of custom SageMaker images that are configured to run as a JupyterLab
	// app.
	CustomImages []CustomImage

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the lifecycle configurations attached to the
	// user profile or domain. To remove a lifecycle config, you must set
	// LifecycleConfigArns to an empty list.
	LifecycleConfigArns []string

	noSmithyDocumentSerde
}

// The JupyterServer app settings.
type JupyterServerAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterServer application.
	CodeRepositories []CodeRepository

	// The default instance type and the Amazon Resource Name (ARN) of the default
	// SageMaker image used by the JupyterServer app. If you use the
	// LifecycleConfigArns parameter, then this parameter is also required.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
	// JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter
	// is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns
	// to an empty list.
	LifecycleConfigArns []string

	noSmithyDocumentSerde
}

// The Amazon SageMaker Canvas application setting where you configure document
// querying.
type KendraSettings struct {

	// Describes whether the document querying feature is enabled or disabled in the
	// Canvas application.
	Status FeatureStatus

	noSmithyDocumentSerde
}

// The KernelGateway app settings.
type KernelGatewayAppSettings struct {

	// A list of custom SageMaker images that are configured to run as a KernelGateway
	// app.
	CustomImages []CustomImage

	// The default instance type and the Amazon Resource Name (ARN) of the default
	// SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI
	// does not use the default instance type value set here. The default instance type
	// set here is used when Apps are created using the Amazon Web Services Command
	// Line Interface or Amazon Web Services CloudFormation and the instance type
	// parameter value is not passed.
	DefaultResourceSpec *ResourceSpec

	// The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the
	// the user profile or domain. To remove a Lifecycle Config, you must set
	// LifecycleConfigArns to an empty list.
	LifecycleConfigArns []string

	noSmithyDocumentSerde
}

// The configuration for the file system and kernels in a SageMaker image running
// as a KernelGateway app.
type KernelGatewayImageConfig struct {

	// The specification of the Jupyter kernels in the image.
	//
	// This member is required.
	KernelSpecs []KernelSpec

	// The Amazon Elastic File System (EFS) storage configuration for a SageMaker
	// image.
	FileSystemConfig *FileSystemConfig

	noSmithyDocumentSerde
}

// The specification of a Jupyter kernel.
type KernelSpec struct {

	// The name of the Jupyter kernel in the image. This value is case sensitive.
	//
	// This member is required.
	Name *string

	// The display name of the kernel.
	DisplayName *string

	noSmithyDocumentSerde
}

// Provides a breakdown of the number of objects labeled.
type LabelCounters struct {

	// The total number of objects that could not be labeled due to an error.
	FailedNonRetryableError *int32

	// The total number of objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of objects labeled by automated data labeling.
	MachineLabeled *int32

	// The total number of objects labeled.
	TotalLabeled *int32

	// The total number of objects not yet labeled.
	Unlabeled *int32

	noSmithyDocumentSerde
}

// Provides counts for human-labeled tasks in the labeling job.
type LabelCountersForWorkteam struct {

	// The total number of data objects labeled by a human worker.
	HumanLabeled *int32

	// The total number of data objects that need to be labeled by a human worker.
	PendingHuman *int32

	// The total number of tasks in the labeling job.
	Total *int32

	noSmithyDocumentSerde
}

// Provides configuration information for auto-labeling of your data objects. A
// LabelingJobAlgorithmsConfig object must be supplied in order to use
// auto-labeling.
type LabelingJobAlgorithmsConfig struct {

	// Specifies the Amazon Resource Name (ARN) of the algorithm used for
	// auto-labeling. You must select one of the following ARNs:
	//   - Image classification
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/image-classification
	//   - Text classification
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/text-classification
	//   - Object detection
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/object-detection
	//   - Semantic Segmentation
	//   arn:aws:sagemaker:region:027400017018:labeling-job-algorithm-specification/semantic-segmentation
	//
	// This member is required.
	LabelingJobAlgorithmSpecificationArn *string

	// At the end of an auto-label job Ground Truth sends the Amazon Resource Name
	// (ARN) of the final model used for auto-labeling. You can use this model as the
	// starting point for subsequent similar jobs by providing the ARN of the model
	// here.
	InitialActiveLearningModelArn *string

	// Provides configuration information for a labeling job.
	LabelingJobResourceConfig *LabelingJobResourceConfig

	noSmithyDocumentSerde
}

// Attributes of the data specified by the customer. Use these to describe the
// data to be labeled.
type LabelingJobDataAttributes struct {

	// Declares that your content is free of personally identifiable information or
	// adult content. SageMaker may restrict the Amazon Mechanical Turk workers that
	// can view your task based on this information.
	ContentClassifiers []ContentClassifier

	noSmithyDocumentSerde
}

// Provides information about the location of input data. You must specify at
// least one of the following: S3DataSource or SnsDataSource . Use SnsDataSource
// to specify an SNS input topic for a streaming labeling job. If you do not
// specify and SNS input topic ARN, Ground Truth will create a one-time labeling
// job. Use S3DataSource to specify an input manifest file for both streaming and
// one-time labeling jobs. Adding an S3DataSource is optional if you use
// SnsDataSource to create a streaming labeling job.
type LabelingJobDataSource struct {

	// The Amazon S3 location of the input data objects.
	S3DataSource *LabelingJobS3DataSource

	// An Amazon SNS data source used for streaming labeling jobs. To learn more, see
	// Send Data to a Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-send-data)
	// .
	SnsDataSource *LabelingJobSnsDataSource

	noSmithyDocumentSerde
}

// Provides summary information for a work team.
type LabelingJobForWorkteamSummary struct {

	// The date and time that the labeling job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A unique identifier for a labeling job. You can use this to refer to a specific
	// labeling job.
	//
	// This member is required.
	JobReferenceCode *string

	// The Amazon Web Services account ID of the account used to start the labeling
	// job.
	//
	// This member is required.
	WorkRequesterAccountId *string

	// Provides information about the progress of a labeling job.
	LabelCounters *LabelCountersForWorkteam

	// The name of the labeling job that the work team is assigned to.
	LabelingJobName *string

	// The configured number of workers per data object.
	NumberOfHumanWorkersPerDataObject *int32

	noSmithyDocumentSerde
}

// Input configuration information for a labeling job.
type LabelingJobInputConfig struct {

	// The location of the input data.
	//
	// This member is required.
	DataSource *LabelingJobDataSource

	// Attributes of the data specified by the customer.
	DataAttributes *LabelingJobDataAttributes

	noSmithyDocumentSerde
}

// Specifies the location of the output produced by the labeling job.
type LabelingJobOutput struct {

	// The Amazon S3 bucket location of the manifest file for labeled data.
	//
	// This member is required.
	OutputDatasetS3Uri *string

	// The Amazon Resource Name (ARN) for the most recent SageMaker model trained as
	// part of automated data labeling.
	FinalActiveLearningModelArn *string

	noSmithyDocumentSerde
}

// Output configuration information for a labeling job.
type LabelingJobOutputConfig struct {

	// The Amazon S3 location to write output data.
	//
	// This member is required.
	S3OutputPath *string

	// The Amazon Web Services Key Management Service ID of the key used to encrypt
	// the output data, if any. If you provide your own KMS key ID, you must add the
	// required permissions to your KMS key described in Encrypt Output Data and
	// Storage Volume with Amazon Web Services KMS (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security-permission.html#sms-security-kms-permissions)
	// . If you don't provide a KMS key ID, Amazon SageMaker uses the default Amazon
	// Web Services KMS key for Amazon S3 for your role's account to encrypt your
	// output data. If you use a bucket policy with an s3:PutObject permission that
	// only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
	// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide.
	KmsKeyId *string

	// An Amazon Simple Notification Service (Amazon SNS) output topic ARN. Provide a
	// SnsTopicArn if you want to do real time chaining to another streaming job and
	// receive an Amazon SNS notifications each time a data object is submitted by a
	// worker. If you provide an SnsTopicArn in OutputConfig , when workers complete
	// labeling tasks, Ground Truth will send labeling task output data to the SNS
	// output topic you specify here. To learn more, see Receive Output Data from a
	// Streaming Labeling Job (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-labeling-job.html#sms-streaming-how-it-works-output-data)
	// .
	SnsTopicArn *string

	noSmithyDocumentSerde
}

// Configure encryption on the storage volume attached to the ML compute instance
// used to run automated data labeling model training and inference.
type LabelingJobResourceConfig struct {

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
	// ML compute instance(s) that run the training and inference jobs used for
	// automated data labeling. You can only specify a VolumeKmsKeyId when you create
	// a labeling job with automated data labeling enabled using the API operation
	// CreateLabelingJob . You cannot specify an Amazon Web Services KMS key to encrypt
	// the storage volume used for automated data labeling model training and inference
	// when you create a labeling job using the console. To learn more, see Output
	// Data and Storage Volume Encryption (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-security.html)
	// . The VolumeKmsKeyId can be any of the following formats:
	//   - KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// The Amazon S3 location of the input data objects.
type LabelingJobS3DataSource struct {

	// The Amazon S3 location of the manifest file that describes the input data
	// objects. The input manifest file referenced in ManifestS3Uri must contain one
	// of the following keys: source-ref or source . The value of the keys are
	// interpreted as follows:
	//   - source-ref : The source of the object is the Amazon S3 object specified in
	//   the value. Use this value when the object is a binary object, such as an image.
	//   - source : The source of the object is the value. Use this value when the
	//   object is a text value.
	// If you are a new user of Ground Truth, it is recommended you review Use an
	// Input Manifest File  (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-input-data-input-manifest.html)
	// in the Amazon SageMaker Developer Guide to learn how to create an input manifest
	// file.
	//
	// This member is required.
	ManifestS3Uri *string

	noSmithyDocumentSerde
}

// An Amazon SNS data source used for streaming labeling jobs.
type LabelingJobSnsDataSource struct {

	// The Amazon SNS input topic Amazon Resource Name (ARN). Specify the ARN of the
	// input topic you will use to send new data objects to a streaming labeling job.
	//
	// This member is required.
	SnsTopicArn *string

	noSmithyDocumentSerde
}

// A set of conditions for stopping a labeling job. If any of the conditions are
// met, the job is automatically stopped. You can use these conditions to control
// the cost of data labeling. Labeling jobs fail after 30 days with an appropriate
// client error message.
type LabelingJobStoppingConditions struct {

	// The maximum number of objects that can be labeled by human workers.
	MaxHumanLabeledObjectCount *int32

	// The maximum number of input data objects that should be labeled.
	MaxPercentageOfInputDatasetLabeled *int32

	noSmithyDocumentSerde
}

// Provides summary information about a labeling job.
type LabelingJobSummary struct {

	// The date and time that the job was created (timestamp).
	//
	// This member is required.
	CreationTime *time.Time

	// Counts showing the progress of the labeling job.
	//
	// This member is required.
	LabelCounters *LabelCounters

	// The Amazon Resource Name (ARN) assigned to the labeling job when it was created.
	//
	// This member is required.
	LabelingJobArn *string

	// The name of the labeling job.
	//
	// This member is required.
	LabelingJobName *string

	// The current status of the labeling job.
	//
	// This member is required.
	LabelingJobStatus LabelingJobStatus

	// The date and time that the job was last modified (timestamp).
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of a Lambda function. The function is run before
	// each data object is sent to a worker.
	//
	// This member is required.
	PreHumanTaskLambdaArn *string

	// The Amazon Resource Name (ARN) of the work team assigned to the job.
	//
	// This member is required.
	WorkteamArn *string

	// The Amazon Resource Name (ARN) of the Lambda function used to consolidate the
	// annotations from individual workers into a label for a data object. For more
	// information, see Annotation Consolidation (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html)
	// .
	AnnotationConsolidationLambdaArn *string

	// If the LabelingJobStatus field is Failed , this field contains a description of
	// the error.
	FailureReason *string

	// Input configuration for the labeling job.
	InputConfig *LabelingJobInputConfig

	// The location of the output produced by the labeling job.
	LabelingJobOutput *LabelingJobOutput

	noSmithyDocumentSerde
}

// Metadata for a Lambda step.
type LambdaStepMetadata struct {

	// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
	// execution.
	Arn *string

	// A list of the output parameters of the Lambda step.
	OutputParameters []OutputParameter

	noSmithyDocumentSerde
}

// A value that indicates whether the update was successful.
type LastUpdateStatus struct {

	// A value that indicates whether the update was made successful.
	//
	// This member is required.
	Status LastUpdateStatusValue

	// If the update wasn't successful, indicates the reason why it failed.
	FailureReason *string

	noSmithyDocumentSerde
}

// Lists a summary of the properties of a lineage group. A lineage group provides
// a group of shareable lineage entity resources.
type LineageGroupSummary struct {

	// The creation time of the lineage group summary.
	CreationTime *time.Time

	// The display name of the lineage group summary.
	DisplayName *string

	// The last modified time of the lineage group summary.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the lineage group resource.
	LineageGroupArn *string

	// The name or Amazon Resource Name (ARN) of the lineage group.
	LineageGroupName *string

	noSmithyDocumentSerde
}

// Defines an Amazon Cognito or your own OIDC IdP user group that is part of a
// work team.
type MemberDefinition struct {

	// The Amazon Cognito user group that is part of the work team.
	CognitoMemberDefinition *CognitoMemberDefinition

	// A list user groups that exist in your OIDC Identity Provider (IdP). One to ten
	// groups can be used to create a single private work team. When you add a user
	// group to the list of Groups , you can add that user group to one or more private
	// work teams. If you add a user group to a private work team, all workers in that
	// user group are added to the work team.
	OidcMemberDefinition *OidcMemberDefinition

	noSmithyDocumentSerde
}

// Metadata properties of the tracking entity, trial, or trial component.
type MetadataProperties struct {

	// The commit ID.
	CommitId *string

	// The entity this entity was generated by.
	GeneratedBy *string

	// The project ID.
	ProjectId *string

	// The repository.
	Repository *string

	noSmithyDocumentSerde
}

// The name, value, and date and time of a metric that was emitted to Amazon
// CloudWatch.
type MetricData struct {

	// The name of the metric.
	MetricName *string

	// The date and time that the algorithm emitted the metric.
	Timestamp *time.Time

	// The value of the metric.
	Value *float32

	noSmithyDocumentSerde
}

// Information about the metric for a candidate produced by an AutoML job.
type MetricDatum struct {

	// The name of the metric.
	MetricName AutoMLMetricEnum

	// The dataset split from which the AutoML job produced the metric.
	Set MetricSetSource

	// The name of the standard metric. For definitions of the standard metrics, see
	// Autopilot candidate metrics (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-metrics)
	// .
	StandardMetricName AutoMLMetricExtendedEnum

	// The value of the metric.
	Value *float32

	noSmithyDocumentSerde
}

// Specifies a metric that the training algorithm writes to stderr or stdout . You
// can view these logs to understand how your training job performs and check for
// any errors encountered during training. SageMaker hyperparameter tuning captures
// all defined metrics. Specify one of the defined metrics to use as an objective
// metric using the TuningObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTrainingJobDefinition.html#sagemaker-Type-HyperParameterTrainingJobDefinition-TuningObjective)
// parameter in the HyperParameterTrainingJobDefinition API to evaluate job
// performance during hyperparameter tuning.
type MetricDefinition struct {

	// The name of the metric.
	//
	// This member is required.
	Name *string

	// A regular expression that searches the output of a training job and gets the
	// value of the metric. For more information about using regular expressions to
	// define metrics, see Defining metrics and environment variables (https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics-variables.html)
	// .
	//
	// This member is required.
	Regex *string

	noSmithyDocumentSerde
}

// An object containing information about a metric.
//
// The following types satisfy this interface:
//
//	MetricSpecificationMemberCustomized
//	MetricSpecificationMemberPredefined
type MetricSpecification interface {
	isMetricSpecification()
}

// Information about a customized metric.
type MetricSpecificationMemberCustomized struct {
	Value CustomizedMetricSpecification

	noSmithyDocumentSerde
}

func (*MetricSpecificationMemberCustomized) isMetricSpecification() {}

// Information about a predefined metric.
type MetricSpecificationMemberPredefined struct {
	Value PredefinedMetricSpecification

	noSmithyDocumentSerde
}

func (*MetricSpecificationMemberPredefined) isMetricSpecification() {}

// Details about the metrics source.
type MetricsSource struct {

	// The metric source content type.
	//
	// This member is required.
	ContentType *string

	// The S3 URI for the metrics source.
	//
	// This member is required.
	S3Uri *string

	// The hash key used for the metrics source.
	ContentDigest *string

	noSmithyDocumentSerde
}

// The properties of a model as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Model struct {

	// The containers in the inference pipeline.
	Containers []ContainerDefinition

	// A timestamp that indicates when the model was created.
	CreationTime *time.Time

	// A set of recommended deployment configurations for the model.
	DeploymentRecommendation *DeploymentRecommendation

	// Isolates the model container. No inbound or outbound network calls can be made
	// to or from the model container.
	EnableNetworkIsolation *bool

	// The Amazon Resource Name (ARN) of the IAM role that you specified for the model.
	ExecutionRoleArn *string

	// Specifies details about how containers in a multi-container endpoint are run.
	InferenceExecutionConfig *InferenceExecutionConfig

	// The Amazon Resource Name (ARN) of the model.
	ModelArn *string

	// The name of the model.
	ModelName *string

	// Describes the container, as part of model definition.
	PrimaryContainer *ContainerDefinition

	// A list of key-value pairs associated with the model. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// The access configuration file for the ML model. You can explicitly accept the
// model end-user license agreement (EULA) within the ModelAccessConfig . For more
// information, see End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
// .
type ModelAccessConfig struct {

	// Specifies agreement to the model end-user license agreement (EULA). The
	// AcceptEula value must be explicitly defined as True in order to accept the EULA
	// that this model requires. You are responsible for reviewing and complying with
	// any applicable license terms and making sure they are acceptable for your use
	// case before downloading or using a model.
	//
	// This member is required.
	AcceptEula *bool

	noSmithyDocumentSerde
}

// Provides information about the location that is configured for storing model
// artifacts. Model artifacts are the output that results from training a model,
// and typically consist of trained parameters, a model definition that describes
// how to compute inferences, and other metadata.
type ModelArtifacts struct {

	// The path of the S3 object that contains the model artifacts. For example,
	// s3://bucket-name/keynameprefix/model.tar.gz .
	//
	// This member is required.
	S3ModelArtifacts *string

	noSmithyDocumentSerde
}

// Docker container image configuration object for the model bias job.
type ModelBiasAppSpecification struct {

	// JSON formatted S3 file that defines bias parameters. For more information on
	// this JSON configuration file, see Configure bias parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-bias-parameters.html)
	// .
	//
	// This member is required.
	ConfigUri *string

	// The container image to be run by the model bias job.
	//
	// This member is required.
	ImageUri *string

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	noSmithyDocumentSerde
}

// The configuration for a baseline model bias job.
type ModelBiasBaselineConfig struct {

	// The name of the baseline model bias job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource

	noSmithyDocumentSerde
}

// Inputs for the model bias job.
type ModelBiasJobInput struct {

	// Location of ground truth labels to use in model bias job.
	//
	// This member is required.
	GroundTruthS3Input *MonitoringGroundTruthS3Input

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput

	noSmithyDocumentSerde
}

// An Amazon SageMaker Model Card.
type ModelCard struct {

	// The content of the model card. Content uses the model card JSON schema (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html#model-cards-json-schema)
	// and provided as a string.
	Content *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The date and time that the model card was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The date and time that the model card was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	ModelCardArn *string

	// The unique name of the model card.
	ModelCardName *string

	// The approval status of the model card within your organization. Different
	// organizations might have different criteria for model card review and approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	ModelCardStatus ModelCardStatus

	// The version of the model card.
	ModelCardVersion *int32

	// The unique name (ID) of the model.
	ModelId *string

	// The model package group that contains the model package. Only relevant for
	// model cards created for model packages in the Amazon SageMaker Model Registry.
	ModelPackageGroupName *string

	// The risk rating of the model. Different organizations might have different
	// criteria for model card risk ratings. For more information, see Risk ratings (https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards-risk-rating.html)
	// .
	RiskRating *string

	// The security configuration used to protect model card data.
	SecurityConfig *ModelCardSecurityConfig

	// Key-value pairs used to manage metadata for the model card.
	Tags []Tag

	noSmithyDocumentSerde
}

// The artifacts of the model card export job.
type ModelCardExportArtifacts struct {

	// The Amazon S3 URI of the exported model artifacts.
	//
	// This member is required.
	S3ExportArtifacts *string

	noSmithyDocumentSerde
}

// The summary of the Amazon SageMaker Model Card export job.
type ModelCardExportJobSummary struct {

	// The date and time that the model card export job was created.
	//
	// This member is required.
	CreatedAt *time.Time

	// The date and time that the model card export job was last modified..
	//
	// This member is required.
	LastModifiedAt *time.Time

	// The Amazon Resource Name (ARN) of the model card export job.
	//
	// This member is required.
	ModelCardExportJobArn *string

	// The name of the model card export job.
	//
	// This member is required.
	ModelCardExportJobName *string

	// The name of the model card that the export job exports.
	//
	// This member is required.
	ModelCardName *string

	// The version of the model card that the export job exports.
	//
	// This member is required.
	ModelCardVersion *int32

	// The completion status of the model card export job.
	//
	// This member is required.
	Status ModelCardExportJobStatus

	noSmithyDocumentSerde
}

// Configure the export output details for an Amazon SageMaker Model Card.
type ModelCardExportOutputConfig struct {

	// The Amazon S3 output path to export your model card PDF.
	//
	// This member is required.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// Configure the security settings to protect model card data.
type ModelCardSecurityConfig struct {

	// A Key Management Service key ID (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// to use for encrypting a model card.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// A summary of the model card.
type ModelCardSummary struct {

	// The date and time that the model card was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	//
	// This member is required.
	ModelCardArn *string

	// The name of the model card.
	//
	// This member is required.
	ModelCardName *string

	// The approval status of the model card within your organization. Different
	// organizations might have different criteria for model card review and approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	//
	// This member is required.
	ModelCardStatus ModelCardStatus

	// The date and time that the model card was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// A summary of a specific version of the model card.
type ModelCardVersionSummary struct {

	// The date and time that the model card version was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model card.
	//
	// This member is required.
	ModelCardArn *string

	// The name of the model card.
	//
	// This member is required.
	ModelCardName *string

	// The approval status of the model card version within your organization.
	// Different organizations might have different criteria for model card review and
	// approval.
	//   - Draft : The model card is a work in progress.
	//   - PendingReview : The model card is pending review.
	//   - Approved : The model card is approved.
	//   - Archived : The model card is archived. No more updates should be made to the
	//   model card, but it can still be exported.
	//
	// This member is required.
	ModelCardStatus ModelCardStatus

	// A version of the model card.
	//
	// This member is required.
	ModelCardVersion *int32

	// The time date and time that the model card version was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Configures the timeout and maximum number of retries for processing a transform
// job invocation.
type ModelClientConfig struct {

	// The maximum number of retries when invocation requests are failing. The default
	// value is 3.
	InvocationsMaxRetries *int32

	// The timeout value in seconds for an invocation request. The default value is
	// 600.
	InvocationsTimeoutInSeconds *int32

	noSmithyDocumentSerde
}

// Defines the model configuration. Includes the specification name and
// environment parameters.
type ModelConfiguration struct {

	// The name of the compilation job used to create the recommended model artifacts.
	CompilationJobName *string

	// Defines the environment parameters that includes key, value types, and values.
	EnvironmentParameters []EnvironmentParameter

	// The inference specification name in the model package version.
	InferenceSpecificationName *string

	noSmithyDocumentSerde
}

// An endpoint that hosts a model displayed in the Amazon SageMaker Model
// Dashboard.
type ModelDashboardEndpoint struct {

	// A timestamp that indicates when the endpoint was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the endpoint.
	//
	// This member is required.
	EndpointArn *string

	// The endpoint name.
	//
	// This member is required.
	EndpointName *string

	// The endpoint status.
	//
	// This member is required.
	EndpointStatus EndpointStatus

	// The last time the endpoint was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// An alert action taken to light up an icon on the Amazon SageMaker Model
// Dashboard when an alert goes into InAlert status.
type ModelDashboardIndicatorAction struct {

	// Indicates whether the alert action is turned on.
	Enabled *bool

	noSmithyDocumentSerde
}

// A model displayed in the Amazon SageMaker Model Dashboard.
type ModelDashboardModel struct {

	// The endpoints that host a model.
	Endpoints []ModelDashboardEndpoint

	// A batch transform job. For information about SageMaker batch transform, see Use
	// Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html)
	// .
	LastBatchTransformJob *TransformJob

	// A model displayed in the Model Dashboard.
	Model *Model

	// The model card for a model.
	ModelCard *ModelDashboardModelCard

	// The monitoring schedules for a model.
	MonitoringSchedules []ModelDashboardMonitoringSchedule

	noSmithyDocumentSerde
}

// The model card for a model displayed in the Amazon SageMaker Model Dashboard.
type ModelDashboardModelCard struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// A timestamp that indicates when the model card was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// A timestamp that indicates when the model card was last updated.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) for a model card.
	ModelCardArn *string

	// The name of a model card.
	ModelCardName *string

	// The model card status.
	ModelCardStatus ModelCardStatus

	// The model card version.
	ModelCardVersion *int32

	// For models created in SageMaker, this is the model ARN. For models created
	// outside of SageMaker, this is a user-customized string.
	ModelId *string

	// A model card's risk rating. Can be low, medium, or high.
	RiskRating *string

	// The KMS Key ID ( KMSKeyId ) for encryption of model card information.
	SecurityConfig *ModelCardSecurityConfig

	// The tags associated with a model card.
	Tags []Tag

	noSmithyDocumentSerde
}

// A monitoring schedule for a model displayed in the Amazon SageMaker Model
// Dashboard.
type ModelDashboardMonitoringSchedule struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// A timestamp that indicates when the monitoring schedule was created.
	CreationTime *time.Time

	// The endpoint which is monitored.
	EndpointName *string

	// If a monitoring job failed, provides the reason.
	FailureReason *string

	// A timestamp that indicates when the monitoring schedule was last updated.
	LastModifiedTime *time.Time

	// Summary of information about the last monitoring job to run.
	LastMonitoringExecutionSummary *MonitoringExecutionSummary

	// A JSON array where each element is a summary for a monitoring alert.
	MonitoringAlertSummaries []MonitoringAlertSummary

	// The Amazon Resource Name (ARN) of a monitoring schedule.
	MonitoringScheduleArn *string

	// Configures the monitoring schedule and defines the monitoring job.
	MonitoringScheduleConfig *MonitoringScheduleConfig

	// The name of a monitoring schedule.
	MonitoringScheduleName *string

	// The status of the monitoring schedule.
	MonitoringScheduleStatus ScheduleStatus

	// The monitor type of a model monitor.
	MonitoringType MonitoringType

	noSmithyDocumentSerde
}

// Data quality constraints and statistics for a model.
type ModelDataQuality struct {

	// Data quality constraints for a model.
	Constraints *MetricsSource

	// Data quality statistics for a model.
	Statistics *MetricsSource

	noSmithyDocumentSerde
}

// Specifies the location of ML model data to deploy. If specified, you must
// specify one and only one of the available data sources.
type ModelDataSource struct {

	// Specifies the S3 location of ML model data to deploy.
	S3DataSource *S3ModelDataSource

	noSmithyDocumentSerde
}

// Specifies how to generate the endpoint name for an automatic one-click
// Autopilot model deployment.
type ModelDeployConfig struct {

	// Set to True to automatically generate an endpoint name for a one-click
	// Autopilot model deployment; set to False otherwise. The default value is False .
	// If you set AutoGenerateEndpointName to True , do not specify the EndpointName ;
	// otherwise a 400 error is thrown.
	AutoGenerateEndpointName *bool

	// Specifies the endpoint name to use for a one-click Autopilot model deployment
	// if the endpoint name is not generated automatically. Specify the EndpointName
	// if and only if you set AutoGenerateEndpointName to False ; otherwise a 400 error
	// is thrown.
	EndpointName *string

	noSmithyDocumentSerde
}

// Provides information about the endpoint of the model deployment.
type ModelDeployResult struct {

	// The name of the endpoint to which the model has been deployed. If model
	// deployment fails, this field is omitted from the response.
	EndpointName *string

	noSmithyDocumentSerde
}

// Provides information to verify the integrity of stored model artifacts.
type ModelDigests struct {

	// Provides a hash value that uniquely identifies the stored model artifacts.
	ArtifactDigest *string

	noSmithyDocumentSerde
}

// Docker container image configuration object for the model explainability job.
type ModelExplainabilityAppSpecification struct {

	// JSON formatted Amazon S3 file that defines explainability parameters. For more
	// information on this JSON configuration file, see Configure model explainability
	// parameters (https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-config-json-monitor-model-explainability-parameters.html)
	// .
	//
	// This member is required.
	ConfigUri *string

	// The container image to be run by the model explainability job.
	//
	// This member is required.
	ImageUri *string

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	noSmithyDocumentSerde
}

// The configuration for a baseline model explainability job.
type ModelExplainabilityBaselineConfig struct {

	// The name of the baseline model explainability job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource

	noSmithyDocumentSerde
}

// Inputs for the model explainability job.
type ModelExplainabilityJobInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput

	noSmithyDocumentSerde
}

// The configuration for the infrastructure that the model will be deployed to.
type ModelInfrastructureConfig struct {

	// The inference option to which to deploy your model. Possible values are the
	// following:
	//   - RealTime : Deploy to real-time inference.
	//
	// This member is required.
	InfrastructureType ModelInfrastructureType

	// The infrastructure configuration for deploying the model to real-time inference.
	//
	// This member is required.
	RealTimeInferenceConfig *RealTimeInferenceConfig

	noSmithyDocumentSerde
}

// Input object for the model.
type ModelInput struct {

	// The input configuration object for the model.
	//
	// This member is required.
	DataInputConfig *string

	noSmithyDocumentSerde
}

// The model latency threshold.
type ModelLatencyThreshold struct {

	// The model latency percentile threshold. Acceptable values are P95 and P99 . For
	// custom load tests, specify the value as P95 .
	Percentile *string

	// The model latency percentile value in milliseconds.
	ValueInMilliseconds *int32

	noSmithyDocumentSerde
}

// Part of the search expression. You can specify the name and value (domain,
// task, framework, framework version, task, and model).
type ModelMetadataFilter struct {

	// The name of the of the model to filter by.
	//
	// This member is required.
	Name ModelMetadataFilterType

	// The value to filter the model metadata.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// One or more filters that searches for the specified resource or resources in a
// search. All resource objects that satisfy the expression's condition are
// included in the search results
type ModelMetadataSearchExpression struct {

	// A list of filter objects.
	Filters []ModelMetadataFilter

	noSmithyDocumentSerde
}

// A summary of the model metadata.
type ModelMetadataSummary struct {

	// The machine learning domain of the model.
	//
	// This member is required.
	Domain *string

	// The machine learning framework of the model.
	//
	// This member is required.
	Framework *string

	// The framework version of the model.
	//
	// This member is required.
	FrameworkVersion *string

	// The name of the model.
	//
	// This member is required.
	Model *string

	// The machine learning task of the model.
	//
	// This member is required.
	Task *string

	noSmithyDocumentSerde
}

// Contains metrics captured from a model.
type ModelMetrics struct {

	// Metrics that measure bais in a model.
	Bias *Bias

	// Metrics that help explain a model.
	Explainability *Explainability

	// Metrics that measure the quality of the input data for a model.
	ModelDataQuality *ModelDataQuality

	// Metrics that measure the quality of a model.
	ModelQuality *ModelQuality

	noSmithyDocumentSerde
}

// A versioned model that can be deployed for SageMaker inference.
type ModelPackage struct {

	// An array of additional Inference Specification objects.
	AdditionalInferenceSpecifications []AdditionalInferenceSpecificationDefinition

	// A description provided when the model approval is set.
	ApprovalDescription *string

	// Whether the model package is to be certified to be listed on Amazon Web
	// Services Marketplace. For information about listing model packages on Amazon Web
	// Services Marketplace, see List Your Algorithm or Model Package on Amazon Web
	// Services Marketplace (https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-list.html)
	// .
	CertifyForMarketplace *bool

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, or project.
	CreatedBy *UserContext

	// The time that the model package was created.
	CreationTime *time.Time

	// The metadata properties for the model package.
	CustomerMetadataProperties map[string]string

	// The machine learning domain of your model package and its components. Common
	// machine learning domains include computer vision and natural language
	// processing.
	Domain *string

	// Represents the drift check baselines that can be used when the model monitor is
	// set using the model package.
	DriftCheckBaselines *DriftCheckBaselines

	// Defines how to perform inference generation after a training job is run.
	InferenceSpecification *InferenceSpecification

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, or project.
	LastModifiedBy *UserContext

	// The last time the model package was modified.
	LastModifiedTime *time.Time

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The approval status of the model. This can be one of the following values.
	//   - APPROVED - The model is approved
	//   - REJECTED - The model is rejected.
	//   - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
	ModelApprovalStatus ModelApprovalStatus

	// Metrics for the model.
	ModelMetrics *ModelMetrics

	// The Amazon Resource Name (ARN) of the model package.
	ModelPackageArn *string

	// The description of the model package.
	ModelPackageDescription *string

	// The model group to which the model belongs.
	ModelPackageGroupName *string

	// The name of the model.
	ModelPackageName *string

	// The status of the model package. This can be one of the following values.
	//   - PENDING - The model package is pending being created.
	//   - IN_PROGRESS - The model package is in the process of being created.
	//   - COMPLETED - The model package was successfully created.
	//   - FAILED - The model package failed.
	//   - DELETING - The model package is in the process of being deleted.
	ModelPackageStatus ModelPackageStatus

	// Specifies the validation and image scan statuses of the model package.
	ModelPackageStatusDetails *ModelPackageStatusDetails

	// The version number of a versioned model.
	ModelPackageVersion *int32

	// The Amazon Simple Storage Service path where the sample payload are stored.
	// This path must point to a single gzip compressed tar archive (.tar.gz suffix).
	SamplePayloadUrl *string

	// Indicates if you want to skip model validation.
	SkipModelValidation SkipModelValidation

	// A list of algorithms that were used to create a model package.
	SourceAlgorithmSpecification *SourceAlgorithmSpecification

	// A list of the tags associated with the model package. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	// The machine learning task your model package accomplishes. Common machine
	// learning tasks include object detection and image classification.
	Task *string

	// Specifies batch transform jobs that SageMaker runs to validate your model
	// package.
	ValidationSpecification *ModelPackageValidationSpecification

	noSmithyDocumentSerde
}

// Describes the Docker container for the model package.
type ModelPackageContainerDefinition struct {

	// The Amazon EC2 Container Registry (Amazon ECR) path where inference code is
	// stored. If you are using your own custom algorithm instead of an algorithm
	// provided by SageMaker, the inference code must meet SageMaker requirements.
	// SageMaker supports both registry/repository[:tag] and
	// registry/repository[@digest] image path formats. For more information, see
	// Using Your Own Algorithms with Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html)
	// .
	//
	// This member is required.
	Image *string

	// The additional data source that is used during inference in the Docker
	// container for your model package.
	AdditionalS3DataSource *AdditionalS3DataSource

	// The DNS host name for the Docker container.
	ContainerHostname *string

	// The environment variables to set in the Docker container. Each key and value in
	// the Environment string to string map can have length of up to 1024. We support
	// up to 16 entries in the map.
	Environment map[string]string

	// The machine learning framework of the model package container image.
	Framework *string

	// The framework version of the Model Package Container Image.
	FrameworkVersion *string

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	ImageDigest *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive (
	// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
	// region as the model package.
	ModelDataUrl *string

	// A structure with Model Input details.
	ModelInput *ModelInput

	// The name of a pre-trained machine learning benchmarked by Amazon SageMaker
	// Inference Recommender model that matches your model. You can find a list of
	// benchmarked models by calling ListModelMetadata .
	NearestModelName *string

	// The Amazon Web Services Marketplace product ID of the model package.
	ProductId *string

	noSmithyDocumentSerde
}

// A group of versioned models in the model registry.
type ModelPackageGroup struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The time that the model group was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model group.
	ModelPackageGroupArn *string

	// The description for the model group.
	ModelPackageGroupDescription *string

	// The name of the model group.
	ModelPackageGroupName *string

	// The status of the model group. This can be one of the following values.
	//   - PENDING - The model group is pending being created.
	//   - IN_PROGRESS - The model group is in the process of being created.
	//   - COMPLETED - The model group was successfully created.
	//   - FAILED - The model group failed.
	//   - DELETING - The model group is in the process of being deleted.
	//   - DELETE_FAILED - SageMaker failed to delete the model group.
	ModelPackageGroupStatus ModelPackageGroupStatus

	// A list of the tags associated with the model group. For more information, see
	// Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	noSmithyDocumentSerde
}

// Summary information about a model group.
type ModelPackageGroupSummary struct {

	// The time that the model group was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model group.
	//
	// This member is required.
	ModelPackageGroupArn *string

	// The name of the model group.
	//
	// This member is required.
	ModelPackageGroupName *string

	// The status of the model group.
	//
	// This member is required.
	ModelPackageGroupStatus ModelPackageGroupStatus

	// A description of the model group.
	ModelPackageGroupDescription *string

	noSmithyDocumentSerde
}

// Specifies the validation and image scan statuses of the model package.
type ModelPackageStatusDetails struct {

	// The validation status of the model package.
	//
	// This member is required.
	ValidationStatuses []ModelPackageStatusItem

	// The status of the scan of the Docker image container for the model package.
	ImageScanStatuses []ModelPackageStatusItem

	noSmithyDocumentSerde
}

// Represents the overall status of a model package.
type ModelPackageStatusItem struct {

	// The name of the model package for which the overall status is being reported.
	//
	// This member is required.
	Name *string

	// The current status.
	//
	// This member is required.
	Status DetailedModelPackageStatus

	// if the overall status is Failed , the reason for the failure.
	FailureReason *string

	noSmithyDocumentSerde
}

// Provides summary information about a model package.
type ModelPackageSummary struct {

	// A timestamp that shows when the model package was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model package.
	//
	// This member is required.
	ModelPackageArn *string

	// The overall status of the model package.
	//
	// This member is required.
	ModelPackageStatus ModelPackageStatus

	// The approval status of the model. This can be one of the following values.
	//   - APPROVED - The model is approved
	//   - REJECTED - The model is rejected.
	//   - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.
	ModelApprovalStatus ModelApprovalStatus

	// A brief description of the model package.
	ModelPackageDescription *string

	// If the model package is a versioned model, the model group that the versioned
	// model belongs to.
	ModelPackageGroupName *string

	// The name of the model package.
	ModelPackageName *string

	// If the model package is a versioned model, the version of the model.
	ModelPackageVersion *int32

	noSmithyDocumentSerde
}

// Contains data, such as the inputs and targeted instance types that are used in
// the process of validating the model package. The data provided in the validation
// profile is made available to your buyers on Amazon Web Services Marketplace.
type ModelPackageValidationProfile struct {

	// The name of the profile for the model package.
	//
	// This member is required.
	ProfileName *string

	// The TransformJobDefinition object that describes the transform job used for the
	// validation of the model package.
	//
	// This member is required.
	TransformJobDefinition *TransformJobDefinition

	noSmithyDocumentSerde
}

// Specifies batch transform jobs that SageMaker runs to validate your model
// package.
type ModelPackageValidationSpecification struct {

	// An array of ModelPackageValidationProfile objects, each of which specifies a
	// batch transform job that SageMaker runs to validate your model package.
	//
	// This member is required.
	ValidationProfiles []ModelPackageValidationProfile

	// The IAM roles to be used for the validation of the model package.
	//
	// This member is required.
	ValidationRole *string

	noSmithyDocumentSerde
}

// Model quality statistics and constraints.
type ModelQuality struct {

	// Model quality constraints.
	Constraints *MetricsSource

	// Model quality statistics.
	Statistics *MetricsSource

	noSmithyDocumentSerde
}

// Container image configuration object for the monitoring job.
type ModelQualityAppSpecification struct {

	// The address of the container image that the monitoring job runs.
	//
	// This member is required.
	ImageUri *string

	// An array of arguments for the container used to run the monitoring job.
	ContainerArguments []string

	// Specifies the entrypoint for a container that the monitoring job runs.
	ContainerEntrypoint []string

	// Sets the environment variables in the container that the monitoring job runs.
	Environment map[string]string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// The machine learning problem type of the model that the monitoring job monitors.
	ProblemType MonitoringProblemType

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string

	noSmithyDocumentSerde
}

// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type ModelQualityBaselineConfig struct {

	// The name of the job that performs baselining for the monitoring job.
	BaseliningJobName *string

	// The constraints resource for a monitoring job.
	ConstraintsResource *MonitoringConstraintsResource

	noSmithyDocumentSerde
}

// The input for the model quality monitoring job. Currently endpoints are
// supported for input for model quality monitoring jobs.
type ModelQualityJobInput struct {

	// The ground truth label provided for the model.
	//
	// This member is required.
	GroundTruthS3Input *MonitoringGroundTruthS3Input

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// Input object for the endpoint
	EndpointInput *EndpointInput

	noSmithyDocumentSerde
}

// The model registry settings for the SageMaker Canvas application.
type ModelRegisterSettings struct {

	// The Amazon Resource Name (ARN) of the SageMaker model registry account.
	// Required only to register model versions created by a different SageMaker Canvas
	// Amazon Web Services account than the Amazon Web Services account in which
	// SageMaker model registry is set up.
	CrossAccountModelRegisterRoleArn *string

	// Describes whether the integration to the model registry is enabled or disabled
	// in the Canvas application.
	Status FeatureStatus

	noSmithyDocumentSerde
}

// Metadata for Model steps.
type ModelStepMetadata struct {

	// The Amazon Resource Name (ARN) of the created model.
	Arn *string

	noSmithyDocumentSerde
}

// Provides summary information about a model.
type ModelSummary struct {

	// A timestamp that indicates when the model was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the model.
	//
	// This member is required.
	ModelArn *string

	// The name of the model that you want a summary for.
	//
	// This member is required.
	ModelName *string

	noSmithyDocumentSerde
}

// Contains information about the deployment options of a model.
type ModelVariantConfig struct {

	// The configuration for the infrastructure that the model will be deployed to.
	//
	// This member is required.
	InfrastructureConfig *ModelInfrastructureConfig

	// The name of the Amazon SageMaker Model entity.
	//
	// This member is required.
	ModelName *string

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	noSmithyDocumentSerde
}

// Summary of the deployment configuration of a model.
type ModelVariantConfigSummary struct {

	// The configuration of the infrastructure that the model has been deployed to.
	//
	// This member is required.
	InfrastructureConfig *ModelInfrastructureConfig

	// The name of the Amazon SageMaker Model entity.
	//
	// This member is required.
	ModelName *string

	// The status of deployment for the model variant on the hosted inference
	// endpoint.
	//   - Creating - Amazon SageMaker is preparing the model variant on the hosted
	//   inference endpoint.
	//   - InService - The model variant is running on the hosted inference endpoint.
	//   - Updating - Amazon SageMaker is updating the model variant on the hosted
	//   inference endpoint.
	//   - Deleting - Amazon SageMaker is deleting the model variant on the hosted
	//   inference endpoint.
	//   - Deleted - The model variant has been deleted on the hosted inference
	//   endpoint. This can only happen after stopping the experiment.
	//
	// This member is required.
	Status ModelVariantStatus

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	noSmithyDocumentSerde
}

// A list of alert actions taken in response to an alert going into InAlert status.
type MonitoringAlertActions struct {

	// An alert action taken to light up an icon on the Model Dashboard when an alert
	// goes into InAlert status.
	ModelDashboardIndicator *ModelDashboardIndicatorAction

	noSmithyDocumentSerde
}

// Provides summary information of an alert's history.
type MonitoringAlertHistorySummary struct {

	// The current alert status of an alert.
	//
	// This member is required.
	AlertStatus MonitoringAlertStatus

	// A timestamp that indicates when the first alert transition occurred in an alert
	// history. An alert transition can be from status InAlert to OK , or from OK to
	// InAlert .
	//
	// This member is required.
	CreationTime *time.Time

	// The name of a monitoring alert.
	//
	// This member is required.
	MonitoringAlertName *string

	// The name of a monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	noSmithyDocumentSerde
}

// Provides summary information about a monitor alert.
type MonitoringAlertSummary struct {

	// A list of alert actions taken in response to an alert going into InAlert status.
	//
	// This member is required.
	Actions *MonitoringAlertActions

	// The current status of an alert.
	//
	// This member is required.
	AlertStatus MonitoringAlertStatus

	// A timestamp that indicates when a monitor alert was created.
	//
	// This member is required.
	CreationTime *time.Time

	// Within EvaluationPeriod , how many execution failures will raise an alert.
	//
	// This member is required.
	DatapointsToAlert *int32

	// The number of most recent monitoring executions to consider when evaluating
	// alert status.
	//
	// This member is required.
	EvaluationPeriod *int32

	// A timestamp that indicates when a monitor alert was last updated.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The name of a monitoring alert.
	//
	// This member is required.
	MonitoringAlertName *string

	noSmithyDocumentSerde
}

// Container image configuration object for the monitoring job.
type MonitoringAppSpecification struct {

	// The container image to be run by the monitoring job.
	//
	// This member is required.
	ImageUri *string

	// An array of arguments for the container used to run the monitoring job.
	ContainerArguments []string

	// Specifies the entrypoint for a container used to run the monitoring job.
	ContainerEntrypoint []string

	// An Amazon S3 URI to a script that is called after analysis has been performed.
	// Applicable only for the built-in (first party) containers.
	PostAnalyticsProcessorSourceUri *string

	// An Amazon S3 URI to a script that is called per row prior to running analysis.
	// It can base64 decode the payload and convert it into a flattened JSON so that
	// the built-in container can use the converted data. Applicable only for the
	// built-in (first party) containers.
	RecordPreprocessorSourceUri *string

	noSmithyDocumentSerde
}

// Configuration for monitoring constraints and monitoring statistics. These
// baseline resources are compared against the results of the current job from the
// series of jobs scheduled to collect data periodically.
type MonitoringBaselineConfig struct {

	// The name of the job that performs baselining for the monitoring job.
	BaseliningJobName *string

	// The baseline constraint file in Amazon S3 that the current monitoring job
	// should validated against.
	ConstraintsResource *MonitoringConstraintsResource

	// The baseline statistics file in Amazon S3 that the current monitoring job
	// should be validated against.
	StatisticsResource *MonitoringStatisticsResource

	noSmithyDocumentSerde
}

// Configuration for the cluster used to run model monitoring jobs.
type MonitoringClusterConfig struct {

	// The number of ML compute instances to use in the model monitoring job. For
	// distributed processing jobs, specify a value greater than 1. The default value
	// is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume, in gigabytes, that you want to provision.
	// You must specify sufficient ML storage for your scenario.
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data
	// on the storage volume attached to the ML compute instance(s) that run the model
	// monitoring job.
	VolumeKmsKeyId *string

	noSmithyDocumentSerde
}

// The constraints resource for a monitoring job.
type MonitoringConstraintsResource struct {

	// The Amazon S3 URI for the constraints resource.
	S3Uri *string

	noSmithyDocumentSerde
}

// Represents the CSV dataset format used when running a monitoring job.
type MonitoringCsvDatasetFormat struct {

	// Indicates if the CSV data has a header.
	Header *bool

	noSmithyDocumentSerde
}

// Represents the dataset format used when running a monitoring job.
type MonitoringDatasetFormat struct {

	// The CSV dataset used in the monitoring job.
	Csv *MonitoringCsvDatasetFormat

	// The JSON dataset used in the monitoring job
	Json *MonitoringJsonDatasetFormat

	// The Parquet dataset used in the monitoring job
	Parquet *MonitoringParquetDatasetFormat

	noSmithyDocumentSerde
}

// Summary of information about the last monitoring job to run.
type MonitoringExecutionSummary struct {

	// The time at which the monitoring job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A timestamp that indicates the last time the monitoring job was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The status of the monitoring job.
	//
	// This member is required.
	MonitoringExecutionStatus ExecutionStatus

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The time the monitoring job was scheduled.
	//
	// This member is required.
	ScheduledTime *time.Time

	// The name of the endpoint used to run the monitoring job.
	EndpointName *string

	// Contains the reason a monitoring job failed, if it failed.
	FailureReason *string

	// The name of the monitoring job.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job.
	MonitoringType MonitoringType

	// The Amazon Resource Name (ARN) of the monitoring job.
	ProcessingJobArn *string

	noSmithyDocumentSerde
}

// The ground truth labels for the dataset used for the monitoring job.
type MonitoringGroundTruthS3Input struct {

	// The address of the Amazon S3 location of the ground truth labels.
	S3Uri *string

	noSmithyDocumentSerde
}

// The inputs for a monitoring job.
type MonitoringInput struct {

	// Input object for the batch transform job.
	BatchTransformInput *BatchTransformInput

	// The endpoint for a monitoring job.
	EndpointInput *EndpointInput

	noSmithyDocumentSerde
}

// Defines the monitoring job.
type MonitoringJobDefinition struct {

	// Configures the monitoring job to run a specified Docker container image.
	//
	// This member is required.
	MonitoringAppSpecification *MonitoringAppSpecification

	// The array of inputs for the monitoring job. Currently we support monitoring an
	// Amazon SageMaker Endpoint.
	//
	// This member is required.
	MonitoringInputs []MonitoringInput

	// The array of outputs from the monitoring job to be uploaded to Amazon S3.
	//
	// This member is required.
	MonitoringOutputConfig *MonitoringOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to
	// deploy for a monitoring job. In distributed processing, you specify more than
	// one instance.
	//
	// This member is required.
	MonitoringResources *MonitoringResources

	// The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume
	// to perform tasks on your behalf.
	//
	// This member is required.
	RoleArn *string

	// Baseline configuration used to validate that the data conforms to the specified
	// constraints and statistics
	BaselineConfig *MonitoringBaselineConfig

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	// Specifies networking options for an monitoring job.
	NetworkConfig *NetworkConfig

	// Specifies a time limit for how long the monitoring job is allowed to run.
	StoppingCondition *MonitoringStoppingCondition

	noSmithyDocumentSerde
}

// Summary information about a monitoring job.
type MonitoringJobDefinitionSummary struct {

	// The time that the monitoring job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The name of the endpoint that the job monitors.
	//
	// This member is required.
	EndpointName *string

	// The Amazon Resource Name (ARN) of the monitoring job.
	//
	// This member is required.
	MonitoringJobDefinitionArn *string

	// The name of the monitoring job.
	//
	// This member is required.
	MonitoringJobDefinitionName *string

	noSmithyDocumentSerde
}

// Represents the JSON dataset format used when running a monitoring job.
type MonitoringJsonDatasetFormat struct {

	// Indicates if the file should be read as a JSON object per line.
	Line *bool

	noSmithyDocumentSerde
}

// The networking configuration for the monitoring job.
type MonitoringNetworkConfig struct {

	// Whether to encrypt all communications between the instances used for the
	// monitoring jobs. Choose True to encrypt communications. Encryption provides
	// greater security for distributed jobs, but the processing might take longer.
	EnableInterContainerTrafficEncryption *bool

	// Whether to allow inbound and outbound network calls to and from the containers
	// used for the monitoring job.
	EnableNetworkIsolation *bool

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// The output object for a monitoring job.
type MonitoringOutput struct {

	// The Amazon S3 storage location where the results of a monitoring job are saved.
	//
	// This member is required.
	S3Output *MonitoringS3Output

	noSmithyDocumentSerde
}

// The output configuration for monitoring jobs.
type MonitoringOutputConfig struct {

	// Monitoring outputs for monitoring jobs. This is where the output of the
	// periodic monitoring jobs is uploaded.
	//
	// This member is required.
	MonitoringOutputs []MonitoringOutput

	// The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the
	// model artifacts at rest using Amazon S3 server-side encryption.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Represents the Parquet dataset format used when running a monitoring job.
type MonitoringParquetDatasetFormat struct {
	noSmithyDocumentSerde
}

// Identifies the resources to deploy for a monitoring job.
type MonitoringResources struct {

	// The configuration for the cluster resources used to run the processing job.
	//
	// This member is required.
	ClusterConfig *MonitoringClusterConfig

	noSmithyDocumentSerde
}

// Information about where and how you want to store the results of a monitoring
// job.
type MonitoringS3Output struct {

	// The local path to the Amazon S3 storage location where Amazon SageMaker saves
	// the results of a monitoring job. LocalPath is an absolute path for the output
	// data.
	//
	// This member is required.
	LocalPath *string

	// A URI that identifies the Amazon S3 storage location where Amazon SageMaker
	// saves the results of a monitoring job.
	//
	// This member is required.
	S3Uri *string

	// Whether to upload the results of the monitoring job continuously or after the
	// job completes.
	S3UploadMode ProcessingS3UploadMode

	noSmithyDocumentSerde
}

// A schedule for a model monitoring job. For information about model monitor, see
// Amazon SageMaker Model Monitor (https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
// .
type MonitoringSchedule struct {

	// The time that the monitoring schedule was created.
	CreationTime *time.Time

	// The endpoint that hosts the model being monitored.
	EndpointName *string

	// If the monitoring schedule failed, the reason it failed.
	FailureReason *string

	// The last time the monitoring schedule was changed.
	LastModifiedTime *time.Time

	// Summary of information about the last monitoring job to run.
	LastMonitoringExecutionSummary *MonitoringExecutionSummary

	// The Amazon Resource Name (ARN) of the monitoring schedule.
	MonitoringScheduleArn *string

	// Configures the monitoring schedule and defines the monitoring job.
	MonitoringScheduleConfig *MonitoringScheduleConfig

	// The name of the monitoring schedule.
	MonitoringScheduleName *string

	// The status of the monitoring schedule. This can be one of the following values.
	//   - PENDING - The schedule is pending being created.
	//   - FAILED - The schedule failed.
	//   - SCHEDULED - The schedule was successfully created.
	//   - STOPPED - The schedule was stopped.
	MonitoringScheduleStatus ScheduleStatus

	// The type of the monitoring job definition to schedule.
	MonitoringType MonitoringType

	// A list of the tags associated with the monitoring schedlue. For more
	// information, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// in the Amazon Web Services General Reference Guide.
	Tags []Tag

	noSmithyDocumentSerde
}

// Configures the monitoring schedule and defines the monitoring job.
type MonitoringScheduleConfig struct {

	// Defines the monitoring job.
	MonitoringJobDefinition *MonitoringJobDefinition

	// The name of the monitoring job definition to schedule.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job definition to schedule.
	MonitoringType MonitoringType

	// Configures the monitoring schedule.
	ScheduleConfig *ScheduleConfig

	noSmithyDocumentSerde
}

// Summarizes the monitoring schedule.
type MonitoringScheduleSummary struct {

	// The creation time of the monitoring schedule.
	//
	// This member is required.
	CreationTime *time.Time

	// The last time the monitoring schedule was modified.
	//
	// This member is required.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleArn *string

	// The name of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleName *string

	// The status of the monitoring schedule.
	//
	// This member is required.
	MonitoringScheduleStatus ScheduleStatus

	// The name of the endpoint using the monitoring schedule.
	EndpointName *string

	// The name of the monitoring job definition that the schedule is for.
	MonitoringJobDefinitionName *string

	// The type of the monitoring job definition that the schedule is for.
	MonitoringType MonitoringType

	noSmithyDocumentSerde
}

// The statistics resource for a monitoring job.
type MonitoringStatisticsResource struct {

	// The Amazon S3 URI for the statistics resource.
	S3Uri *string

	noSmithyDocumentSerde
}

// A time limit for how long the monitoring job is allowed to run before stopping.
type MonitoringStoppingCondition struct {

	// The maximum runtime allowed in seconds. The MaxRuntimeInSeconds cannot exceed
	// the frequency of the job. For data quality and model explainability, this can be
	// up to 3600 seconds for an hourly schedule. For model bias and model quality
	// hourly schedules, this can be up to 1800 seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32

	noSmithyDocumentSerde
}

// Specifies additional configuration for hosting multi-model endpoints.
type MultiModelConfig struct {

	// Whether to cache models for a multi-model endpoint. By default, multi-model
	// endpoints cache models so that a model does not have to be loaded into memory
	// each time it is invoked. Some use cases do not benefit from model caching. For
	// example, if an endpoint hosts a large number of models that are each invoked
	// infrequently, the endpoint might perform better if you disable model caching. To
	// disable model caching, set the value of this parameter to Disabled .
	ModelCacheSetting ModelCacheSetting

	noSmithyDocumentSerde
}

// The VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
// configuration object that specifies the VPC that you want the compilation jobs
// to connect to. For more information on controlling access to your Amazon S3
// buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs
// Access to Resources in Your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/neo-vpc.html)
// .
type NeoVpcConfig struct {

	// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
	// security groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect the compilation job
	// to for accessing the model in Amazon S3.
	//
	// This member is required.
	Subnets []string

	noSmithyDocumentSerde
}

// A list of nested Filter (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Filter.html)
// objects. A resource must satisfy the conditions of all filters to be included in
// the results returned from the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API. For example, to filter on a training job's InputDataConfig property with a
// specific channel name and S3Uri prefix, define the following filters:
//   - '{Name:"InputDataConfig.ChannelName", "Operator":"Equals",
//     "Value":"train"}',
//   - '{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri",
//     "Operator":"Contains", "Value":"mybucket/catdata"}'
type NestedFilters struct {

	// A list of filters. Each filter acts on a property. Filters must contain at
	// least one Filters value. For example, a NestedFilters call might include a
	// filter on the PropertyName parameter of the InputDataConfig property:
	// InputDataConfig.DataSource.S3DataSource.S3Uri .
	//
	// This member is required.
	Filters []Filter

	// The name of the property to use in the nested filters. The value must match a
	// listed property name, such as InputDataConfig .
	//
	// This member is required.
	NestedPropertyName *string

	noSmithyDocumentSerde
}

// Networking options for a job, such as network traffic encryption between
// containers, whether to allow inbound and outbound network calls to and from
// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
type NetworkConfig struct {

	// Whether to encrypt all communications between distributed processing jobs.
	// Choose True to encrypt communications. Encryption provides greater security for
	// distributed processing jobs, but the processing might take longer.
	EnableInterContainerTrafficEncryption *bool

	// Whether to allow inbound and outbound network calls to and from the containers
	// used for the processing job.
	EnableNetworkIsolation *bool

	// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
	// hosted models, and compute resources have access to. You can control access to
	// and from your resources by configuring a VPC. For more information, see Give
	// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// Provides a summary of a notebook instance lifecycle configuration.
type NotebookInstanceLifecycleConfigSummary struct {

	// The Amazon Resource Name (ARN) of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigArn *string

	// The name of the lifecycle configuration.
	//
	// This member is required.
	NotebookInstanceLifecycleConfigName *string

	// A timestamp that tells when the lifecycle configuration was created.
	CreationTime *time.Time

	// A timestamp that tells when the lifecycle configuration was last modified.
	LastModifiedTime *time.Time

	noSmithyDocumentSerde
}

// Contains the notebook instance lifecycle configuration script. Each lifecycle
// configuration script has a limit of 16384 characters. The value of the $PATH
// environment variable that is available to both scripts is
// /sbin:bin:/usr/sbin:/usr/bin . View CloudWatch Logs for notebook instance
// lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log
// stream [notebook-instance-name]/[LifecycleConfigHook] . Lifecycle configuration
// scripts cannot run for longer than 5 minutes. If a script runs for longer than 5
// minutes, it fails and the notebook instance is not created or started. For
// information about notebook instance lifestyle configurations, see Step 2.1:
// (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html)
// .
type NotebookInstanceLifecycleHook struct {

	// A base64-encoded string that contains a shell script for a notebook instance
	// lifecycle configuration.
	Content *string

	noSmithyDocumentSerde
}

// Provides summary information for an SageMaker notebook instance.
type NotebookInstanceSummary struct {

	// The Amazon Resource Name (ARN) of the notebook instance.
	//
	// This member is required.
	NotebookInstanceArn *string

	// The name of the notebook instance that you want a summary for.
	//
	// This member is required.
	NotebookInstanceName *string

	// An array of up to three Git repositories associated with the notebook instance.
	// These can be either the names of Git repositories stored as resources in your
	// account, or the URL of Git repositories in Amazon Web Services CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
	// or in any other Git repository. These repositories are cloned at the same level
	// as the default repository of your notebook instance. For more information, see
	// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
	// .
	AdditionalCodeRepositories []string

	// A timestamp that shows when the notebook instance was created.
	CreationTime *time.Time

	// The Git repository associated with the notebook instance as its default code
	// repository. This can be either the name of a Git repository stored as a resource
	// in your account, or the URL of a Git repository in Amazon Web Services
	// CodeCommit (https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html)
	// or in any other Git repository. When you open a notebook instance, it opens in
	// the directory that contains this repository. For more information, see
	// Associating Git Repositories with SageMaker Notebook Instances (https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html)
	// .
	DefaultCodeRepository *string

	// The type of ML compute instance that the notebook instance is running on.
	InstanceType InstanceType

	// A timestamp that shows when the notebook instance was last modified.
	LastModifiedTime *time.Time

	// The name of a notebook instance lifecycle configuration associated with this
	// notebook instance. For information about notebook instance lifestyle
	// configurations, see Step 2.1: (Optional) Customize a Notebook Instance (https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html)
	// .
	NotebookInstanceLifecycleConfigName *string

	// The status of the notebook instance.
	NotebookInstanceStatus NotebookInstanceStatus

	// The URL that you use to connect to the Jupyter notebook running in your
	// notebook instance.
	Url *string

	noSmithyDocumentSerde
}

// Configures Amazon SNS notifications of available or expiring work items for
// work teams.
type NotificationConfiguration struct {

	// The ARN for the Amazon SNS topic to which notifications should be published.
	NotificationTopicArn *string

	noSmithyDocumentSerde
}

// Specifies the number of training jobs that this hyperparameter tuning job
// launched, categorized by the status of their objective metric. The objective
// metric status shows whether the final objective metric for the training job has
// been evaluated by the tuning job and used in the hyperparameter tuning process.
type ObjectiveStatusCounters struct {

	// The number of training jobs whose final objective metric was not evaluated and
	// used in the hyperparameter tuning process. This typically occurs when the
	// training job failed or did not emit an objective metric.
	Failed *int32

	// The number of training jobs that are in progress and pending evaluation of
	// their final objective metric.
	Pending *int32

	// The number of training jobs whose final objective metric was evaluated by the
	// hyperparameter tuning job and used in the hyperparameter tuning process.
	Succeeded *int32

	noSmithyDocumentSerde
}

// The configuration of an OfflineStore . Provide an OfflineStoreConfig in a
// request to CreateFeatureGroup to create an OfflineStore . To encrypt an
// OfflineStore using at rest data encryption, specify Amazon Web Services Key
// Management Service (KMS) key ID, or KMSKeyId , in S3StorageConfig .
type OfflineStoreConfig struct {

	// The Amazon Simple Storage (Amazon S3) location of OfflineStore .
	//
	// This member is required.
	S3StorageConfig *S3StorageConfig

	// The meta data of the Glue table that is autogenerated when an OfflineStore is
	// created.
	DataCatalogConfig *DataCatalogConfig

	// Set to True to disable the automatic creation of an Amazon Web Services Glue
	// table when configuring an OfflineStore . If set to False , Feature Store will
	// name the OfflineStore Glue table following Athena's naming recommendations (https://docs.aws.amazon.com/athena/latest/ug/tables-databases-columns-names.html)
	// . The default value is False .
	DisableGlueTableCreation *bool

	// Format for the offline store table. Supported formats are Glue (Default) and
	// Apache Iceberg (https://iceberg.apache.org/) .
	TableFormat TableFormat

	noSmithyDocumentSerde
}

// The status of OfflineStore .
type OfflineStoreStatus struct {

	// An OfflineStore status.
	//
	// This member is required.
	Status OfflineStoreStatusValue

	// The justification for why the OfflineStoreStatus is Blocked (if applicable).
	BlockedReason *string

	noSmithyDocumentSerde
}

// Use this parameter to configure your OIDC Identity Provider (IdP).
type OidcConfig struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	//
	// This member is required.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	//
	// This member is required.
	ClientId *string

	// The OIDC IdP client secret used to configure your private workforce.
	//
	// This member is required.
	ClientSecret *string

	// The OIDC IdP issuer used to configure your private workforce.
	//
	// This member is required.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	//
	// This member is required.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	//
	// This member is required.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	//
	// This member is required.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	//
	// This member is required.
	UserInfoEndpoint *string

	noSmithyDocumentSerde
}

// Your OIDC IdP workforce configuration.
type OidcConfigForResponse struct {

	// The OIDC IdP authorization endpoint used to configure your private workforce.
	AuthorizationEndpoint *string

	// The OIDC IdP client ID used to configure your private workforce.
	ClientId *string

	// The OIDC IdP issuer used to configure your private workforce.
	Issuer *string

	// The OIDC IdP JSON Web Key Set (Jwks) URI used to configure your private
	// workforce.
	JwksUri *string

	// The OIDC IdP logout endpoint used to configure your private workforce.
	LogoutEndpoint *string

	// The OIDC IdP token endpoint used to configure your private workforce.
	TokenEndpoint *string

	// The OIDC IdP user information endpoint used to configure your private workforce.
	UserInfoEndpoint *string

	noSmithyDocumentSerde
}

// A list of user groups that exist in your OIDC Identity Provider (IdP). One to
// ten groups can be used to create a single private work team. When you add a user
// group to the list of Groups , you can add that user group to one or more private
// work teams. If you add a user group to a private work team, all workers in that
// user group are added to the work team.
type OidcMemberDefinition struct {

	// A list of comma seperated strings that identifies user groups in your OIDC IdP.
	// Each user group is made up of a group of private workers.
	Groups []string

	noSmithyDocumentSerde
}

// Use this to specify the Amazon Web Services Key Management Service (KMS) Key
// ID, or KMSKeyId , for at rest data encryption. You can turn OnlineStore on or
// off by specifying the EnableOnlineStore flag at General Assembly. The default
// value is False .
type OnlineStoreConfig struct {

	// Turn OnlineStore off by specifying False for the EnableOnlineStore flag. Turn
	// OnlineStore on by specifying True for the EnableOnlineStore flag. The default
	// value is False .
	EnableOnlineStore *bool

	// Use to specify KMS Key ID ( KMSKeyId ) for at-rest encryption of your
	// OnlineStore .
	SecurityConfig *OnlineStoreSecurityConfig

	// Option for different tiers of low latency storage for real-time data retrieval.
	//   - Standard : A managed low latency data store for feature groups.
	//   - InMemory : A managed data store for feature groups that supports very low
	//   latency retrieval.
	StorageType StorageType

	// Time to live duration, where the record is hard deleted after the expiration
	// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
	// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
	// API in the Amazon SageMaker API Reference guide.
	TtlDuration *TtlDuration

	noSmithyDocumentSerde
}

// Updates the feature group online store configuration.
type OnlineStoreConfigUpdate struct {

	// Time to live duration, where the record is hard deleted after the expiration
	// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
	// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
	// API in the Amazon SageMaker API Reference guide.
	TtlDuration *TtlDuration

	noSmithyDocumentSerde
}

// The security configuration for OnlineStore .
type OnlineStoreSecurityConfig struct {

	// The Amazon Web Services Key Management Service (KMS) key ARN that SageMaker
	// Feature Store uses to encrypt the Amazon S3 objects at rest using Amazon S3
	// server-side encryption. The caller (either user or IAM role) of
	// CreateFeatureGroup must have below permissions to the OnlineStore KmsKeyId :
	//   - "kms:Encrypt"
	//   - "kms:Decrypt"
	//   - "kms:DescribeKey"
	//   - "kms:CreateGrant"
	//   - "kms:RetireGrant"
	//   - "kms:ReEncryptFrom"
	//   - "kms:ReEncryptTo"
	//   - "kms:GenerateDataKey"
	//   - "kms:ListAliases"
	//   - "kms:ListGrants"
	//   - "kms:RevokeGrant"
	// The caller (either user or IAM role) to all DataPlane operations ( PutRecord ,
	// GetRecord , DeleteRecord ) must have the following permissions to the KmsKeyId :
	//   - "kms:Decrypt"
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Contains information about the output location for the compiled model and the
// target device that the model runs on. TargetDevice and TargetPlatform are
// mutually exclusive, so you need to choose one between the two to specify your
// target device or platform. If you cannot find your device you want to use from
// the TargetDevice list, use TargetPlatform to describe the platform of your edge
// device and CompilerOptions if there are specific settings that are required or
// recommended to use for particular TargetPlatform.
type OutputConfig struct {

	// Identifies the S3 bucket where you want Amazon SageMaker to store the model
	// artifacts. For example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3OutputLocation *string

	// Specifies additional parameters for compiler options in JSON format. The
	// compiler options are TargetPlatform specific. It is required for NVIDIA
	// accelerators and highly recommended for CPU compilations. For any other cases,
	// it is optional to specify CompilerOptions.
	//   - DTYPE : Specifies the data type for the input. When compiling for ml_*
	//   (except for ml_inf ) instances using PyTorch framework, provide the data type
	//   (dtype) of the model's input. "float32" is used if "DTYPE" is not specified.
	//   Options for data type are:
	//   - float32: Use either "float" or "float32" .
	//   - int64: Use either "int64" or "long" . For example, {"dtype" : "float32"} .
	//   - CPU : Compilation for CPU supports the following compiler options.
	//   - mcpu : CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'}
	//   - mattr : CPU flags. For example, {'mattr': ['+neon', '+vfpv4']}
	//   - ARM : Details of ARM CPU compilations.
	//   - NEON : NEON is an implementation of the Advanced SIMD extension used in
	//   ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler
	//   options if compiling for ARM 32-bit platform with the NEON support.
	//   - NVIDIA : Compilation for NVIDIA GPU supports the following compiler options.
	//   - gpu_code : Specifies the targeted architecture.
	//   - trt-ver : Specifies the TensorRT versions in x.y.z. format.
	//   - cuda-ver : Specifies the CUDA version in x.y format. For example,
	//   {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'}
	//   - ANDROID : Compilation for the Android OS supports the following compiler
	//   options:
	//   - ANDROID_PLATFORM : Specifies the Android API levels. Available levels range
	//   from 21 to 29. For example, {'ANDROID_PLATFORM': 28} .
	//   - mattr : Add {'mattr': ['+neon']} to compiler options if compiling for ARM
	//   32-bit platform with NEON support.
	//   - INFERENTIA : Compilation for target ml_inf1 uses compiler options passed in
	//   as a JSON string. For example, "CompilerOptions": "\"--verbose 1
	//   --num-neuroncores 2 -O2\"" . For information about supported compiler options,
	//   see Neuron Compiler CLI Reference Guide (https://awsdocs-neuron.readthedocs-hosted.com/en/latest/compiler/neuronx-cc/api-reference-guide/neuron-compiler-cli-reference-guide.html)
	//   .
	//   - CoreML : Compilation for the CoreML OutputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html)
	//   TargetDevice supports the following compiler options:
	//   - class_labels : Specifies the classification labels file name inside input
	//   tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"} .
	//   Labels inside the txt file should be separated by newlines.
	//   - EIA : Compilation for the Elastic Inference Accelerator supports the
	//   following compiler options:
	//   - precision_mode : Specifies the precision of compiled artifacts. Supported
	//   values are "FP16" and "FP32" . Default is "FP32" .
	//   - signature_def_key : Specifies the signature to use for models in SavedModel
	//   format. Defaults is TensorFlow's default signature def key.
	//   - output_names : Specifies a list of output tensor names for models in
	//   FrozenGraph format. Set at most one API field, either: signature_def_key or
	//   output_names . For example: {"precision_mode": "FP32", "output_names":
	//   ["output:0"]}
	CompilerOptions *string

	// The Amazon Web Services Key Management Service key (Amazon Web Services KMS)
	// that Amazon SageMaker uses to encrypt your output models with Amazon S3
	// server-side encryption after compilation job. If you don't provide a KMS key ID,
	// Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account.
	// For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of
	// the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	KmsKeyId *string

	// Identifies the target device or the machine learning instance that you want to
	// run your model on after the compilation has completed. Alternatively, you can
	// specify OS, architecture, and accelerator using TargetPlatform (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TargetPlatform.html)
	// fields. It can be used instead of TargetPlatform . Currently ml_trn1 is
	// available only in US East (N. Virginia) Region, and ml_inf2 is available only
	// in US East (Ohio) Region.
	TargetDevice TargetDevice

	// Contains information about a target platform that you want your model to run
	// on, such as OS, architecture, and accelerators. It is an alternative of
	// TargetDevice . The following examples show how to configure the TargetPlatform
	// and CompilerOptions JSON strings for popular target platforms:
	//   - Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch":
	//   "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']}
	//   - Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64",
	//   "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver':
	//   '6.0.1', 'cuda-ver': '10.0'}
	//   - EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch":
	//   "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu':
	//   'skylake-avx512'}
	//   - RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator":
	//   "MALI"}
	//   - ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"},
	//   "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']}
	//   - ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"},
	//   "CompilerOptions": {'ANDROID_PLATFORM': 29}
	TargetPlatform *TargetPlatform

	noSmithyDocumentSerde
}

// Provides information about how to store model training results (model
// artifacts).
type OutputDataConfig struct {

	// Identifies the S3 path where you want SageMaker to store the model artifacts.
	// For example, s3://bucket-name/key-name-prefix .
	//
	// This member is required.
	S3OutputPath *string

	// The model output compression type. Select None to output an uncompressed model,
	// recommended for large model outputs. Defaults to gzip.
	CompressionType OutputCompressionType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the model artifacts at rest using Amazon S3
	// server-side encryption. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias
	//   "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
	// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
	// role must include permissions to call kms:Encrypt . If you don't provide a KMS
	// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
	// account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. If the output data is
	// stored in Amazon S3 Express One Zone, it is encrypted with server-side
	// encryption with Amazon S3 managed keys (SSE-S3). KMS key is not supported for
	// Amazon S3 Express One Zone The KMS key policy must grant permission to the IAM
	// role that you specify in your CreateTrainingJob , CreateTransformJob , or
	// CreateHyperParameterTuningJob requests. For more information, see Using Key
	// Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// An output parameter of a pipeline step.
type OutputParameter struct {

	// The name of the output parameter.
	//
	// This member is required.
	Name *string

	// The value of the output parameter.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// The collection of ownership settings for a space.
type OwnershipSettings struct {

	// The user profile who is the owner of the private space.
	//
	// This member is required.
	OwnerUserProfileName *string

	noSmithyDocumentSerde
}

// Specifies summary information about the ownership settings.
type OwnershipSettingsSummary struct {

	// The user profile who is the owner of the private space.
	OwnerUserProfileName *string

	noSmithyDocumentSerde
}

// Configuration that controls the parallelism of the pipeline. By default, the
// parallelism configuration specified applies to all executions of the pipeline
// unless overridden.
type ParallelismConfiguration struct {

	// The max number of steps that can be executed in parallel.
	//
	// This member is required.
	MaxParallelExecutionSteps *int32

	noSmithyDocumentSerde
}

// Assigns a value to a named Pipeline parameter.
type Parameter struct {

	// The name of the parameter to assign a value to. This parameter name must match
	// a named parameter in the pipeline definition.
	//
	// This member is required.
	Name *string

	// The literal value for the parameter.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// Defines the possible values for categorical, continuous, and integer
// hyperparameters to be used by an algorithm.
type ParameterRange struct {

	// A CategoricalParameterRangeSpecification object that defines the possible
	// values for a categorical hyperparameter.
	CategoricalParameterRangeSpecification *CategoricalParameterRangeSpecification

	// A ContinuousParameterRangeSpecification object that defines the possible values
	// for a continuous hyperparameter.
	ContinuousParameterRangeSpecification *ContinuousParameterRangeSpecification

	// A IntegerParameterRangeSpecification object that defines the possible values
	// for an integer hyperparameter.
	IntegerParameterRangeSpecification *IntegerParameterRangeSpecification

	noSmithyDocumentSerde
}

// Specifies ranges of integer, continuous, and categorical hyperparameters that a
// hyperparameter tuning job searches. The hyperparameter tuning job launches
// training jobs with hyperparameter values within these ranges to find the
// combination of values that result in the training job with the best performance
// as measured by the objective metric of the hyperparameter tuning job. The
// maximum number of items specified for Array Members refers to the maximum
// number of hyperparameters for each range and also the maximum for the
// hyperparameter tuning job itself. That is, the sum of the number of
// hyperparameters for all the ranges can't exceed the maximum number specified.
type ParameterRanges struct {

	// A list containing hyperparameter names and example values to be used by
	// Autotune to determine optimal ranges for your tuning job.
	AutoParameters []AutoParameter

	// The array of CategoricalParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CategoricalParameterRange.html)
	// objects that specify ranges of categorical hyperparameters that a hyperparameter
	// tuning job searches.
	CategoricalParameterRanges []CategoricalParameterRange

	// The array of ContinuousParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ContinuousParameterRange.html)
	// objects that specify ranges of continuous hyperparameters that a hyperparameter
	// tuning job searches.
	ContinuousParameterRanges []ContinuousParameterRange

	// The array of IntegerParameterRange (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_IntegerParameterRange.html)
	// objects that specify ranges of integer hyperparameters that a hyperparameter
	// tuning job searches.
	IntegerParameterRanges []IntegerParameterRange

	noSmithyDocumentSerde
}

// The trial that a trial component is associated with and the experiment the
// trial is part of. A component might not be associated with a trial. A component
// can be associated with multiple trials.
type Parent struct {

	// The name of the experiment.
	ExperimentName *string

	// The name of the trial.
	TrialName *string

	noSmithyDocumentSerde
}

// A previously completed or stopped hyperparameter tuning job to be used as a
// starting point for a new hyperparameter tuning job.
type ParentHyperParameterTuningJob struct {

	// The name of the hyperparameter tuning job to be used as a starting point for a
	// new hyperparameter tuning job.
	HyperParameterTuningJobName *string

	noSmithyDocumentSerde
}

// The summary of an in-progress deployment when an endpoint is creating or
// updating with a new endpoint configuration.
type PendingDeploymentSummary struct {

	// The name of the endpoint configuration used in the deployment.
	//
	// This member is required.
	EndpointConfigName *string

	// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
	// objects, one for each model hosted behind this endpoint for the in-progress
	// deployment.
	ProductionVariants []PendingProductionVariantSummary

	// An array of PendingProductionVariantSummary (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_PendingProductionVariantSummary.html)
	// objects, one for each model hosted behind this endpoint in shadow mode with
	// production traffic replicated from the model specified on ProductionVariants
	// for the in-progress deployment.
	ShadowProductionVariants []PendingProductionVariantSummary

	// The start time of the deployment.
	StartTime *time.Time

	noSmithyDocumentSerde
}

// The production variant summary for a deployment when an endpoint is creating or
// updating with the CreateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html)
// or UpdateEndpoint (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// operations. Describes the VariantStatus , weight and capacity for a production
// variant associated with an endpoint.
type PendingProductionVariantSummary struct {

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	// The size of the Elastic Inference (EI) instance to use for the production
	// variant. EI instances provide on-demand GPU computing for inference. For more
	// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
	// .
	AcceleratorType ProductionVariantAcceleratorType

	// The number of instances associated with the variant.
	CurrentInstanceCount *int32

	// The serverless configuration for the endpoint.
	CurrentServerlessConfig *ProductionVariantServerlessConfig

	// The weight associated with the variant.
	CurrentWeight *float32

	// An array of DeployedImage objects that specify the Amazon EC2 Container
	// Registry paths of the inference images deployed on instances of this
	// ProductionVariant .
	DeployedImages []DeployedImage

	// The number of instances requested in this deployment, as specified in the
	// endpoint configuration for the endpoint. The value is taken from the request to
	// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	// operation.
	DesiredInstanceCount *int32

	// The serverless configuration requested for this deployment, as specified in the
	// endpoint configuration for the endpoint.
	DesiredServerlessConfig *ProductionVariantServerlessConfig

	// The requested weight for the variant in this deployment, as specified in the
	// endpoint configuration for the endpoint. The value is taken from the request to
	// the CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	// operation.
	DesiredWeight *float32

	// The type of instances associated with the variant.
	InstanceType ProductionVariantInstanceType

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	VariantStatus []ProductionVariantStatus

	noSmithyDocumentSerde
}

// Defines the traffic pattern.
type Phase struct {

	// Specifies how long a traffic phase should be. For custom load tests, the value
	// should be between 120 and 3600. This value should not exceed
	// JobDurationInSeconds .
	DurationInSeconds *int32

	// Specifies how many concurrent users to start with. The value should be between
	// 1 and 3.
	InitialNumberOfUsers *int32

	// Specified how many new users to spawn in a minute.
	SpawnRate *int32

	noSmithyDocumentSerde
}

// A SageMaker Model Building Pipeline instance.
type Pipeline struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The creation time of the pipeline.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The time that the pipeline was last modified.
	LastModifiedTime *time.Time

	// The time when the pipeline was last run.
	LastRunTime *time.Time

	// The parallelism configuration applied to the pipeline.
	ParallelismConfiguration *ParallelismConfiguration

	// The Amazon Resource Name (ARN) of the pipeline.
	PipelineArn *string

	// The description of the pipeline.
	PipelineDescription *string

	// The display name of the pipeline.
	PipelineDisplayName *string

	// The name of the pipeline.
	PipelineName *string

	// The status of the pipeline.
	PipelineStatus PipelineStatus

	// The Amazon Resource Name (ARN) of the role that created the pipeline.
	RoleArn *string

	// A list of tags that apply to the pipeline.
	Tags []Tag

	noSmithyDocumentSerde
}

// The location of the pipeline definition stored in Amazon S3.
type PipelineDefinitionS3Location struct {

	// Name of the S3 bucket.
	//
	// This member is required.
	Bucket *string

	// The object key (or key name) uniquely identifies the object in an S3 bucket.
	//
	// This member is required.
	ObjectKey *string

	// Version Id of the pipeline definition file. If not specified, Amazon SageMaker
	// will retrieve the latest version.
	VersionId *string

	noSmithyDocumentSerde
}

// An execution of a pipeline.
type PipelineExecution struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// The creation time of the pipeline execution.
	CreationTime *time.Time

	// If the execution failed, a message describing why.
	FailureReason *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// The time that the pipeline execution was last modified.
	LastModifiedTime *time.Time

	// The parallelism configuration applied to the pipeline execution.
	ParallelismConfiguration *ParallelismConfiguration

	// The Amazon Resource Name (ARN) of the pipeline that was executed.
	PipelineArn *string

	// The Amazon Resource Name (ARN) of the pipeline execution.
	PipelineExecutionArn *string

	// The description of the pipeline execution.
	PipelineExecutionDescription *string

	// The display name of the pipeline execution.
	PipelineExecutionDisplayName *string

	// The status of the pipeline status.
	PipelineExecutionStatus PipelineExecutionStatus

	// Specifies the names of the experiment and trial created by a pipeline.
	PipelineExperimentConfig *PipelineExperimentConfig

	// Contains a list of pipeline parameters. This list can be empty.
	PipelineParameters []Parameter

	// The selective execution configuration applied to the pipeline run.
	SelectiveExecutionConfig *SelectiveExecutionConfig

	noSmithyDocumentSerde
}

// An execution of a step in a pipeline.
type PipelineExecutionStep struct {

	// The current attempt of the execution step. For more information, see Retry
	// Policy for SageMaker Pipelines steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-retry-policy.html)
	// .
	AttemptCount *int32

	// If this pipeline execution step was cached, details on the cache hit.
	CacheHitResult *CacheHitResult

	// The time that the step stopped executing.
	EndTime *time.Time

	// The reason why the step failed execution. This is only returned if the step
	// failed its execution.
	FailureReason *string

	// Metadata to run the pipeline step.
	Metadata *PipelineExecutionStepMetadata

	// The ARN from an execution of the current pipeline from which results are reused
	// for this step.
	SelectiveExecutionResult *SelectiveExecutionResult

	// The time that the step started executing.
	StartTime *time.Time

	// The description of the step.
	StepDescription *string

	// The display name of the step.
	StepDisplayName *string

	// The name of the step that is executed.
	StepName *string

	// The status of the step execution.
	StepStatus StepStatus

	noSmithyDocumentSerde
}

// Metadata for a step execution.
type PipelineExecutionStepMetadata struct {

	// The Amazon Resource Name (ARN) of the AutoML job that was run by this step.
	AutoMLJob *AutoMLJobStepMetadata

	// The URL of the Amazon SQS queue used by this step execution, the pipeline
	// generated token, and a list of output parameters.
	Callback *CallbackStepMetadata

	// Container for the metadata for a Clarify check step. The configurations and
	// outcomes of the check step execution. This includes:
	//   - The type of the check conducted,
	//   - The Amazon S3 URIs of baseline constraints and statistics files to be used
	//   for the drift check.
	//   - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
	//   - The model package group name provided.
	//   - The Amazon S3 URI of the violation report if violations detected.
	//   - The Amazon Resource Name (ARN) of check processing job initiated by the
	//   step execution.
	//   - The boolean flags indicating if the drift check is skipped.
	//   - If step property BaselineUsedForDriftCheck is set the same as
	//   CalculatedBaseline .
	ClarifyCheck *ClarifyCheckStepMetadata

	// The outcome of the condition evaluation that was run by this step execution.
	Condition *ConditionStepMetadata

	// The configurations and outcomes of an Amazon EMR step execution.
	EMR *EMRStepMetadata

	// The configurations and outcomes of a Fail step execution.
	Fail *FailStepMetadata

	// The Amazon Resource Name (ARN) of the Lambda function that was run by this step
	// execution and a list of output parameters.
	Lambda *LambdaStepMetadata

	// The Amazon Resource Name (ARN) of the model that was created by this step
	// execution.
	Model *ModelStepMetadata

	// The Amazon Resource Name (ARN) of the processing job that was run by this step
	// execution.
	ProcessingJob *ProcessingJobStepMetadata

	// The configurations and outcomes of the check step execution. This includes:
	//   - The type of the check conducted.
	//   - The Amazon S3 URIs of baseline constraints and statistics files to be used
	//   for the drift check.
	//   - The Amazon S3 URIs of newly calculated baseline constraints and statistics.
	//   - The model package group name provided.
	//   - The Amazon S3 URI of the violation report if violations detected.
	//   - The Amazon Resource Name (ARN) of check processing job initiated by the
	//   step execution.
	//   - The Boolean flags indicating if the drift check is skipped.
	//   - If step property BaselineUsedForDriftCheck is set the same as
	//   CalculatedBaseline .
	QualityCheck *QualityCheckStepMetadata

	// The Amazon Resource Name (ARN) of the model package that the model was
	// registered to by this step execution.
	RegisterModel *RegisterModelStepMetadata

	// The Amazon Resource Name (ARN) of the training job that was run by this step
	// execution.
	TrainingJob *TrainingJobStepMetadata

	// The Amazon Resource Name (ARN) of the transform job that was run by this step
	// execution.
	TransformJob *TransformJobStepMetadata

	// The Amazon Resource Name (ARN) of the tuning job that was run by this step
	// execution.
	TuningJob *TuningJobStepMetaData

	noSmithyDocumentSerde
}

// A pipeline execution summary.
type PipelineExecutionSummary struct {

	// The Amazon Resource Name (ARN) of the pipeline execution.
	PipelineExecutionArn *string

	// The description of the pipeline execution.
	PipelineExecutionDescription *string

	// The display name of the pipeline execution.
	PipelineExecutionDisplayName *string

	// A message generated by SageMaker Pipelines describing why the pipeline
	// execution failed.
	PipelineExecutionFailureReason *string

	// The status of the pipeline execution.
	PipelineExecutionStatus PipelineExecutionStatus

	// The start time of the pipeline execution.
	StartTime *time.Time

	noSmithyDocumentSerde
}

// Specifies the names of the experiment and trial created by a pipeline.
type PipelineExperimentConfig struct {

	// The name of the experiment.
	ExperimentName *string

	// The name of the trial.
	TrialName *string

	noSmithyDocumentSerde
}

// A summary of a pipeline.
type PipelineSummary struct {

	// The creation time of the pipeline.
	CreationTime *time.Time

	// The last time that a pipeline execution began.
	LastExecutionTime *time.Time

	// The time that the pipeline was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the pipeline.
	PipelineArn *string

	// The description of the pipeline.
	PipelineDescription *string

	// The display name of the pipeline.
	PipelineDisplayName *string

	// The name of the pipeline.
	PipelineName *string

	// The Amazon Resource Name (ARN) that the pipeline used to execute.
	RoleArn *string

	noSmithyDocumentSerde
}

// A specification for a predefined metric.
type PredefinedMetricSpecification struct {

	// The metric type. You can only apply SageMaker metric types to SageMaker
	// endpoints.
	PredefinedMetricType *string

	noSmithyDocumentSerde
}

// Configuration for the cluster used to run a processing job.
type ProcessingClusterConfig struct {

	// The number of ML compute instances to use in the processing job. For
	// distributed processing jobs, specify a value greater than 1. The default value
	// is 1.
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the processing job.
	//
	// This member is required.
	InstanceType ProcessingInstanceType

	// The size of the ML storage volume in gigabytes that you want to provision. You
	// must specify sufficient ML storage for your scenario. Certain Nitro-based
	// instances include local storage with a fixed total size, dependent on the
	// instance type. When using these instances for processing, Amazon SageMaker
	// mounts the local instance storage instead of Amazon EBS gp2 storage. You can't
	// request a VolumeSizeInGB greater than the total size of the local instance
	// storage. For a list of instance types that support local instance storage,
	// including the total size per instance type, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// .
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data on the storage volume attached to the
	// ML compute instance(s) that run the processing job. Certain Nitro-based
	// instances include local storage, dependent on the instance type. Local storage
	// volumes are encrypted using a hardware module on the instance. You can't request
	// a VolumeKmsKeyId when using an instance type with local storage. For a list of
	// instance types that support local instance storage, see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// .
	VolumeKmsKeyId *string

	noSmithyDocumentSerde
}

// Configuration for processing job outputs in Amazon SageMaker Feature Store.
type ProcessingFeatureStoreOutput struct {

	// The name of the Amazon SageMaker FeatureGroup to use as the destination for
	// processing job output. Note that your processing script is responsible for
	// putting records into your Feature Store.
	//
	// This member is required.
	FeatureGroupName *string

	noSmithyDocumentSerde
}

// The inputs for a processing job. The processing input must specify exactly one
// of either S3Input or DatasetDefinition types.
type ProcessingInput struct {

	// The name for the processing job input.
	//
	// This member is required.
	InputName *string

	// When True , input operations such as data download are managed natively by the
	// processing job application. When False (default), input operations are managed
	// by Amazon SageMaker.
	AppManaged *bool

	// Configuration for a Dataset Definition input.
	DatasetDefinition *DatasetDefinition

	// Configuration for downloading input data from Amazon S3 into the processing
	// container.
	S3Input *ProcessingS3Input

	noSmithyDocumentSerde
}

// An Amazon SageMaker processing job that is used to analyze data and evaluate
// models. For more information, see Process Data and Evaluate Models (https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html)
// .
type ProcessingJob struct {

	// Configuration to run a processing job in a specified container image.
	AppSpecification *AppSpecification

	// The Amazon Resource Name (ARN) of the AutoML job associated with this
	// processing job.
	AutoMLJobArn *string

	// The time the processing job was created.
	CreationTime *time.Time

	// Sets the environment variables in the Docker container.
	Environment map[string]string

	// A string, up to one KB in size, that contains metadata from the processing
	// container when the processing job exits.
	ExitMessage *string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// The time the processing job was last modified.
	LastModifiedTime *time.Time

	// The ARN of a monitoring schedule for an endpoint associated with this
	// processing job.
	MonitoringScheduleArn *string

	// Networking options for a job, such as network traffic encryption between
	// containers, whether to allow inbound and outbound network calls to and from
	// containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
	NetworkConfig *NetworkConfig

	// The time that the processing job ended.
	ProcessingEndTime *time.Time

	// List of input configurations for the processing job.
	ProcessingInputs []ProcessingInput

	// The ARN of the processing job.
	ProcessingJobArn *string

	// The name of the processing job.
	ProcessingJobName *string

	// The status of the processing job.
	ProcessingJobStatus ProcessingJobStatus

	// Configuration for uploading output from the processing container.
	ProcessingOutputConfig *ProcessingOutputConfig

	// Identifies the resources, ML compute instances, and ML storage volumes to
	// deploy for a processing job. In distributed training, you specify more than one
	// instance.
	ProcessingResources *ProcessingResources

	// The time that the processing job started.
	ProcessingStartTime *time.Time

	// The ARN of the role used to create the processing job.
	RoleArn *string

	// Configures conditions under which the processing job should be stopped, such as
	// how long the processing job has been running. After the condition is met, the
	// processing job is stopped.
	StoppingCondition *ProcessingStoppingCondition

	// An array of key-value pairs. For more information, see Using Cost Allocation
	// Tags (https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-whatURL)
	// in the Amazon Web Services Billing and Cost Management User Guide.
	Tags []Tag

	// The ARN of the training job associated with this processing job.
	TrainingJobArn *string

	noSmithyDocumentSerde
}

// Metadata for a processing job step.
type ProcessingJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the processing job.
	Arn *string

	noSmithyDocumentSerde
}

// Summary of information about a processing job.
type ProcessingJobSummary struct {

	// The time at which the processing job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the processing job..
	//
	// This member is required.
	ProcessingJobArn *string

	// The name of the processing job.
	//
	// This member is required.
	ProcessingJobName *string

	// The status of the processing job.
	//
	// This member is required.
	ProcessingJobStatus ProcessingJobStatus

	// An optional string, up to one KB in size, that contains metadata from the
	// processing container when the processing job exits.
	ExitMessage *string

	// A string, up to one KB in size, that contains the reason a processing job
	// failed, if it failed.
	FailureReason *string

	// A timestamp that indicates the last time the processing job was modified.
	LastModifiedTime *time.Time

	// The time at which the processing job completed.
	ProcessingEndTime *time.Time

	noSmithyDocumentSerde
}

// Describes the results of a processing job. The processing output must specify
// exactly one of either S3Output or FeatureStoreOutput types.
type ProcessingOutput struct {

	// The name for the processing job output.
	//
	// This member is required.
	OutputName *string

	// When True , output operations such as data upload are managed natively by the
	// processing job application. When False (default), output operations are managed
	// by Amazon SageMaker.
	AppManaged *bool

	// Configuration for processing job outputs in Amazon SageMaker Feature Store.
	// This processing output type is only supported when AppManaged is specified.
	FeatureStoreOutput *ProcessingFeatureStoreOutput

	// Configuration for processing job outputs in Amazon S3.
	S3Output *ProcessingS3Output

	noSmithyDocumentSerde
}

// Configuration for uploading output from the processing container.
type ProcessingOutputConfig struct {

	// An array of outputs configuring the data to upload from the processing
	// container.
	//
	// This member is required.
	Outputs []ProcessingOutput

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt the processing job output. KmsKeyId can
	// be an ID of a KMS key, ARN of a KMS key, alias of a KMS key, or alias of a KMS
	// key. The KmsKeyId is applied to all outputs.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Identifies the resources, ML compute instances, and ML storage volumes to
// deploy for a processing job. In distributed training, you specify more than one
// instance.
type ProcessingResources struct {

	// The configuration for the resources in a cluster used to run the processing job.
	//
	// This member is required.
	ClusterConfig *ProcessingClusterConfig

	noSmithyDocumentSerde
}

// Configuration for downloading input data from Amazon S3 into the processing
// container.
type ProcessingS3Input struct {

	// Whether you use an S3Prefix or a ManifestFile for the data type. If you choose
	// S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker uses all
	// objects with the specified key name prefix for the processing job. If you choose
	// ManifestFile , S3Uri identifies an object that is a manifest file containing a
	// list of object keys that you want Amazon SageMaker to use for the processing
	// job.
	//
	// This member is required.
	S3DataType ProcessingS3DataType

	// The URI of the Amazon S3 prefix Amazon SageMaker downloads data required to run
	// a processing job.
	//
	// This member is required.
	S3Uri *string

	// The local path in your container where you want Amazon SageMaker to write input
	// data to. LocalPath is an absolute path to the input data and must begin with
	// /opt/ml/processing/ . LocalPath is a required parameter when AppManaged is False
	// (default).
	LocalPath *string

	// Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the
	// processing container. Gzip can only be used when Pipe mode is specified as the
	// S3InputMode . In Pipe mode, Amazon SageMaker streams input data from the source
	// directly to your container without using the EBS volume.
	S3CompressionType ProcessingS3CompressionType

	// Whether to distribute the data from Amazon S3 to all processing instances with
	// FullyReplicated , or whether the data from Amazon S3 is shared by Amazon S3 key,
	// downloading one shard of data to each processing instance.
	S3DataDistributionType ProcessingS3DataDistributionType

	// Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies
	// the data from the input source onto the local ML storage volume before starting
	// your processing container. This is the most commonly used input mode. In Pipe
	// mode, Amazon SageMaker streams input data from the source directly to your
	// processing container into named pipes without using the ML storage volume.
	S3InputMode ProcessingS3InputMode

	noSmithyDocumentSerde
}

// Configuration for uploading output data to Amazon S3 from the processing
// container.
type ProcessingS3Output struct {

	// The local path of a directory where you want Amazon SageMaker to upload its
	// contents to Amazon S3. LocalPath is an absolute path to a directory containing
	// output files. This directory will be created by the platform and exist when your
	// container's entrypoint is invoked.
	//
	// This member is required.
	LocalPath *string

	// Whether to upload the results of the processing job continuously or after the
	// job completes.
	//
	// This member is required.
	S3UploadMode ProcessingS3UploadMode

	// A URI that identifies the Amazon S3 bucket where you want Amazon SageMaker to
	// save the results of a processing job.
	//
	// This member is required.
	S3Uri *string

	noSmithyDocumentSerde
}

// Configures conditions under which the processing job should be stopped, such as
// how long the processing job has been running. After the condition is met, the
// processing job is stopped.
type ProcessingStoppingCondition struct {

	// Specifies the maximum runtime in seconds.
	//
	// This member is required.
	MaxRuntimeInSeconds *int32

	noSmithyDocumentSerde
}

// Identifies a model that you want to host and the resources chosen to deploy for
// hosting it. If you are deploying multiple models, tell SageMaker how to
// distribute traffic among the models by specifying variant weights. For more
// information on production variants, check Production variants (https://docs.aws.amazon.com/sagemaker/latest/dg/model-ab-testing.html)
// .
type ProductionVariant struct {

	// The name of the production variant.
	//
	// This member is required.
	VariantName *string

	// The size of the Elastic Inference (EI) instance to use for the production
	// variant. EI instances provide on-demand GPU computing for inference. For more
	// information, see Using Elastic Inference in Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html)
	// .
	AcceleratorType ProductionVariantAcceleratorType

	// The timeout value, in seconds, for your inference container to pass health
	// check by SageMaker Hosting. For more information about health check, see How
	// Your Container Should Respond to Health Check (Ping) Requests (https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-code.html#your-algorithms-inference-algo-ping-requests)
	// .
	ContainerStartupHealthCheckTimeoutInSeconds *int32

	// Specifies configuration for a core dump from the model container when the
	// process crashes.
	CoreDumpConfig *ProductionVariantCoreDumpConfig

	// You can use this parameter to turn on native Amazon Web Services Systems
	// Manager (SSM) access for a production variant behind an endpoint. By default,
	// SSM access is disabled for all production variants behind an endpoint. You can
	// turn on or turn off SSM access for a production variant behind an existing
	// endpoint by creating a new endpoint configuration and calling UpdateEndpoint .
	EnableSSMAccess *bool

	// Number of instances to launch initially.
	InitialInstanceCount *int32

	// Determines initial traffic distribution among all of the models that you
	// specify in the endpoint configuration. The traffic to a production variant is
	// determined by the ratio of the VariantWeight to the sum of all VariantWeight
	// values across all ProductionVariants. If unspecified, it defaults to 1.0.
	InitialVariantWeight *float32

	// The ML compute instance type.
	InstanceType ProductionVariantInstanceType

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// The timeout value, in seconds, to download and extract the model that you want
	// to host from Amazon S3 to the individual inference instance associated with this
	// production variant.
	ModelDataDownloadTimeoutInSeconds *int32

	// The name of the model that you want to host. This is the name that you
	// specified when creating the model.
	ModelName *string

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The serverless configuration for an endpoint. Specifies a serverless endpoint
	// configuration instead of an instance-based endpoint configuration.
	ServerlessConfig *ProductionVariantServerlessConfig

	// The size, in GB, of the ML storage volume attached to individual inference
	// instance associated with the production variant. Currently only Amazon EBS gp2
	// storage volumes are supported.
	VolumeSizeInGB *int32

	noSmithyDocumentSerde
}

// Specifies configuration for a core dump from the model container when the
// process crashes.
type ProductionVariantCoreDumpConfig struct {

	// The Amazon S3 bucket to send the core dump to.
	//
	// This member is required.
	DestinationS3Uri *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that SageMaker uses to encrypt the core dump data at rest using Amazon S3
	// server-side encryption. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias
	//   "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
	// If you use a KMS key ID or an alias of your KMS key, the SageMaker execution
	// role must include permissions to call kms:Encrypt . If you don't provide a KMS
	// key ID, SageMaker uses the default KMS key for Amazon S3 for your role's
	// account. SageMaker uses server-side encryption with KMS-managed keys for
	// OutputDataConfig . If you use a bucket policy with an s3:PutObject permission
	// that only allows objects with server-side encryption, set the condition key of
	// s3:x-amz-server-side-encryption to "aws:kms" . For more information, see
	// KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
	// grant permission to the IAM role that you specify in your CreateEndpoint and
	// UpdateEndpoint requests. For more information, see Using Key Policies in Amazon
	// Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Settings that control the range in the number of instances that the endpoint
// provisions as it scales up or down to accommodate traffic.
type ProductionVariantManagedInstanceScaling struct {

	// The maximum number of instances that the endpoint can provision when it scales
	// up to accommodate an increase in traffic.
	MaxInstanceCount *int32

	// The minimum number of instances that the endpoint must retain when it scales
	// down to accommodate a decrease in traffic.
	MinInstanceCount *int32

	// Indicates whether managed instance scaling is enabled.
	Status ManagedInstanceScalingStatus

	noSmithyDocumentSerde
}

// Settings that control how the endpoint routes incoming traffic to the instances
// that the endpoint hosts.
type ProductionVariantRoutingConfig struct {

	// Sets how the endpoint routes incoming traffic:
	//   - LEAST_OUTSTANDING_REQUESTS : The endpoint routes requests to the specific
	//   instances that have more capacity to process them.
	//   - RANDOM : The endpoint routes each request to a randomly chosen instance.
	//
	// This member is required.
	RoutingStrategy RoutingStrategy

	noSmithyDocumentSerde
}

// Specifies the serverless configuration for an endpoint variant.
type ProductionVariantServerlessConfig struct {

	// The maximum number of concurrent invocations your serverless endpoint can
	// process.
	//
	// This member is required.
	MaxConcurrency *int32

	// The memory size of your serverless endpoint. Valid values are in 1 GB
	// increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
	//
	// This member is required.
	MemorySizeInMB *int32

	// The amount of provisioned concurrency to allocate for the serverless endpoint.
	// Should be less than or equal to MaxConcurrency . This field is not supported for
	// serverless endpoint recommendations for Inference Recommender jobs. For more
	// information about creating an Inference Recommender job, see
	// CreateInferenceRecommendationsJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
	// .
	ProvisionedConcurrency *int32

	noSmithyDocumentSerde
}

// Specifies the serverless update concurrency configuration for an endpoint
// variant.
type ProductionVariantServerlessUpdateConfig struct {

	// The updated maximum number of concurrent invocations your serverless endpoint
	// can process.
	MaxConcurrency *int32

	// The updated amount of provisioned concurrency to allocate for the serverless
	// endpoint. Should be less than or equal to MaxConcurrency .
	ProvisionedConcurrency *int32

	noSmithyDocumentSerde
}

// Describes the status of the production variant.
type ProductionVariantStatus struct {

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	//   - Creating : Creating inference resources for the production variant.
	//   - Deleting : Terminating inference resources for the production variant.
	//   - Updating : Updating capacity for the production variant.
	//   - ActivatingTraffic : Turning on traffic for the production variant.
	//   - Baking : Waiting period to monitor the CloudWatch alarms in the automatic
	//   rollback configuration.
	//
	// This member is required.
	Status VariantStatus

	// The start time of the current status change.
	StartTime *time.Time

	// A message that describes the status of the production variant.
	StatusMessage *string

	noSmithyDocumentSerde
}

// Describes weight and capacities for a production variant associated with an
// endpoint. If you sent a request to the UpdateEndpointWeightsAndCapacities API
// and the endpoint status is Updating , you get different desired and current
// values.
type ProductionVariantSummary struct {

	// The name of the variant.
	//
	// This member is required.
	VariantName *string

	// The number of instances associated with the variant.
	CurrentInstanceCount *int32

	// The serverless configuration for the endpoint.
	CurrentServerlessConfig *ProductionVariantServerlessConfig

	// The weight associated with the variant.
	CurrentWeight *float32

	// An array of DeployedImage objects that specify the Amazon EC2 Container
	// Registry paths of the inference images deployed on instances of this
	// ProductionVariant .
	DeployedImages []DeployedImage

	// The number of instances requested in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredInstanceCount *int32

	// The serverless configuration requested for the endpoint update.
	DesiredServerlessConfig *ProductionVariantServerlessConfig

	// The requested weight, as specified in the UpdateEndpointWeightsAndCapacities
	// request.
	DesiredWeight *float32

	// Settings that control the range in the number of instances that the endpoint
	// provisions as it scales up or down to accommodate traffic.
	ManagedInstanceScaling *ProductionVariantManagedInstanceScaling

	// Settings that control how the endpoint routes incoming traffic to the instances
	// that the endpoint hosts.
	RoutingConfig *ProductionVariantRoutingConfig

	// The endpoint variant status which describes the current deployment stage status
	// or operational status.
	VariantStatus []ProductionVariantStatus

	noSmithyDocumentSerde
}

// Configuration information for Amazon SageMaker Debugger system monitoring,
// framework profiling, and storage paths.
type ProfilerConfig struct {

	// Configuration to turn off Amazon SageMaker Debugger's system monitoring and
	// profiling functionality. To turn it off, set to True .
	DisableProfiler *bool

	// A time interval for capturing system metrics in milliseconds. Available values
	// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
	// milliseconds. The default value is 500 milliseconds.
	ProfilingIntervalInMilliseconds *int64

	// Configuration information for capturing framework metrics. Available key
	// strings for different profiling options are DetailedProfilingConfig ,
	// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
	// configuration structures for the ProfilingParameters parameter. To learn more
	// about how to configure the ProfilingParameters parameter, see Use the SageMaker
	// and Debugger Configuration API Operations to Create, Update, and Debug Your
	// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	ProfilingParameters map[string]string

	// Path to Amazon S3 storage location for system and framework metrics.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// Configuration information for updating the Amazon SageMaker Debugger profile
// parameters, system and framework metrics configurations, and storage paths.
type ProfilerConfigForUpdate struct {

	// To turn off Amazon SageMaker Debugger monitoring and profiling while a training
	// job is in progress, set to True .
	DisableProfiler *bool

	// A time interval for capturing system metrics in milliseconds. Available values
	// are 100, 200, 500, 1000 (1 second), 5000 (5 seconds), and 60000 (1 minute)
	// milliseconds. The default value is 500 milliseconds.
	ProfilingIntervalInMilliseconds *int64

	// Configuration information for capturing framework metrics. Available key
	// strings for different profiling options are DetailedProfilingConfig ,
	// PythonProfilingConfig , and DataLoaderProfilingConfig . The following codes are
	// configuration structures for the ProfilingParameters parameter. To learn more
	// about how to configure the ProfilingParameters parameter, see Use the SageMaker
	// and Debugger Configuration API Operations to Create, Update, and Debug Your
	// Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	ProfilingParameters map[string]string

	// Path to Amazon S3 storage location for system and framework metrics.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// Configuration information for profiling rules.
type ProfilerRuleConfiguration struct {

	// The name of the rule configuration. It must be unique relative to other rule
	// configuration names.
	//
	// This member is required.
	RuleConfigurationName *string

	// The Amazon Elastic Container Registry Image for the managed rule evaluation.
	//
	// This member is required.
	RuleEvaluatorImage *string

	// The instance type to deploy a custom rule for profiling a training job.
	InstanceType ProcessingInstanceType

	// Path to local storage location for output of rules. Defaults to
	// /opt/ml/processing/output/rule/ .
	LocalPath *string

	// Runtime configuration for rule container.
	RuleParameters map[string]string

	// Path to Amazon S3 storage location for rules.
	S3OutputPath *string

	// The size, in GB, of the ML storage volume attached to the processing instance.
	VolumeSizeInGB *int32

	noSmithyDocumentSerde
}

// Information about the status of the rule evaluation.
type ProfilerRuleEvaluationStatus struct {

	// Timestamp when the rule evaluation status was last modified.
	LastModifiedTime *time.Time

	// The name of the rule configuration.
	RuleConfigurationName *string

	// The Amazon Resource Name (ARN) of the rule evaluation job.
	RuleEvaluationJobArn *string

	// Status of the rule evaluation.
	RuleEvaluationStatus RuleEvaluationStatus

	// Details from the rule evaluation.
	StatusDetails *string

	noSmithyDocumentSerde
}

// The properties of a project as returned by the Search API.
type Project struct {

	// Who created the project.
	CreatedBy *UserContext

	// A timestamp specifying when the project was created.
	CreationTime *time.Time

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// A timestamp container for when the project was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the project.
	ProjectArn *string

	// The description of the project.
	ProjectDescription *string

	// The ID of the project.
	ProjectId *string

	// The name of the project.
	ProjectName *string

	// The status of the project.
	ProjectStatus ProjectStatus

	// Details of a provisioned service catalog product. For information about service
	// catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
	// .
	ServiceCatalogProvisionedProductDetails *ServiceCatalogProvisionedProductDetails

	// Details that you specify to provision a service catalog product. For
	// information about service catalog, see What is Amazon Web Services Service
	// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
	// .
	ServiceCatalogProvisioningDetails *ServiceCatalogProvisioningDetails

	// An array of key-value pairs. You can use tags to categorize your Amazon Web
	// Services resources in different ways, for example, by purpose, owner, or
	// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag

	noSmithyDocumentSerde
}

// Information about a project.
type ProjectSummary struct {

	// The time that the project was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the project.
	//
	// This member is required.
	ProjectArn *string

	// The ID of the project.
	//
	// This member is required.
	ProjectId *string

	// The name of the project.
	//
	// This member is required.
	ProjectName *string

	// The status of the project.
	//
	// This member is required.
	ProjectStatus ProjectStatus

	// The description of the project.
	ProjectDescription *string

	noSmithyDocumentSerde
}

// Part of the SuggestionQuery type. Specifies a hint for retrieving property
// names that begin with the specified text.
type PropertyNameQuery struct {

	// Text that begins a property's name.
	//
	// This member is required.
	PropertyNameHint *string

	noSmithyDocumentSerde
}

// A property name returned from a GetSearchSuggestions call that specifies a
// value in the PropertyNameQuery field.
type PropertyNameSuggestion struct {

	// A suggested property name based on what you entered in the search textbox in
	// the SageMaker console.
	PropertyName *string

	noSmithyDocumentSerde
}

// A key value pair used when you provision a project as a service catalog
// product. For information, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ProvisioningParameter struct {

	// The key that identifies a provisioning parameter.
	Key *string

	// The value of the provisioning parameter.
	Value *string

	noSmithyDocumentSerde
}

// Defines the amount of money paid to an Amazon Mechanical Turk worker for each
// task performed. Use one of the following prices for bounding box tasks. Prices
// are in US dollars and should be based on the complexity of the task; the longer
// it takes in your initial testing, the more you should offer.
//   - 0.036
//   - 0.048
//   - 0.060
//   - 0.072
//   - 0.120
//   - 0.240
//   - 0.360
//   - 0.480
//   - 0.600
//   - 0.720
//   - 0.840
//   - 0.960
//   - 1.080
//   - 1.200
//
// Use one of the following prices for image classification, text classification,
// and custom tasks. Prices are in US dollars.
//   - 0.012
//   - 0.024
//   - 0.036
//   - 0.048
//   - 0.060
//   - 0.072
//   - 0.120
//   - 0.240
//   - 0.360
//   - 0.480
//   - 0.600
//   - 0.720
//   - 0.840
//   - 0.960
//   - 1.080
//   - 1.200
//
// Use one of the following prices for semantic segmentation tasks. Prices are in
// US dollars.
//   - 0.840
//   - 0.960
//   - 1.080
//   - 1.200
//
// Use one of the following prices for Textract AnalyzeDocument Important Form Key
// Amazon Augmented AI review tasks. Prices are in US dollars.
//   - 2.400
//   - 2.280
//   - 2.160
//   - 2.040
//   - 1.920
//   - 1.800
//   - 1.680
//   - 1.560
//   - 1.440
//   - 1.320
//   - 1.200
//   - 1.080
//   - 0.960
//   - 0.840
//   - 0.720
//   - 0.600
//   - 0.480
//   - 0.360
//   - 0.240
//   - 0.120
//   - 0.072
//   - 0.060
//   - 0.048
//   - 0.036
//   - 0.024
//   - 0.012
//
// Use one of the following prices for Rekognition DetectModerationLabels Amazon
// Augmented AI review tasks. Prices are in US dollars.
//   - 1.200
//   - 1.080
//   - 0.960
//   - 0.840
//   - 0.720
//   - 0.600
//   - 0.480
//   - 0.360
//   - 0.240
//   - 0.120
//   - 0.072
//   - 0.060
//   - 0.048
//   - 0.036
//   - 0.024
//   - 0.012
//
// Use one of the following prices for Amazon Augmented AI custom human review
// tasks. Prices are in US dollars.
//   - 1.200
//   - 1.080
//   - 0.960
//   - 0.840
//   - 0.720
//   - 0.600
//   - 0.480
//   - 0.360
//   - 0.240
//   - 0.120
//   - 0.072
//   - 0.060
//   - 0.048
//   - 0.036
//   - 0.024
//   - 0.012
type PublicWorkforceTaskPrice struct {

	// Defines the amount of money paid to an Amazon Mechanical Turk worker in United
	// States dollars.
	AmountInUsd *USD

	noSmithyDocumentSerde
}

// Container for the metadata for a Quality check step. For more information, see
// the topic on QualityCheck step (https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-steps.html#step-type-quality-check)
// in the Amazon SageMaker Developer Guide.
type QualityCheckStepMetadata struct {

	// The Amazon S3 URI of the baseline constraints file used for the drift check.
	BaselineUsedForDriftCheckConstraints *string

	// The Amazon S3 URI of the baseline statistics file used for the drift check.
	BaselineUsedForDriftCheckStatistics *string

	// The Amazon S3 URI of the newly calculated baseline constraints file.
	CalculatedBaselineConstraints *string

	// The Amazon S3 URI of the newly calculated baseline statistics file.
	CalculatedBaselineStatistics *string

	// The Amazon Resource Name (ARN) of the Quality check processing job that was run
	// by this step execution.
	CheckJobArn *string

	// The type of the Quality check step.
	CheckType *string

	// The model package group name.
	ModelPackageGroupName *string

	// This flag indicates if a newly calculated baseline can be accessed through step
	// properties BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics . If it is set to False , the previous
	// baseline of the configured check type must also be available. These can be
	// accessed through the BaselineUsedForDriftCheckConstraints and
	// BaselineUsedForDriftCheckStatistics properties.
	RegisterNewBaseline *bool

	// This flag indicates if the drift check against the previous baseline will be
	// skipped or not. If it is set to False , the previous baseline of the configured
	// check type must be available.
	SkipCheck *bool

	// The Amazon S3 URI of violation report if violations are detected.
	ViolationReport *string

	noSmithyDocumentSerde
}

// A set of filters to narrow the set of lineage entities connected to the StartArn
// (s) returned by the QueryLineage API action.
type QueryFilters struct {

	// Filter the lineage entities connected to the StartArn (s) after the create date.
	CreatedAfter *time.Time

	// Filter the lineage entities connected to the StartArn (s) by created date.
	CreatedBefore *time.Time

	// Filter the lineage entities connected to the StartArn (s) by the type of the
	// lineage entity.
	LineageTypes []LineageType

	// Filter the lineage entities connected to the StartArn (s) after the last
	// modified date.
	ModifiedAfter *time.Time

	// Filter the lineage entities connected to the StartArn (s) before the last
	// modified date.
	ModifiedBefore *time.Time

	// Filter the lineage entities connected to the StartArn (s) by a set if property
	// key value pairs. If multiple pairs are provided, an entity is included in the
	// results if it matches any of the provided pairs.
	Properties map[string]string

	// Filter the lineage entities connected to the StartArn by type. For example:
	// DataSet , Model , Endpoint , or ModelDeployment .
	Types []string

	noSmithyDocumentSerde
}

// The infrastructure configuration for deploying the model to a real-time
// inference endpoint.
type RealTimeInferenceConfig struct {

	// The number of instances of the type specified by InstanceType .
	//
	// This member is required.
	InstanceCount *int32

	// The instance type the model is deployed to.
	//
	// This member is required.
	InstanceType InstanceType

	noSmithyDocumentSerde
}

// The recommended configuration to use for Real-Time Inference.
type RealTimeInferenceRecommendation struct {

	// The recommended instance type for Real-Time Inference.
	//
	// This member is required.
	InstanceType ProductionVariantInstanceType

	// The recommendation ID which uniquely identifies each recommendation.
	//
	// This member is required.
	RecommendationId *string

	// The recommended environment variables to set in the model container for
	// Real-Time Inference.
	Environment map[string]string

	noSmithyDocumentSerde
}

// Provides information about the output configuration for the compiled model.
type RecommendationJobCompiledOutputConfig struct {

	// Identifies the Amazon S3 bucket where you want SageMaker to store the compiled
	// model artifacts.
	S3OutputUri *string

	noSmithyDocumentSerde
}

// Specifies mandatory fields for running an Inference Recommender job directly in
// the CreateInferenceRecommendationsJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html)
// API. The fields specified in ContainerConfig override the corresponding fields
// in the model package. Use ContainerConfig if you want to specify these fields
// for the recommendation job but don't want to edit them in your model package.
type RecommendationJobContainerConfig struct {

	// Specifies the name and shape of the expected data inputs for your trained model
	// with a JSON dictionary form. This field is used for optimizing your model using
	// SageMaker Neo. For more information, see DataInputConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_InputConfig.html#sagemaker-Type-InputConfig-DataInputConfig)
	// .
	DataInputConfig *string

	// The machine learning domain of the model and its components. Valid Values:
	// COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING
	Domain *string

	// The machine learning framework of the container image. Valid Values: TENSORFLOW
	// | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN
	Framework *string

	// The framework version of the container image.
	FrameworkVersion *string

	// The name of a pre-trained machine learning model benchmarked by Amazon
	// SageMaker Inference Recommender that matches your model. Valid Values:
	// efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 |
	// inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon |
	// resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased
	// | xceptionV1-keras | resnet50 | retinanet
	NearestModelName *string

	// Specifies the SamplePayloadUrl and all other sample payload-related fields.
	PayloadConfig *RecommendationJobPayloadConfig

	// The endpoint type to receive recommendations for. By default this is null, and
	// the results of the inference recommendation job return a combined list of both
	// real-time and serverless benchmarks. By specifying a value for this field, you
	// can receive a longer list of benchmarks for the desired endpoint type.
	SupportedEndpointType RecommendationJobSupportedEndpointType

	// A list of the instance types that are used to generate inferences in real-time.
	SupportedInstanceTypes []string

	// The supported MIME types for the output data.
	SupportedResponseMIMETypes []string

	// The machine learning task that the model accomplishes. Valid Values:
	// IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION |
	// FILL_MASK | CLASSIFICATION | REGRESSION | OTHER
	Task *string

	noSmithyDocumentSerde
}

// The details for a specific benchmark from an Inference Recommender job.
type RecommendationJobInferenceBenchmark struct {

	// Defines the model configuration. Includes the specification name and
	// environment parameters.
	//
	// This member is required.
	ModelConfiguration *ModelConfiguration

	// The endpoint configuration made by Inference Recommender during a
	// recommendation job.
	EndpointConfiguration *EndpointOutputConfiguration

	// The metrics for an existing endpoint compared in an Inference Recommender job.
	EndpointMetrics *InferenceMetrics

	// The reason why a benchmark failed.
	FailureReason *string

	// A timestamp that shows when the benchmark completed.
	InvocationEndTime *time.Time

	// A timestamp that shows when the benchmark started.
	InvocationStartTime *time.Time

	// The metrics of recommendations.
	Metrics *RecommendationMetrics

	noSmithyDocumentSerde
}

// The input configuration of the recommendation job.
type RecommendationJobInputConfig struct {

	// Specifies mandatory fields for running an Inference Recommender job. The fields
	// specified in ContainerConfig override the corresponding fields in the model
	// package.
	ContainerConfig *RecommendationJobContainerConfig

	// Specifies the endpoint configuration to use for a job.
	EndpointConfigurations []EndpointInputConfiguration

	// Existing customer endpoints on which to run an Inference Recommender job.
	Endpoints []EndpointInfo

	// Specifies the maximum duration of the job, in seconds. The maximum value is
	// 18,000 seconds.
	JobDurationInSeconds *int32

	// The name of the created model.
	ModelName *string

	// The Amazon Resource Name (ARN) of a versioned model package.
	ModelPackageVersionArn *string

	// Defines the resource limit of the job.
	ResourceLimit *RecommendationJobResourceLimit

	// Specifies the traffic pattern of the job.
	TrafficPattern *TrafficPattern

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the
	// storage volume attached to the ML compute instance that hosts the endpoint. This
	// key will be passed to SageMaker Hosting for endpoint creation. The SageMaker
	// execution role must have kms:CreateGrant permission in order to encrypt data on
	// the storage volume of the endpoints created for inference recommendation. The
	// inference recommendation job will fail asynchronously during endpoint
	// configuration creation if the role passed does not have kms:CreateGrant
	// permission. The KmsKeyId can be any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
	// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
	// documentation.
	VolumeKmsKeyId *string

	// Inference Recommender provisions SageMaker endpoints with access to VPC in the
	// inference recommendation job.
	VpcConfig *RecommendationJobVpcConfig

	noSmithyDocumentSerde
}

// Provides information about the output configuration for the compiled model.
type RecommendationJobOutputConfig struct {

	// Provides information about the output configuration for the compiled model.
	CompiledOutputConfig *RecommendationJobCompiledOutputConfig

	// The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service
	// (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt your output
	// artifacts with Amazon S3 server-side encryption. The SageMaker execution role
	// must have kms:GenerateDataKey permission. The KmsKeyId can be any of the
	// following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:::key/"
	//   - // KMS Key Alias "alias/ExampleAlias"
	//   - // Amazon Resource Name (ARN) of a KMS Key Alias "arn:aws:kms:::alias/"
	// For more information about key identifiers, see Key identifiers (KeyID) (https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id)
	// in the Amazon Web Services Key Management Service (Amazon Web Services KMS)
	// documentation.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// The configuration for the payload for a recommendation job.
type RecommendationJobPayloadConfig struct {

	// The Amazon Simple Storage Service (Amazon S3) path where the sample payload is
	// stored. This path must point to a single gzip compressed tar archive (.tar.gz
	// suffix).
	SamplePayloadUrl *string

	// The supported MIME types for the input data.
	SupportedContentTypes []string

	noSmithyDocumentSerde
}

// Specifies the maximum number of jobs that can run in parallel and the maximum
// number of jobs that can run.
type RecommendationJobResourceLimit struct {

	// Defines the maximum number of load tests.
	MaxNumberOfTests *int32

	// Defines the maximum number of parallel load tests.
	MaxParallelOfTests *int32

	noSmithyDocumentSerde
}

// Specifies conditions for stopping a job. When a job reaches a stopping
// condition limit, SageMaker ends the job.
type RecommendationJobStoppingConditions struct {

	// Stops a load test when the number of invocations (TPS) peaks and flattens,
	// which means that the instance has reached capacity. The default value is Stop .
	// If you want the load test to continue after invocations have flattened, set the
	// value to Continue .
	FlatInvocations FlatInvocations

	// The maximum number of requests per minute expected for the endpoint.
	MaxInvocations *int32

	// The interval of time taken by a model to respond as viewed from SageMaker. The
	// interval includes the local communication time taken to send the request and to
	// fetch the response from the container of a model and the time taken to complete
	// the inference in the container.
	ModelLatencyThresholds []ModelLatencyThreshold

	noSmithyDocumentSerde
}

// Inference Recommender provisions SageMaker endpoints with access to VPC in the
// inference recommendation job.
type RecommendationJobVpcConfig struct {

	// The VPC security group IDs. IDs have the form of sg-xxxxxxxx . Specify the
	// security groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC to which you want to connect your model.
	//
	// This member is required.
	Subnets []string

	noSmithyDocumentSerde
}

// The metrics of recommendations.
type RecommendationMetrics struct {

	// Defines the cost per hour for the instance.
	//
	// This member is required.
	CostPerHour *float32

	// Defines the cost per inference for the instance .
	//
	// This member is required.
	CostPerInference *float32

	// The expected maximum number of requests per minute for the instance.
	//
	// This member is required.
	MaxInvocations *int32

	// The expected model latency at maximum invocation per minute for the instance.
	//
	// This member is required.
	ModelLatency *int32

	// The expected CPU utilization at maximum invocations per minute for the
	// instance. NaN indicates that the value is not available.
	CpuUtilization *float32

	// The expected memory utilization at maximum invocations per minute for the
	// instance. NaN indicates that the value is not available.
	MemoryUtilization *float32

	// The time it takes to launch new compute resources for a serverless endpoint.
	// The time can vary depending on the model size, how long it takes to download the
	// model, and the start-up time of the container. NaN indicates that the value is
	// not available.
	ModelSetupTime *int32

	noSmithyDocumentSerde
}

// Configuration for Redshift Dataset Definition input.
type RedshiftDatasetDefinition struct {

	// The Redshift cluster Identifier.
	//
	// This member is required.
	ClusterId *string

	// The IAM role attached to your Redshift cluster that Amazon SageMaker uses to
	// generate datasets.
	//
	// This member is required.
	ClusterRoleArn *string

	// The name of the Redshift database used in Redshift query execution.
	//
	// This member is required.
	Database *string

	// The database user name used in Redshift query execution.
	//
	// This member is required.
	DbUser *string

	// The data storage format for Redshift query results.
	//
	// This member is required.
	OutputFormat RedshiftResultFormat

	// The location in Amazon S3 where the Redshift query results are stored.
	//
	// This member is required.
	OutputS3Uri *string

	// The SQL query statements to be executed.
	//
	// This member is required.
	QueryString *string

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt data from a Redshift execution.
	KmsKeyId *string

	// The compression used for Redshift query results.
	OutputCompression RedshiftResultCompressionType

	noSmithyDocumentSerde
}

// Metadata for a register model job step.
type RegisterModelStepMetadata struct {

	// The Amazon Resource Name (ARN) of the model package.
	Arn *string

	noSmithyDocumentSerde
}

// Configuration for remote debugging for the CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
// API. To learn more about the remote debugging functionality of SageMaker, see
// Access a training container through Amazon Web Services Systems Manager (SSM)
// for remote debugging (https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html)
// .
type RemoteDebugConfig struct {

	// If set to True, enables remote debugging.
	EnableRemoteDebug *bool

	noSmithyDocumentSerde
}

// Configuration for remote debugging for the UpdateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateTrainingJob.html)
// API. To learn more about the remote debugging functionality of SageMaker, see
// Access a training container through Amazon Web Services Systems Manager (SSM)
// for remote debugging (https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html)
// .
type RemoteDebugConfigForUpdate struct {

	// If set to True, enables remote debugging.
	EnableRemoteDebug *bool

	noSmithyDocumentSerde
}

// Contains input values for a task.
type RenderableTask struct {

	// A JSON object that contains values for the variables defined in the template.
	// It is made available to the template under the substitution variable task.input
	// . For example, if you define a variable task.input.text in your template, you
	// can supply the variable in the JSON object as "text": "sample text" .
	//
	// This member is required.
	Input *string

	noSmithyDocumentSerde
}

// A description of an error that occurred while rendering the template.
type RenderingError struct {

	// A unique identifier for a specific class of errors.
	//
	// This member is required.
	Code *string

	// A human-readable message describing the error.
	//
	// This member is required.
	Message *string

	noSmithyDocumentSerde
}

// Specifies an authentication configuration for the private docker registry where
// your model image is hosted. Specify a value for this property only if you
// specified Vpc as the value for the RepositoryAccessMode field of the ImageConfig
// object that you passed to a call to CreateModel and the private Docker registry
// where the model image is hosted requires authentication.
type RepositoryAuthConfig struct {

	// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function that
	// provides credentials to authenticate to the private Docker registry where your
	// model image is hosted. For information about how to create an Amazon Web
	// Services Lambda function, see Create a Lambda function with the console (https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html)
	// in the Amazon Web Services Lambda Developer Guide.
	//
	// This member is required.
	RepositoryCredentialsProviderArn *string

	noSmithyDocumentSerde
}

// The resolved attributes.
type ResolvedAttributes struct {

	// Specifies a metric to minimize or maximize as the objective of an AutoML job.
	AutoMLJobObjective *AutoMLJobObjective

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The problem type.
	ProblemType ProblemType

	noSmithyDocumentSerde
}

// A resource catalog containing all of the resources of a specific resource type
// within a resource owner account. For an example on sharing the Amazon SageMaker
// Feature Store DefaultFeatureGroupCatalog , see Share Amazon SageMaker Catalog
// resource type (https://docs.aws.amazon.com/sagemaker/latest/APIReference/feature-store-cross-account-discoverability-share-sagemaker-catalog.html)
// in the Amazon SageMaker Developer Guide.
type ResourceCatalog struct {

	// The time the ResourceCatalog was created.
	//
	// This member is required.
	CreationTime *time.Time

	// A free form description of the ResourceCatalog .
	//
	// This member is required.
	Description *string

	// The Amazon Resource Name (ARN) of the ResourceCatalog .
	//
	// This member is required.
	ResourceCatalogArn *string

	// The name of the ResourceCatalog .
	//
	// This member is required.
	ResourceCatalogName *string

	noSmithyDocumentSerde
}

// Describes the resources, including machine learning (ML) compute instances and
// ML storage volumes, to use for model training.
type ResourceConfig struct {

	// The size of the ML storage volume that you want to provision. ML storage
	// volumes store model artifacts and incremental states. Training algorithms might
	// also use the ML storage volume for scratch space. If you want to store the
	// training data in the ML storage volume, choose File as the TrainingInputMode in
	// the algorithm specification. When using an ML instance with NVMe SSD volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html#nvme-ssd-volumes)
	// , SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage.
	// Available storage is fixed to the NVMe-type instance's storage capacity.
	// SageMaker configures storage paths for training datasets, checkpoints, model
	// artifacts, and outputs to use the entire capacity of the instance storage. For
	// example, ML instance families with the NVMe-type instance storage include ml.p4d
	// , ml.g4dn , and ml.g5 . When using an ML instance with the EBS-only storage
	// option and without instance storage, you must define the size of EBS volume
	// through VolumeSizeInGB in the ResourceConfig API. For example, ML instance
	// families that use EBS volumes include ml.c5 and ml.p2 . To look up instance
	// types and their instance storage types and volumes, see Amazon EC2 Instance
	// Types (http://aws.amazon.com/ec2/instance-types/) . To find the default local
	// paths defined by the SageMaker training platform, see Amazon SageMaker Training
	// Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs (https://docs.aws.amazon.com/sagemaker/latest/dg/model-train-storage.html)
	// .
	//
	// This member is required.
	VolumeSizeInGB *int32

	// The number of ML compute instances to use. For distributed training, provide a
	// value greater than 1.
	InstanceCount *int32

	// The configuration of a heterogeneous cluster in JSON format.
	InstanceGroups []InstanceGroup

	// The ML compute instance type. SageMaker Training on Amazon Elastic Compute
	// Cloud (EC2) P4de instances is in preview release starting December 9th, 2022.
	// Amazon EC2 P4de instances (http://aws.amazon.com/ec2/instance-types/p4/)
	// (currently in preview) are powered by 8 NVIDIA A100 GPUs with 80GB
	// high-performance HBM2e GPU memory, which accelerate the speed of training ML
	// models that need to be trained on large datasets of high-resolution data. In
	// this preview release, Amazon SageMaker supports ML training jobs on P4de
	// instances ( ml.p4de.24xlarge ) to reduce model training time. The
	// ml.p4de.24xlarge instances are available in the following Amazon Web Services
	// Regions.
	//   - US East (N. Virginia) (us-east-1)
	//   - US West (Oregon) (us-west-2)
	// To request quota limit increase and start using P4de instances, contact the
	// SageMaker Training service team through your account team.
	InstanceType TrainingInstanceType

	// The duration of time in seconds to retain configured resources in a warm pool
	// for subsequent training jobs.
	KeepAlivePeriodInSeconds *int32

	// The Amazon Web Services KMS key that SageMaker uses to encrypt data on the
	// storage volume attached to the ML compute instance(s) that run the training job.
	// Certain Nitro-based instances include local storage, dependent on the instance
	// type. Local storage volumes are encrypted using a hardware module on the
	// instance. You can't request a VolumeKmsKeyId when using an instance type with
	// local storage. For a list of instance types that support local instance storage,
	// see Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// . The VolumeKmsKeyId can be in any of the following formats:
	//   - // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab"
	//   - // Amazon Resource Name (ARN) of a KMS Key
	//   "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
	VolumeKmsKeyId *string

	noSmithyDocumentSerde
}

// The ResourceConfig to update KeepAlivePeriodInSeconds . Other fields in the
// ResourceConfig cannot be updated.
type ResourceConfigForUpdate struct {

	// The KeepAlivePeriodInSeconds value specified in the ResourceConfig to update.
	//
	// This member is required.
	KeepAlivePeriodInSeconds *int32

	noSmithyDocumentSerde
}

// Specifies the maximum number of training jobs and parallel training jobs that a
// hyperparameter tuning job can launch.
type ResourceLimits struct {

	// The maximum number of concurrent training jobs that a hyperparameter tuning job
	// can launch.
	//
	// This member is required.
	MaxParallelTrainingJobs *int32

	// The maximum number of training jobs that a hyperparameter tuning job can launch.
	MaxNumberOfTrainingJobs *int32

	// The maximum time in seconds that a hyperparameter tuning job can run.
	MaxRuntimeInSeconds *int32

	noSmithyDocumentSerde
}

// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
// instance type that the version runs on.
type ResourceSpec struct {

	// The instance type that the image version runs on. JupyterServer apps only
	// support the system value. For KernelGateway apps, the system value is
	// translated to ml.t3.medium . KernelGateway apps also support all other values
	// for available instance types.
	InstanceType AppInstanceType

	// The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the
	// Resource.
	LifecycleConfigArn *string

	// The ARN of the SageMaker image that the image version belongs to.
	SageMakerImageArn *string

	// The SageMakerImageVersionAlias of the image to launch with. This value is in
	// SemVer 2.0.0 versioning format.
	SageMakerImageVersionAlias *string

	// The ARN of the image version created on the instance.
	SageMakerImageVersionArn *string

	noSmithyDocumentSerde
}

// The retention policy for data stored on an Amazon Elastic File System (EFS)
// volume.
type RetentionPolicy struct {

	// The default is Retain , which specifies to keep the data stored on the EFS
	// volume. Specify Delete to delete the data stored on the EFS volume.
	HomeEfsFileSystem RetentionType

	noSmithyDocumentSerde
}

// The retry strategy to use when a training job fails due to an
// InternalServerError . RetryStrategy is specified as part of the
// CreateTrainingJob and CreateHyperParameterTuningJob requests. You can add the
// StoppingCondition parameter to the request to limit the training time for the
// complete job.
type RetryStrategy struct {

	// The number of times to retry the job. When the job is retried, it's
	// SecondaryStatus is changed to STARTING .
	//
	// This member is required.
	MaximumRetryAttempts *int32

	noSmithyDocumentSerde
}

// Specifies a rolling deployment strategy for updating a SageMaker endpoint.
type RollingUpdatePolicy struct {

	// Batch size for each rolling step to provision capacity and turn on traffic on
	// the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value
	// must be between 5% to 50% of the variant's total instance count.
	//
	// This member is required.
	MaximumBatchSize *CapacitySize

	// The length of the baking period, during which SageMaker monitors alarms for
	// each batch on the new fleet.
	//
	// This member is required.
	WaitIntervalInSeconds *int32

	// The time limit for the total deployment. Exceeding this limit causes a timeout.
	MaximumExecutionTimeoutInSeconds *int32

	// Batch size for rollback to the old endpoint fleet. Each rolling step to
	// provision capacity and turn on traffic on the old endpoint fleet, and terminate
	// capacity on the new endpoint fleet. If this field is absent, the default value
	// will be set to 100% of total capacity which means to bring up the whole capacity
	// of the old fleet at once during rollback.
	RollbackMaximumBatchSize *CapacitySize

	noSmithyDocumentSerde
}

// A collection of settings that apply to an RSessionGateway app.
type RSessionAppSettings struct {

	// A list of custom SageMaker images that are configured to run as a RSession app.
	CustomImages []CustomImage

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	noSmithyDocumentSerde
}

// A collection of settings that configure user interaction with the
// RStudioServerPro app.
type RStudioServerProAppSettings struct {

	// Indicates whether the current user has access to the RStudioServerPro app.
	AccessStatus RStudioServerProAccessStatus

	// The level of permissions that the user has within the RStudioServerPro app.
	// This value defaults to `User`. The `Admin` value allows the user access to the
	// RStudio Administrative Dashboard.
	UserGroup RStudioServerProUserGroup

	noSmithyDocumentSerde
}

// A collection of settings that configure the RStudioServerPro Domain-level app.
type RStudioServerProDomainSettings struct {

	// The ARN of the execution role for the RStudioServerPro Domain-level app.
	//
	// This member is required.
	DomainExecutionRoleArn *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// A URL pointing to an RStudio Connect server.
	RStudioConnectUrl *string

	// A URL pointing to an RStudio Package Manager server.
	RStudioPackageManagerUrl *string

	noSmithyDocumentSerde
}

// A collection of settings that update the current configuration for the
// RStudioServerPro Domain-level app.
type RStudioServerProDomainSettingsForUpdate struct {

	// The execution role for the RStudioServerPro Domain-level app.
	//
	// This member is required.
	DomainExecutionRoleArn *string

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	// A URL pointing to an RStudio Connect server.
	RStudioConnectUrl *string

	// A URL pointing to an RStudio Package Manager server.
	RStudioPackageManagerUrl *string

	noSmithyDocumentSerde
}

// Describes the S3 data source. Your input bucket must be in the same Amazon Web
// Services region as your training job.
type S3DataSource struct {

	// If you choose S3Prefix , S3Uri identifies a key name prefix. SageMaker uses all
	// objects that match the specified key name prefix for model training. If you
	// choose ManifestFile , S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want SageMaker to use for model
	// training. If you choose AugmentedManifestFile , S3Uri identifies an object that
	// is an augmented manifest file in JSON lines format. This file contains the data
	// you want to use for model training. AugmentedManifestFile can only be used if
	// the Channel's input mode is Pipe .
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType , identifies either a key
	// name prefix or a manifest. For example:
	//   - A key name prefix might look like this: s3://bucketname/exampleprefix
	//   - A manifest might look like this: s3://bucketname/example.manifest A manifest
	//   is an S3 object which is a JSON file consisting of an array of elements. The
	//   first element is a prefix which is followed by one or more suffixes. SageMaker
	//   appends the suffix elements to the prefix to get a full set of S3Uri . Note
	//   that the prefix must be a valid non-empty S3Uri that precludes users from
	//   specifying a manifest whose individual S3Uri is sourced from different S3
	//   buckets. The following code example shows a valid manifest format: [
	//   {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
	//   "relative/path/custdata-2", ... "relative/path/custdata-N" ] This JSON is
	//   equivalent to the following S3Uri list:
	//   s3://customer_bucket/some/prefix/relative/path/to/custdata-1
	//   s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
	//   s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
	//   S3Uri in this manifest is the input data for the channel for this data source.
	//   The object that each S3Uri points to must be readable by the IAM role that
	//   SageMaker uses to perform tasks on your behalf.
	// Your input bucket must be located in same Amazon Web Services region as your
	// training job.
	//
	// This member is required.
	S3Uri *string

	// A list of one or more attribute names to use that are found in a specified
	// augmented manifest file.
	AttributeNames []string

	// A list of names of instance groups that get data from the S3 data source.
	InstanceGroupNames []string

	// If you want SageMaker to replicate the entire dataset on each ML compute
	// instance that is launched for model training, specify FullyReplicated . If you
	// want SageMaker to replicate a subset of data on each ML compute instance that is
	// launched for model training, specify ShardedByS3Key . If there are n ML compute
	// instances launched for a training job, each instance gets approximately 1/n of
	// the number of S3 objects. In this case, model training on each machine uses only
	// the subset of training data. Don't choose more ML compute instances for training
	// than available S3 objects. If you do, some nodes won't get any data and you will
	// pay for nodes that aren't getting any training data. This applies in both File
	// and Pipe modes. Keep this in mind when developing algorithms. In distributed
	// training, where you use multiple ML compute EC2 instances, you might choose
	// ShardedByS3Key . If the algorithm requires copying training data to the ML
	// storage volume (when TrainingInputMode is set to File ), this copies 1/n of the
	// number of objects.
	S3DataDistributionType S3DataDistribution

	noSmithyDocumentSerde
}

// Specifies the S3 location of ML model data to deploy.
type S3ModelDataSource struct {

	// Specifies how the ML model data is prepared. If you choose Gzip and choose
	// S3Object as the value of S3DataType , S3Uri identifies an object that is a
	// gzip-compressed TAR archive. SageMaker will attempt to decompress and untar the
	// object during model deployment. If you choose None and chooose S3Object as the
	// value of S3DataType , S3Uri identifies an object that represents an
	// uncompressed ML model to deploy. If you choose None and choose S3Prefix as the
	// value of S3DataType , S3Uri identifies a key name prefix, under which all
	// objects represents the uncompressed ML model to deploy. If you choose None, then
	// SageMaker will follow rules below when creating model data files under
	// /opt/ml/model directory for use by your inference code:
	//   - If you choose S3Object as the value of S3DataType , then SageMaker will
	//   split the key of the S3 object referenced by S3Uri by slash (/), and use the
	//   last part as the filename of the file holding the content of the S3 object.
	//   - If you choose S3Prefix as the value of S3DataType , then for each S3 object
	//   under the key name pefix referenced by S3Uri , SageMaker will trim its key by
	//   the prefix, and use the remainder as the path (relative to /opt/ml/model ) of
	//   the file holding the content of the S3 object. SageMaker will split the
	//   remainder by slash (/), using intermediate parts as directory names and the last
	//   part as filename of the file holding the content of the S3 object.
	//   - Do not use any of the following as file names or directory names:
	//   - An empty or blank string
	//   - A string which contains null bytes
	//   - A string longer than 255 bytes
	//   - A single dot ( . )
	//   - A double dot ( .. )
	//   - Ambiguous file names will result in model deployment failure. For example,
	//   if your uncompressed ML model consists of two S3 objects
	//   s3://mybucket/model/weights and s3://mybucket/model/weights/part1 and you
	//   specify s3://mybucket/model/ as the value of S3Uri and S3Prefix as the value
	//   of S3DataType , then it will result in name clash between
	//   /opt/ml/model/weights (a regular file) and /opt/ml/model/weights/ (a
	//   directory).
	//   - Do not organize the model artifacts in S3 console using folders (https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-folders.html)
	//   . When you create a folder in S3 console, S3 creates a 0-byte object with a key
	//   set to the folder name you provide. They key of the 0-byte object ends with a
	//   slash (/) which violates SageMaker restrictions on model artifact file names,
	//   leading to model deployment failure.
	//
	// This member is required.
	CompressionType ModelCompressionType

	// Specifies the type of ML model data to deploy. If you choose S3Prefix , S3Uri
	// identifies a key name prefix. SageMaker uses all objects that match the
	// specified key name prefix as part of the ML model data to deploy. A valid key
	// name prefix identified by S3Uri always ends with a forward slash (/). If you
	// choose S3Object , S3Uri identifies an object that is the ML model data to
	// deploy.
	//
	// This member is required.
	S3DataType S3ModelDataType

	// Specifies the S3 path of ML model data to deploy.
	//
	// This member is required.
	S3Uri *string

	// Specifies the access configuration file for the ML model. You can explicitly
	// accept the model end-user license agreement (EULA) within the ModelAccessConfig
	// . You are responsible for reviewing and complying with any applicable license
	// terms and making sure they are acceptable for your use case before downloading
	// or using a model.
	ModelAccessConfig *ModelAccessConfig

	noSmithyDocumentSerde
}

// The Amazon Simple Storage (Amazon S3) location and and security configuration
// for OfflineStore .
type S3StorageConfig struct {

	// The S3 URI, or location in Amazon S3, of OfflineStore . S3 URIs have a format
	// similar to the following: s3://example-bucket/prefix/ .
	//
	// This member is required.
	S3Uri *string

	// The Amazon Web Services Key Management Service (KMS) key ARN of the key used to
	// encrypt any objects written into the OfflineStore S3 location. The IAM roleARN
	// that is passed as a parameter to CreateFeatureGroup must have below permissions
	// to the KmsKeyId :
	//   - "kms:GenerateDataKey"
	KmsKeyId *string

	// The S3 path where offline records are written.
	ResolvedOutputS3Uri *string

	noSmithyDocumentSerde
}

// An object containing a recommended scaling policy.
//
// The following types satisfy this interface:
//
//	ScalingPolicyMemberTargetTracking
type ScalingPolicy interface {
	isScalingPolicy()
}

// A target tracking scaling policy. Includes support for predefined or customized
// metrics.
type ScalingPolicyMemberTargetTracking struct {
	Value TargetTrackingScalingPolicyConfiguration

	noSmithyDocumentSerde
}

func (*ScalingPolicyMemberTargetTracking) isScalingPolicy() {}

// The metric for a scaling policy.
type ScalingPolicyMetric struct {

	// The number of invocations sent to a model, normalized by InstanceCount in each
	// ProductionVariant. 1/numberOfInstances is sent as the value on each request,
	// where numberOfInstances is the number of active instances for the
	// ProductionVariant behind the endpoint at the time of the request.
	InvocationsPerInstance *int32

	// The interval of time taken by a model to respond as viewed from SageMaker. This
	// interval includes the local communication times taken to send the request and to
	// fetch the response from the container of a model and the time taken to complete
	// the inference in the container.
	ModelLatency *int32

	noSmithyDocumentSerde
}

// An object where you specify the anticipated traffic pattern for an endpoint.
type ScalingPolicyObjective struct {

	// The maximum number of expected requests to your endpoint per minute.
	MaxInvocationsPerMinute *int32

	// The minimum number of expected requests to your endpoint per minute.
	MinInvocationsPerMinute *int32

	noSmithyDocumentSerde
}

// Configuration details about the monitoring schedule.
type ScheduleConfig struct {

	// A cron expression that describes details about the monitoring schedule. The
	// supported cron expressions are:
	//   - If you want to set the job to start every hour, use the following: Hourly:
	//   cron(0 * ? * * *)
	//   - If you want to start the job daily: cron(0 [00-23] ? * * *)
	//   - If you want to run the job one time, immediately, use the following
	//   keyword: NOW
	// For example, the following are valid cron expressions:
	//   - Daily at noon UTC: cron(0 12 ? * * *)
	//   - Daily at midnight UTC: cron(0 0 ? * * *)
	// To support running every 6, 12 hours, the following are also supported: cron(0
	// [00-23]/[01-24] ? * * *) For example, the following are valid cron expressions:
	//   - Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? * * *)
	//   - Every two hours starting at midnight: cron(0 0/2 ? * * *)
	//
	//   - Even though the cron expression is set to start at 5PM UTC, note that there
	//   could be a delay of 0-20 minutes from the actual requested time to run the
	//   execution.
	//   - We recommend that if you would like a daily schedule, you do not provide
	//   this parameter. Amazon SageMaker will pick a time for running every day.
	// You can also specify the keyword NOW to run the monitoring job immediately, one
	// time, without recurring.
	//
	// This member is required.
	ScheduleExpression *string

	// Sets the end time for a monitoring job window. Express this time as an offset
	// to the times that you schedule your monitoring jobs to run. You schedule
	// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
	// ISO 8601 duration format. For example, if you want to end the window one hour
	// before the start of each monitoring job, you would specify: "-PT1H" . The end
	// time that you specify must not follow the start time that you specify by more
	// than 24 hours. You specify the start time with the DataAnalysisStartTime
	// parameter. If you set ScheduleExpression to NOW , this parameter is required.
	DataAnalysisEndTime *string

	// Sets the start time for a monitoring job window. Express this time as an offset
	// to the times that you schedule your monitoring jobs to run. You schedule
	// monitoring jobs with the ScheduleExpression parameter. Specify this offset in
	// ISO 8601 duration format. For example, if you want to monitor the five hours of
	// data in your dataset that precede the start of each monitoring job, you would
	// specify: "-PT5H" . The start time that you specify must not precede the end time
	// that you specify by more than 24 hours. You specify the end time with the
	// DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW , this
	// parameter is required.
	DataAnalysisStartTime *string

	noSmithyDocumentSerde
}

// A multi-expression that searches for the specified resource or resources in a
// search. All resource objects that satisfy the expression's condition are
// included in the search results. You must specify at least one subexpression,
// filter, or nested filter. A SearchExpression can contain up to twenty elements.
// A SearchExpression contains the following components:
//   - A list of Filter objects. Each filter defines a simple Boolean expression
//     comprised of a resource property name, Boolean operator, and value.
//   - A list of NestedFilter objects. Each nested filter defines a list of Boolean
//     expressions using a list of resource properties. A nested filter is satisfied if
//     a single object in the list satisfies all Boolean expressions.
//   - A list of SearchExpression objects. A search expression object can be nested
//     in a list of search expression objects.
//   - A Boolean operator: And or Or .
type SearchExpression struct {

	// A list of filter objects.
	Filters []Filter

	// A list of nested filter objects.
	NestedFilters []NestedFilters

	// A Boolean operator used to evaluate the search expression. If you want every
	// conditional statement in all lists to be satisfied for the entire search
	// expression to be true, specify And . If only a single conditional statement
	// needs to be true for the entire search expression to be true, specify Or . The
	// default value is And .
	Operator BooleanOperator

	// A list of search expression objects.
	SubExpressions []SearchExpression

	noSmithyDocumentSerde
}

// A single resource returned as part of the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API response.
type SearchRecord struct {

	// A hosted endpoint for real-time inference.
	Endpoint *Endpoint

	// The properties of an experiment.
	Experiment *Experiment

	// Amazon SageMaker Feature Store stores features in a collection called Feature
	// Group. A Feature Group can be visualized as a table which has rows, with a
	// unique identifier for each row where each column in the table is a feature. In
	// principle, a Feature Group is composed of features and values per features.
	FeatureGroup *FeatureGroup

	// The feature metadata used to search through the features.
	FeatureMetadata *FeatureMetadata

	// The properties of a hyperparameter tuning job.
	HyperParameterTuningJob *HyperParameterTuningJobSearchEntity

	// A model displayed in the Amazon SageMaker Model Dashboard.
	Model *ModelDashboardModel

	// An Amazon SageMaker Model Card that documents details about a machine learning
	// model.
	ModelCard *ModelCard

	// A versioned model that can be deployed for SageMaker inference.
	ModelPackage *ModelPackage

	// A group of versioned models in the model registry.
	ModelPackageGroup *ModelPackageGroup

	// A SageMaker Model Building Pipeline instance.
	Pipeline *Pipeline

	// An execution of a pipeline.
	PipelineExecution *PipelineExecution

	// The properties of a project.
	Project *Project

	// The properties of a training job.
	TrainingJob *TrainingJob

	// The properties of a trial.
	Trial *Trial

	// The properties of a trial component.
	TrialComponent *TrialComponent

	noSmithyDocumentSerde
}

// An array element of SecondaryStatusTransitions for DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html)
// . It provides additional details about a status that the training job has
// transitioned through. A training job can be in one of several states, for
// example, starting, downloading, training, or uploading. Within each state, there
// are a number of intermediate states. For example, within the starting state,
// SageMaker could be starting the training job or launching the ML instances.
// These transitional states are referred to as the job's secondary status.
type SecondaryStatusTransition struct {

	// A timestamp that shows when the training job transitioned to the current
	// secondary status state.
	//
	// This member is required.
	StartTime *time.Time

	// Contains a secondary status information from a training job. Status might be
	// one of the following secondary statuses: InProgress
	//   - Starting - Starting the training job.
	//   - Downloading - An optional stage for algorithms that support File training
	//   input mode. It indicates that data is being downloaded to the ML storage
	//   volumes.
	//   - Training - Training is in progress.
	//   - Uploading - Training is complete and the model artifacts are being uploaded
	//   to the S3 location.
	// Completed
	//   - Completed - The training job has completed.
	// Failed
	//   - Failed - The training job has failed. The reason for the failure is returned
	//   in the FailureReason field of DescribeTrainingJobResponse .
	// Stopped
	//   - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
	//   runtime.
	//   - Stopped - The training job has stopped.
	// Stopping
	//   - Stopping - Stopping the training job.
	// We no longer support the following secondary statuses:
	//   - LaunchingMLInstances
	//   - PreparingTrainingStack
	//   - DownloadingTrainingImage
	//
	// This member is required.
	Status SecondaryStatus

	// A timestamp that shows when the training job transitioned out of this secondary
	// status state into another secondary status state or when the training job has
	// ended.
	EndTime *time.Time

	// A detailed description of the progress within a secondary status. SageMaker
	// provides secondary statuses and status messages that apply to each of them:
	// Starting
	//   - Starting the training job.
	//   - Launching requested ML instances.
	//   - Insufficient capacity error from EC2 while launching instances, retrying!
	//   - Launched instance was unhealthy, replacing it!
	//   - Preparing the instances for training.
	// Training
	//   - Training image download completed. Training in progress.
	// Status messages are subject to change. Therefore, we recommend not including
	// them in code that programmatically initiates actions. For examples, don't use
	// status messages in if statements. To have an overview of your training job's
	// progress, view TrainingJobStatus and SecondaryStatus in DescribeTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html)
	// , and StatusMessage together. For example, at the start of a training job, you
	// might see the following:
	//   - TrainingJobStatus - InProgress
	//   - SecondaryStatus - Training
	//   - StatusMessage - Downloading the training image
	StatusMessage *string

	noSmithyDocumentSerde
}

// A step selected to run in selective execution mode.
type SelectedStep struct {

	// The name of the pipeline step.
	//
	// This member is required.
	StepName *string

	noSmithyDocumentSerde
}

// The selective execution configuration applied to the pipeline run.
type SelectiveExecutionConfig struct {

	// A list of pipeline steps to run. All step(s) in all path(s) between two
	// selected steps should be included.
	//
	// This member is required.
	SelectedSteps []SelectedStep

	// The ARN from a reference execution of the current pipeline. Used to copy input
	// collaterals needed for the selected steps to run. The execution status of the
	// pipeline can be either Failed or Success . This field is required if the steps
	// you specify for SelectedSteps depend on output collaterals from any
	// non-specified pipeline steps. For more information, see Selective Execution for
	// Pipeline Steps (https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines-selective-ex.html)
	// .
	SourcePipelineExecutionArn *string

	noSmithyDocumentSerde
}

// The ARN from an execution of the current pipeline.
type SelectiveExecutionResult struct {

	// The ARN from an execution of the current pipeline.
	SourcePipelineExecutionArn *string

	noSmithyDocumentSerde
}

// Details of a provisioned service catalog product. For information about service
// catalog, see What is Amazon Web Services Service Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisionedProductDetails struct {

	// The ID of the provisioned product.
	ProvisionedProductId *string

	// The current status of the product.
	//   - AVAILABLE - Stable state, ready to perform any operation. The most recent
	//   operation succeeded and completed.
	//   - UNDER_CHANGE - Transitive state. Operations performed might not have valid
	//   results. Wait for an AVAILABLE status before performing operations.
	//   - TAINTED - Stable state, ready to perform any operation. The stack has
	//   completed the requested operation but is not exactly what was requested. For
	//   example, a request to update to a new version failed and the stack rolled back
	//   to the current version.
	//   - ERROR - An unexpected error occurred. The provisioned product exists but the
	//   stack is not running. For example, CloudFormation received a parameter value
	//   that was not valid and could not launch the stack.
	//   - PLAN_IN_PROGRESS - Transitive state. The plan operations were performed to
	//   provision a new product, but resources have not yet been created. After
	//   reviewing the list of resources to be created, execute the plan. Wait for an
	//   AVAILABLE status before performing operations.
	ProvisionedProductStatusMessage *string

	noSmithyDocumentSerde
}

// Details that you specify to provision a service catalog product. For
// information about service catalog, see What is Amazon Web Services Service
// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisioningDetails struct {

	// The ID of the product to provision.
	//
	// This member is required.
	ProductId *string

	// The path identifier of the product. This value is optional if the product has a
	// default path, and required if the product has more than one path.
	PathId *string

	// The ID of the provisioning artifact.
	ProvisioningArtifactId *string

	// A list of key value pairs that you specify when you provision a product.
	ProvisioningParameters []ProvisioningParameter

	noSmithyDocumentSerde
}

// Details that you specify to provision a service catalog product. For
// information about service catalog, see What is Amazon Web Services Service
// Catalog (https://docs.aws.amazon.com/servicecatalog/latest/adminguide/introduction.html)
// .
type ServiceCatalogProvisioningUpdateDetails struct {

	// The ID of the provisioning artifact.
	ProvisioningArtifactId *string

	// A list of key value pairs that you specify when you provision a product.
	ProvisioningParameters []ProvisioningParameter

	noSmithyDocumentSerde
}

// The configuration of ShadowMode inference experiment type, which specifies a
// production variant to take all the inference requests, and a shadow variant to
// which Amazon SageMaker replicates a percentage of the inference requests. For
// the shadow variant it also specifies the percentage of requests that Amazon
// SageMaker replicates.
type ShadowModeConfig struct {

	// List of shadow variant configurations.
	//
	// This member is required.
	ShadowModelVariants []ShadowModelVariantConfig

	// The name of the production variant, which takes all the inference requests.
	//
	// This member is required.
	SourceModelVariantName *string

	noSmithyDocumentSerde
}

// The name and sampling percentage of a shadow variant.
type ShadowModelVariantConfig struct {

	// The percentage of inference requests that Amazon SageMaker replicates from the
	// production variant to the shadow variant.
	//
	// This member is required.
	SamplingPercentage *int32

	// The name of the shadow variant.
	//
	// This member is required.
	ShadowModelVariantName *string

	noSmithyDocumentSerde
}

// Specifies options for sharing Amazon SageMaker Studio notebooks. These settings
// are specified as part of DefaultUserSettings when the CreateDomain API is
// called, and as part of UserSettings when the CreateUserProfile API is called.
// When SharingSettings is not specified, notebook sharing isn't allowed.
type SharingSettings struct {

	// Whether to include the notebook cell output when sharing the notebook. The
	// default is Disabled .
	NotebookOutputOption NotebookOutputOption

	// When NotebookOutputOption is Allowed , the Amazon Web Services Key Management
	// Service (KMS) encryption key ID used to encrypt the notebook cell output in the
	// Amazon S3 bucket.
	S3KmsKeyId *string

	// When NotebookOutputOption is Allowed , the Amazon S3 bucket used to store the
	// shared notebook snapshots.
	S3OutputPath *string

	noSmithyDocumentSerde
}

// A configuration for a shuffle option for input data in a channel. If you use
// S3Prefix for S3DataType , the results of the S3 key prefix matches are shuffled.
// If you use ManifestFile , the order of the S3 object references in the
// ManifestFile is shuffled. If you use AugmentedManifestFile , the order of the
// JSON lines in the AugmentedManifestFile is shuffled. The shuffling order is
// determined using the Seed value. For Pipe input mode, when ShuffleConfig is
// specified shuffling is done at the start of every epoch. With large datasets,
// this ensures that the order of the training data is different for each epoch,
// and it helps reduce bias and possible overfitting. In a multi-node training job
// when ShuffleConfig is combined with S3DataDistributionType of ShardedByS3Key ,
// the data is shuffled across nodes so that the content sent to a particular node
// on the first epoch might be sent to a different node on the second epoch.
type ShuffleConfig struct {

	// Determines the shuffling order in ShuffleConfig value.
	//
	// This member is required.
	Seed *int64

	noSmithyDocumentSerde
}

// Specifies an algorithm that was used to create the model package. The algorithm
// must be either an algorithm resource in your SageMaker account or an algorithm
// in Amazon Web Services Marketplace that you are subscribed to.
type SourceAlgorithm struct {

	// The name of an algorithm that was used to create the model package. The
	// algorithm must be either an algorithm resource in your SageMaker account or an
	// algorithm in Amazon Web Services Marketplace that you are subscribed to.
	//
	// This member is required.
	AlgorithmName *string

	// The Amazon S3 path where the model artifacts, which result from model training,
	// are stored. This path must point to a single gzip compressed tar archive (
	// .tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same
	// Amazon Web Services region as the algorithm.
	ModelDataUrl *string

	noSmithyDocumentSerde
}

// A list of algorithms that were used to create a model package.
type SourceAlgorithmSpecification struct {

	// A list of the algorithms that were used to create a model package.
	//
	// This member is required.
	SourceAlgorithms []SourceAlgorithm

	noSmithyDocumentSerde
}

// A list of IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
// ). Used to create an allow list of IP addresses for a private workforce. Workers
// will only be able to login to their worker portal from an IP address within this
// range. By default, a workforce isn't restricted to specific IP addresses.
type SourceIpConfig struct {

	// A list of one to ten Classless Inter-Domain Routing (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// (CIDR) values. Maximum: Ten CIDR values The following Length Constraints apply
	// to individual CIDR values in the CIDR value list.
	//
	// This member is required.
	Cidrs []string

	noSmithyDocumentSerde
}

// The application settings for a Code Editor space.
type SpaceCodeEditorAppSettings struct {

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	noSmithyDocumentSerde
}

// The space's details.
type SpaceDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The ID of the associated Domain.
	DomainId *string

	// The last modified time.
	LastModifiedTime *time.Time

	// Specifies summary information about the ownership settings.
	OwnershipSettingsSummary *OwnershipSettingsSummary

	// The name of the space that appears in the Studio UI.
	SpaceDisplayName *string

	// The name of the space.
	SpaceName *string

	// Specifies summary information about the space settings.
	SpaceSettingsSummary *SpaceSettingsSummary

	// Specifies summary information about the space sharing settings.
	SpaceSharingSettingsSummary *SpaceSharingSettingsSummary

	// The status.
	Status SpaceStatus

	noSmithyDocumentSerde
}

// The settings for the JupyterLab application within a space.
type SpaceJupyterLabAppSettings struct {

	// A list of Git repositories that SageMaker automatically displays to users for
	// cloning in the JupyterLab application.
	CodeRepositories []CodeRepository

	// Specifies the ARN's of a SageMaker image and SageMaker image version, and the
	// instance type that the version runs on.
	DefaultResourceSpec *ResourceSpec

	noSmithyDocumentSerde
}

// A collection of space settings.
type SpaceSettings struct {

	// The type of app created within the space.
	AppType AppType

	// The Code Editor application settings.
	CodeEditorAppSettings *SpaceCodeEditorAppSettings

	// A file system, created by you, that you assign to a space for an Amazon
	// SageMaker Domain. Permitted users can access this file system in Amazon
	// SageMaker Studio.
	CustomFileSystems []CustomFileSystem

	// The settings for the JupyterLab application.
	JupyterLabAppSettings *SpaceJupyterLabAppSettings

	// The JupyterServer app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The KernelGateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// The storage settings for a private space.
	SpaceStorageSettings *SpaceStorageSettings

	noSmithyDocumentSerde
}

// Specifies summary information about the space settings.
type SpaceSettingsSummary struct {

	// The type of app created within the space.
	AppType AppType

	// The storage settings for a private space.
	SpaceStorageSettings *SpaceStorageSettings

	noSmithyDocumentSerde
}

// A collection of space sharing settings.
type SpaceSharingSettings struct {

	// Specifies the sharing type of the space.
	//
	// This member is required.
	SharingType SharingType

	noSmithyDocumentSerde
}

// Specifies summary information about the space sharing settings.
type SpaceSharingSettingsSummary struct {

	// Specifies the sharing type of the space.
	SharingType SharingType

	noSmithyDocumentSerde
}

// The storage settings for a private space.
type SpaceStorageSettings struct {

	// A collection of EBS storage settings for a private space.
	EbsStorageSettings *EbsStorageSettings

	noSmithyDocumentSerde
}

// Defines the stairs traffic pattern for an Inference Recommender load test. This
// pattern type consists of multiple steps where the number of users increases at
// each step. Specify either the stairs or phases traffic pattern.
type Stairs struct {

	// Defines how long each traffic step should be.
	DurationInSeconds *int32

	// Specifies how many steps to perform during traffic.
	NumberOfSteps *int32

	// Specifies how many new users to spawn in each step.
	UsersPerStep *int32

	noSmithyDocumentSerde
}

// Specifies a limit to how long a model training job or model compilation job can
// run. It also specifies how long a managed spot training job has to complete.
// When the job reaches the time limit, SageMaker ends the training or compilation
// job. Use this API to cap model training costs. To stop a training job, SageMaker
// sends the algorithm the SIGTERM signal, which delays job termination for 120
// seconds. Algorithms can use this 120-second window to save the model artifacts,
// so the results of training are not lost. The training algorithms provided by
// SageMaker automatically save the intermediate results of a model training job
// when possible. This attempt to save artifacts is only a best effort case as
// model might not be in a state from which it can be saved. For example, if
// training has just started, the model might not be ready to save. When saved,
// this intermediate data is a valid model artifact. You can use it to create a
// model with CreateModel . The Neural Topic Model (NTM) currently does not support
// saving intermediate model artifacts. When training NTMs, make sure that the
// maximum runtime is sufficient for the training job to complete.
type StoppingCondition struct {

	// The maximum length of time, in seconds, that a training or compilation job can
	// be pending before it is stopped.
	MaxPendingTimeInSeconds *int32

	// The maximum length of time, in seconds, that a training or compilation job can
	// run before it is stopped. For compilation jobs, if the job does not complete
	// during this time, a TimeOut error is generated. We recommend starting with 900
	// seconds and increasing as necessary based on your model. For all other jobs, if
	// the job does not complete during this time, SageMaker ends the job. When
	// RetryStrategy is specified in the job request, MaxRuntimeInSeconds specifies
	// the maximum time for all of the attempts in total, not each individual attempt.
	// The default value is 1 day. The maximum value is 28 days. The maximum time that
	// a TrainingJob can run in total, including any time spent publishing metrics or
	// archiving and uploading models after it has been stopped, is 30 days.
	MaxRuntimeInSeconds *int32

	// The maximum length of time, in seconds, that a managed Spot training job has to
	// complete. It is the amount of time spent waiting for Spot capacity plus the
	// amount of time the job can run. It must be equal to or greater than
	// MaxRuntimeInSeconds . If the job does not complete during this time, SageMaker
	// ends the job. When RetryStrategy is specified in the job request,
	// MaxWaitTimeInSeconds specifies the maximum time for all of the attempts in
	// total, not each individual attempt.
	MaxWaitTimeInSeconds *int32

	noSmithyDocumentSerde
}

// Details of the Amazon SageMaker Studio Lifecycle Configuration.
type StudioLifecycleConfigDetails struct {

	// The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
	CreationTime *time.Time

	// This value is equivalent to CreationTime because Amazon SageMaker Studio
	// Lifecycle Configurations are immutable.
	LastModifiedTime *time.Time

	// The App type to which the Lifecycle Configuration is attached.
	StudioLifecycleConfigAppType StudioLifecycleConfigAppType

	// The Amazon Resource Name (ARN) of the Lifecycle Configuration.
	StudioLifecycleConfigArn *string

	// The name of the Amazon SageMaker Studio Lifecycle Configuration.
	StudioLifecycleConfigName *string

	noSmithyDocumentSerde
}

// Describes a work team of a vendor that does the a labelling job.
type SubscribedWorkteam struct {

	// The Amazon Resource Name (ARN) of the vendor that you have subscribed.
	//
	// This member is required.
	WorkteamArn *string

	// Marketplace product listing ID.
	ListingId *string

	// The description of the vendor from the Amazon Marketplace.
	MarketplaceDescription *string

	// The title of the service provided by the vendor in the Amazon Marketplace.
	MarketplaceTitle *string

	// The name of the vendor in the Amazon Marketplace.
	SellerName *string

	noSmithyDocumentSerde
}

// Specified in the GetSearchSuggestions (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_GetSearchSuggestions.html)
// request. Limits the property names that are included in the response.
type SuggestionQuery struct {

	// Defines a property name hint. Only property names that begin with the specified
	// hint are included in the response.
	PropertyNameQuery *PropertyNameQuery

	noSmithyDocumentSerde
}

// The collection of settings used by an AutoML job V2 for the tabular problem
// type.
type TabularJobConfig struct {

	// The name of the target variable in supervised learning, usually represented by
	// 'y'.
	//
	// This member is required.
	TargetAttributeName *string

	// The configuration information of how model candidates are generated.
	CandidateGenerationConfig *CandidateGenerationConfig

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// A URL to the Amazon S3 data source containing selected features from the input
	// data source to run an Autopilot job V2. You can input FeatureAttributeNames
	// (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1",
	// "col2", ...] } . You can also specify the data type of the feature (optional) in
	// the format shown below: { "FeatureDataTypes":{"col1":"numeric",
	// "col2":"categorical" ... } } These column keys may not include the target
	// column. In ensembling mode, Autopilot only supports the following data types:
	// numeric , categorical , text , and datetime . In HPO mode, Autopilot can support
	// numeric , categorical , text , datetime , and sequence . If only
	// FeatureDataTypes is provided, the column keys ( col1 , col2 ,..) should be a
	// subset of the column names in the input data. If both FeatureDataTypes and
	// FeatureAttributeNames are provided, then the column keys should be a subset of
	// the column names provided in FeatureAttributeNames . The key name
	// FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are
	// case sensitive and should be a list of strings containing unique values that are
	// a subset of the column names in the input data. The list of columns provided
	// must not include the target column.
	FeatureSpecificationS3Uri *string

	// Generates possible candidates without training the models. A model candidate is
	// a combination of data preprocessors, algorithms, and algorithm parameter
	// settings.
	GenerateCandidateDefinitionsOnly *bool

	// The method that Autopilot uses to train the data. You can either specify the
	// mode manually or let Autopilot choose for you based on the dataset size by
	// selecting AUTO . In AUTO mode, Autopilot chooses ENSEMBLING for datasets
	// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING
	// mode uses a multi-stack ensemble model to predict classification and regression
	// tasks directly from your dataset. This machine learning mode combines several
	// base models to produce an optimal predictive model. It then uses a stacking
	// ensemble method to combine predictions from contributing members. A multi-stack
	// ensemble model can provide better performance over a single model by combining
	// the predictive capabilities of multiple models. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING
	// (HPO) mode uses the best hyperparameters to train the best version of a model.
	// HPO automatically selects an algorithm for the type of problem you want to
	// solve. Then HPO finds the best hyperparameters according to your objective
	// metric. See Autopilot algorithm support (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support)
	// for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
	Mode AutoMLMode

	// The type of supervised learning problem available for the model candidates of
	// the AutoML job V2. For more information, see Amazon SageMaker Autopilot problem
	// types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
	// . You must either specify the type of supervised learning problem in ProblemType
	// and provide the AutoMLJobObjective (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html#sagemaker-CreateAutoMLJobV2-request-AutoMLJobObjective)
	// metric, or none at all.
	ProblemType ProblemType

	// If specified, this column name indicates which column of the dataset should be
	// treated as sample weights for use by the objective metric during the training,
	// evaluation, and the selection of the best model. This column is not considered
	// as a predictive feature. For more information on Autopilot metrics, see Metrics
	// and validation (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html)
	// . Sample weights should be numeric, non-negative, with larger values indicating
	// which rows are more important than others. Data points that have invalid or no
	// weight value are excluded. Support for sample weights is available in Ensembling (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html)
	// mode only.
	SampleWeightAttributeName *string

	noSmithyDocumentSerde
}

// The resolved attributes specific to the tabular problem type.
type TabularResolvedAttributes struct {

	// The type of supervised learning problem available for the model candidates of
	// the AutoML job V2 (Binary Classification, Multiclass Classification,
	// Regression). For more information, see Amazon SageMaker Autopilot problem types (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-problem-types)
	// .
	ProblemType ProblemType

	noSmithyDocumentSerde
}

// A tag object that consists of a key and an optional value, used to manage
// metadata for SageMaker Amazon Web Services resources. You can add tags to
// notebook instances, training jobs, hyperparameter tuning jobs, batch transform
// jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.
// For more information on adding tags to SageMaker resources, see AddTags (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AddTags.html)
// . For more information on adding metadata to your Amazon Web Services resources
// with tagging, see Tagging Amazon Web Services resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
// . For advice on best practices for managing Amazon Web Services resources with
// tagging, see Tagging Best Practices: Implement an Effective Amazon Web Services
// Resource Tagging Strategy (https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf)
// .
type Tag struct {

	// The tag key. Tag keys must be unique per resource.
	//
	// This member is required.
	Key *string

	// The tag value.
	//
	// This member is required.
	Value *string

	noSmithyDocumentSerde
}

// Contains information about a target platform that you want your model to run
// on, such as OS, architecture, and accelerators. It is an alternative of
// TargetDevice .
type TargetPlatform struct {

	// Specifies a target platform architecture.
	//   - X86_64 : 64-bit version of the x86 instruction set.
	//   - X86 : 32-bit version of the x86 instruction set.
	//   - ARM64 : ARMv8 64-bit CPU.
	//   - ARM_EABIHF : ARMv7 32-bit, Hard Float.
	//   - ARM_EABI : ARMv7 32-bit, Soft Float. Used by Android 32-bit ARM platform.
	//
	// This member is required.
	Arch TargetPlatformArch

	// Specifies a target platform OS.
	//   - LINUX : Linux-based operating systems.
	//   - ANDROID : Android operating systems. Android API level can be specified
	//   using the ANDROID_PLATFORM compiler option. For example, "CompilerOptions":
	//   {'ANDROID_PLATFORM': 28}
	//
	// This member is required.
	Os TargetPlatformOs

	// Specifies a target platform accelerator (optional).
	//   - NVIDIA : Nvidia graphics processing unit. It also requires gpu-code ,
	//   trt-ver , cuda-ver compiler options
	//   - MALI : ARM Mali graphics processor
	//   - INTEL_GRAPHICS : Integrated Intel graphics
	Accelerator TargetPlatformAccelerator

	noSmithyDocumentSerde
}

// A target tracking scaling policy. Includes support for predefined or customized
// metrics. When using the PutScalingPolicy (https://docs.aws.amazon.com/autoscaling/application/APIReference/API_PutScalingPolicy.html)
// API, this parameter is required when you are creating a policy with the policy
// type TargetTrackingScaling .
type TargetTrackingScalingPolicyConfiguration struct {

	// An object containing information about a metric.
	MetricSpecification MetricSpecification

	// The recommended target value to specify for the metric when creating a scaling
	// policy.
	TargetValue *float64

	noSmithyDocumentSerde
}

// The TensorBoard app settings.
type TensorBoardAppSettings struct {

	// The default instance type and the Amazon Resource Name (ARN) of the SageMaker
	// image created on the instance.
	DefaultResourceSpec *ResourceSpec

	noSmithyDocumentSerde
}

// Configuration of storage locations for the Amazon SageMaker Debugger
// TensorBoard output data.
type TensorBoardOutputConfig struct {

	// Path to Amazon S3 storage location for TensorBoard output.
	//
	// This member is required.
	S3OutputPath *string

	// Path to local storage location for tensorBoard output. Defaults to
	// /opt/ml/output/tensorboard .
	LocalPath *string

	noSmithyDocumentSerde
}

// The collection of settings used by an AutoML job V2 for the text classification
// problem type.
type TextClassificationJobConfig struct {

	// The name of the column used to provide the sentences to be classified. It
	// should not be the same as the target column.
	//
	// This member is required.
	ContentColumn *string

	// The name of the column used to provide the class labels. It should not be same
	// as the content column.
	//
	// This member is required.
	TargetLabelColumn *string

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	noSmithyDocumentSerde
}

// The collection of settings used by an AutoML job V2 for the text generation
// problem type. The text generation models that support fine-tuning in Autopilot
// are currently accessible exclusively in regions supported by Canvas. Refer to
// the documentation of Canvas for the full list of its supported Regions (https://docs.aws.amazon.com/sagemaker/latest/dg/canvas.html)
// .
type TextGenerationJobConfig struct {

	// The name of the base model to fine-tune. Autopilot supports fine-tuning a
	// variety of large language models. For information on the list of supported
	// models, see Text generation models supporting fine-tuning in Autopilot (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-models.html#autopilot-llms-finetuning-supported-llms)
	// . If no BaseModelName is provided, the default model used is Falcon7BInstruct.
	BaseModelName *string

	// How long a fine-tuning job is allowed to run. For TextGenerationJobConfig
	// problem types, the MaxRuntimePerTrainingJobInSeconds attribute of
	// AutoMLJobCompletionCriteria defaults to 72h (259200s).
	CompletionCriteria *AutoMLJobCompletionCriteria

	// The access configuration file for the ML model. You can explicitly accept the
	// model end-user license agreement (EULA) within the ModelAccessConfig . For more
	// information, see End-user license agreements (https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-choose.html#jumpstart-foundation-models-choose-eula)
	// .
	ModelAccessConfig *ModelAccessConfig

	// The hyperparameters used to configure and optimize the learning process of the
	// base model. You can set any combination of the following hyperparameters for all
	// base models. For more information on each supported hyperparameter, see
	// Optimize the learning process of your text generation models with
	// hyperparameters (https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-set-hyperparameters.html)
	// .
	//   - "epochCount" : The number of times the model goes through the entire
	//   training dataset. Its value should be a string containing an integer value
	//   within the range of "1" to "10".
	//   - "batchSize" : The number of data samples used in each iteration of training.
	//   Its value should be a string containing an integer value within the range of "1"
	//   to "64".
	//   - "learningRate" : The step size at which a model's parameters are updated
	//   during training. Its value should be a string containing a floating-point value
	//   within the range of "0" to "1".
	//   - "learningRateWarmupSteps" : The number of training steps during which the
	//   learning rate gradually increases before reaching its target or maximum value.
	//   Its value should be a string containing an integer value within the range of "0"
	//   to "250".
	// Here is an example where all four hyperparameters are configured. {
	// "epochCount":"5", "learningRate":"0.5", "batchSize": "32",
	// "learningRateWarmupSteps": "10" }
	TextGenerationHyperParameters map[string]string

	noSmithyDocumentSerde
}

// The resolved attributes specific to the text generation problem type.
type TextGenerationResolvedAttributes struct {

	// The name of the base model to fine-tune.
	BaseModelName *string

	noSmithyDocumentSerde
}

// Used to set feature group throughput configuration. There are two modes:
// ON_DEMAND and PROVISIONED . With on-demand mode, you are charged for data reads
// and writes that your application performs on your feature group. You do not need
// to specify read and write throughput because Feature Store accommodates your
// workloads as they ramp up and down. You can switch a feature group to on-demand
// only once in a 24 hour period. With provisioned throughput mode, you specify the
// read and write capacity per second that you expect your application to require,
// and you are billed based on those limits. Exceeding provisioned throughput will
// result in your requests being throttled. Note: PROVISIONED throughput mode is
// supported only for feature groups that are offline-only, or use the Standard (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OnlineStoreConfig.html#sagemaker-Type-OnlineStoreConfig-StorageType)
// tier online store.
type ThroughputConfig struct {

	// The mode used for your feature group throughput: ON_DEMAND or PROVISIONED .
	//
	// This member is required.
	ThroughputMode ThroughputMode

	// For provisioned feature groups with online store enabled, this indicates the
	// read throughput you are billed for and can consume without throttling. This
	// field is not applicable for on-demand feature groups.
	ProvisionedReadCapacityUnits *int32

	// For provisioned feature groups, this indicates the write throughput you are
	// billed for and can consume without throttling. This field is not applicable for
	// on-demand feature groups.
	ProvisionedWriteCapacityUnits *int32

	noSmithyDocumentSerde
}

// Active throughput configuration of the feature group. Used to set feature group
// throughput configuration. There are two modes: ON_DEMAND and PROVISIONED . With
// on-demand mode, you are charged for data reads and writes that your application
// performs on your feature group. You do not need to specify read and write
// throughput because Feature Store accommodates your workloads as they ramp up and
// down. You can switch a feature group to on-demand only once in a 24 hour period.
// With provisioned throughput mode, you specify the read and write capacity per
// second that you expect your application to require, and you are billed based on
// those limits. Exceeding provisioned throughput will result in your requests
// being throttled. Note: PROVISIONED throughput mode is supported only for
// feature groups that are offline-only, or use the Standard (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OnlineStoreConfig.html#sagemaker-Type-OnlineStoreConfig-StorageType)
// tier online store.
type ThroughputConfigDescription struct {

	// The mode used for your feature group throughput: ON_DEMAND or PROVISIONED .
	//
	// This member is required.
	ThroughputMode ThroughputMode

	// For provisioned feature groups with online store enabled, this indicates the
	// read throughput you are billed for and can consume without throttling. This
	// field is not applicable for on-demand feature groups.
	ProvisionedReadCapacityUnits *int32

	// For provisioned feature groups, this indicates the write throughput you are
	// billed for and can consume without throttling. This field is not applicable for
	// on-demand feature groups.
	ProvisionedWriteCapacityUnits *int32

	noSmithyDocumentSerde
}

// The new throughput configuration for the feature group. You can switch between
// on-demand and provisioned modes or update the read / write capacity of
// provisioned feature groups. You can switch a feature group to on-demand only
// once in a 24 hour period.
type ThroughputConfigUpdate struct {

	// For provisioned feature groups with online store enabled, this indicates the
	// read throughput you are billed for and can consume without throttling.
	ProvisionedReadCapacityUnits *int32

	// For provisioned feature groups, this indicates the write throughput you are
	// billed for and can consume without throttling.
	ProvisionedWriteCapacityUnits *int32

	// Target throughput mode of the feature group. Throughput update is an
	// asynchronous operation, and the outcome should be monitored by polling
	// LastUpdateStatus field in DescribeFeatureGroup response. You cannot update a
	// feature group's throughput while another update is in progress.
	ThroughputMode ThroughputMode

	noSmithyDocumentSerde
}

// The collection of components that defines the time-series.
type TimeSeriesConfig struct {

	// The name of the column that represents the set of item identifiers for which
	// you want to predict the target value.
	//
	// This member is required.
	ItemIdentifierAttributeName *string

	// The name of the column representing the target variable that you want to
	// predict for each item in your dataset. The data type of the target variable must
	// be numerical.
	//
	// This member is required.
	TargetAttributeName *string

	// The name of the column indicating a point in time at which the target value of
	// a given item is recorded.
	//
	// This member is required.
	TimestampAttributeName *string

	// A set of columns names that can be grouped with the item identifier column to
	// create a composite key for which a target value is predicted.
	GroupingAttributeNames []string

	noSmithyDocumentSerde
}

// The collection of settings used by an AutoML job V2 for the time-series
// forecasting problem type.
type TimeSeriesForecastingJobConfig struct {

	// The frequency of predictions in a forecast. Valid intervals are an integer
	// followed by Y (Year), M (Month), W (Week), D (Day), H (Hour), and min (Minute).
	// For example, 1D indicates every day and 15min indicates every 15 minutes. The
	// value of a frequency must not overlap with the next larger frequency. For
	// example, you must use a frequency of 1H instead of 60min . The valid values for
	// each frequency are the following:
	//   - Minute - 1-59
	//   - Hour - 1-23
	//   - Day - 1-6
	//   - Week - 1-4
	//   - Month - 1-11
	//   - Year - 1
	//
	// This member is required.
	ForecastFrequency *string

	// The number of time-steps that the model predicts. The forecast horizon is also
	// called the prediction length. The maximum forecast horizon is the lesser of 500
	// time-steps or 1/4 of the time-steps in the dataset.
	//
	// This member is required.
	ForecastHorizon *int32

	// The collection of components that defines the time-series.
	//
	// This member is required.
	TimeSeriesConfig *TimeSeriesConfig

	// How long a job is allowed to run, or how many candidates a job is allowed to
	// generate.
	CompletionCriteria *AutoMLJobCompletionCriteria

	// A URL to the Amazon S3 data source containing additional selected features that
	// complement the target, itemID, timestamp, and grouped columns set in
	// TimeSeriesConfig . When not provided, the AutoML job V2 includes all the columns
	// from the original dataset that are not already declared in TimeSeriesConfig . If
	// provided, the AutoML job V2 only considers these additional columns as a
	// complement to the ones declared in TimeSeriesConfig . You can input
	// FeatureAttributeNames (optional) in JSON format as shown below: {
	// "FeatureAttributeNames":["col1", "col2", ...] } . You can also specify the data
	// type of the feature (optional) in the format shown below: {
	// "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } } Autopilot
	// supports the following data types: numeric , categorical , text , and datetime .
	// These column keys must not include any column set in TimeSeriesConfig .
	FeatureSpecificationS3Uri *string

	// The quantiles used to train the model for forecasts at a specified quantile.
	// You can specify quantiles from 0.01 (p1) to 0.99 (p99), by increments of 0.01
	// or higher. Up to five forecast quantiles can be specified. When
	// ForecastQuantiles is not provided, the AutoML job uses the quantiles p10, p50,
	// and p90 as default.
	ForecastQuantiles []string

	// The collection of holiday featurization attributes used to incorporate national
	// holiday information into your forecasting model.
	HolidayConfig []HolidayConfigAttributes

	// The transformations modifying specific attributes of the time-series, such as
	// filling strategies for missing values.
	Transformations *TimeSeriesTransformations

	noSmithyDocumentSerde
}

// Time series forecast settings for the SageMaker Canvas application.
type TimeSeriesForecastingSettings struct {

	// The IAM role that Canvas passes to Amazon Forecast for time series forecasting.
	// By default, Canvas uses the execution role specified in the UserProfile that
	// launches the Canvas application. If an execution role is not specified in the
	// UserProfile , Canvas uses the execution role specified in the Domain that owns
	// the UserProfile . To allow time series forecasting, this IAM role should have
	// the AmazonSageMakerCanvasForecastAccess (https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam-awsmanpol-canvas.html#security-iam-awsmanpol-AmazonSageMakerCanvasForecastAccess)
	// policy attached and forecast.amazonaws.com added in the trust relationship as a
	// service principal.
	AmazonForecastRoleArn *string

	// Describes whether time series forecasting is enabled or disabled in the Canvas
	// application.
	Status FeatureStatus

	noSmithyDocumentSerde
}

// Transformations allowed on the dataset. Supported transformations are Filling
// and Aggregation . Filling specifies how to add values to missing values in the
// dataset. Aggregation defines how to aggregate data that does not align with
// forecast frequency.
type TimeSeriesTransformations struct {

	// A key value pair defining the aggregation method for a column, where the key is
	// the column name and the value is the aggregation method. The supported
	// aggregation methods are sum (default), avg , first , min , max . Aggregation is
	// only supported for the target column.
	Aggregation map[string]AggregationTransformationValue

	// A key value pair defining the filling method for a column, where the key is the
	// column name and the value is an object which defines the filling logic. You can
	// specify multiple filling methods for a single column. The supported filling
	// methods and their corresponding options are:
	//   - frontfill : none (Supported only for target column)
	//   - middlefill : zero , value , median , mean , min , max
	//   - backfill : zero , value , median , mean , min , max
	//   - futurefill : zero , value , median , mean , min , max
	// To set a filling method to a specific value, set the fill parameter to the
	// chosen filling method value (for example "backfill" : "value" ), and define the
	// filling value in an additional parameter prefixed with "_value". For example, to
	// set backfill to a value of 2 , you must include two parameters: "backfill":
	// "value" and "backfill_value":"2" .
	Filling map[string]map[string]string

	noSmithyDocumentSerde
}

// Defines the traffic pattern of the load test.
type TrafficPattern struct {

	// Defines the phases traffic specification.
	Phases []Phase

	// Defines the stairs traffic pattern.
	Stairs *Stairs

	// Defines the traffic patterns. Choose either PHASES or STAIRS .
	TrafficType TrafficType

	noSmithyDocumentSerde
}

// Defines the traffic routing strategy during an endpoint deployment to shift
// traffic from the old fleet to the new fleet.
type TrafficRoutingConfig struct {

	// Traffic routing strategy type.
	//   - ALL_AT_ONCE : Endpoint traffic shifts to the new fleet in a single step.
	//   - CANARY : Endpoint traffic shifts to the new fleet in two steps. The first
	//   step is the canary, which is a small portion of the traffic. The second step is
	//   the remainder of the traffic.
	//   - LINEAR : Endpoint traffic shifts to the new fleet in n steps of a
	//   configurable size.
	//
	// This member is required.
	Type TrafficRoutingConfigType

	// The waiting time (in seconds) between incremental steps to turn on traffic on
	// the new endpoint fleet.
	//
	// This member is required.
	WaitIntervalInSeconds *int32

	// Batch size for the first step to turn on traffic on the new endpoint fleet.
	// Value must be less than or equal to 50% of the variant's total instance count.
	CanarySize *CapacitySize

	// Batch size for each step to turn on traffic on the new endpoint fleet. Value
	// must be 10-50% of the variant's total instance count.
	LinearStepSize *CapacitySize

	noSmithyDocumentSerde
}

// The configuration to use an image from a private Docker registry for a training
// job.
type TrainingImageConfig struct {

	// The method that your training job will use to gain access to the images in your
	// private Docker registry. For access to an image in a private Docker registry,
	// set to Vpc .
	//
	// This member is required.
	TrainingRepositoryAccessMode TrainingRepositoryAccessMode

	// An object containing authentication information for a private Docker registry
	// containing your training images.
	TrainingRepositoryAuthConfig *TrainingRepositoryAuthConfig

	noSmithyDocumentSerde
}

// Contains information about a training job.
type TrainingJob struct {

	// Information about the algorithm used for training, and algorithm metadata.
	AlgorithmSpecification *AlgorithmSpecification

	// The Amazon Resource Name (ARN) of the job.
	AutoMLJobArn *string

	// The billable time in seconds.
	BillableTimeInSeconds *int32

	// Contains information about the output location for managed spot training
	// checkpoint data.
	CheckpointConfig *CheckpointConfig

	// A timestamp that indicates when the training job was created.
	CreationTime *time.Time

	// Configuration information for the Amazon SageMaker Debugger hook parameters,
	// metric and tensor collections, and storage paths. To learn more about how to
	// configure the DebugHookConfig parameter, see Use the SageMaker and Debugger
	// Configuration API Operations to Create, Update, and Debug Your Training Job (https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html)
	// .
	DebugHookConfig *DebugHookConfig

	// Information about the debug rule configuration.
	DebugRuleConfigurations []DebugRuleConfiguration

	// Information about the evaluation status of the rules for the training job.
	DebugRuleEvaluationStatuses []DebugRuleEvaluationStatus

	// To encrypt all communications between ML compute instances in distributed
	// training, choose True . Encryption provides greater security for distributed
	// training, but training might take longer. How long it takes depends on the
	// amount of communication between compute instances, especially if you use a deep
	// learning algorithm in distributed training.
	EnableInterContainerTrafficEncryption *bool

	// When true, enables managed spot training using Amazon EC2 Spot instances to run
	// training jobs instead of on-demand instances. For more information, see Managed
	// Spot Training (https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html)
	// .
	EnableManagedSpotTraining *bool

	// If the TrainingJob was created with network isolation, the value is set to true
	// . If network isolation is enabled, nodes can't communicate beyond the VPC they
	// run in.
	EnableNetworkIsolation *bool

	// The environment variables to set in the Docker container.
	Environment map[string]string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// If the training job failed, the reason it failed.
	FailureReason *string

	// A list of final metric values that are set when the training job completes.
	// Used only if the training job was configured to use metrics.
	FinalMetricDataList []MetricData

	// Algorithm-specific parameters.
	HyperParameters map[string]string

	// An array of Channel objects that describes each data input channel. Your input
	// must be in the same Amazon Web Services region as your training job.
	InputDataConfig []Channel

	// The Amazon Resource Name (ARN) of the labeling job.
	LabelingJobArn *string

	// A timestamp that indicates when the status of the training job was last
	// modified.
	LastModifiedTime *time.Time

	// Information about the Amazon S3 location that is configured for storing model
	// artifacts.
	ModelArtifacts *ModelArtifacts

	// The S3 path where model artifacts that you configured when creating the job are
	// stored. SageMaker creates subfolders for model artifacts.
	OutputDataConfig *OutputDataConfig

	// Configuration information for Amazon SageMaker Debugger system monitoring,
	// framework profiling, and storage paths.
	ProfilerConfig *ProfilerConfig

	// Resources, including ML compute instances and ML storage volumes, that are
	// configured for model training.
	ResourceConfig *ResourceConfig

	// The number of times to retry the job when the job fails due to an
	// InternalServerError .
	RetryStrategy *RetryStrategy

	// The Amazon Web Services Identity and Access Management (IAM) role configured
	// for the training job.
	RoleArn *string

	// Provides detailed information about the state of the training job. For detailed
	// information about the secondary status of the training job, see StatusMessage
	// under SecondaryStatusTransition (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html)
	// . SageMaker provides primary statuses and secondary statuses that apply to each
	// of them: InProgress
	//   - Starting - Starting the training job.
	//   - Downloading - An optional stage for algorithms that support File training
	//   input mode. It indicates that data is being downloaded to the ML storage
	//   volumes.
	//   - Training - Training is in progress.
	//   - Uploading - Training is complete and the model artifacts are being uploaded
	//   to the S3 location.
	// Completed
	//   - Completed - The training job has completed.
	// Failed
	//   - Failed - The training job has failed. The reason for the failure is returned
	//   in the FailureReason field of DescribeTrainingJobResponse .
	// Stopped
	//   - MaxRuntimeExceeded - The job stopped because it exceeded the maximum allowed
	//   runtime.
	//   - Stopped - The training job has stopped.
	// Stopping
	//   - Stopping - Stopping the training job.
	// Valid values for SecondaryStatus are subject to change. We no longer support
	// the following secondary statuses:
	//   - LaunchingMLInstances
	//   - PreparingTrainingStack
	//   - DownloadingTrainingImage
	SecondaryStatus SecondaryStatus

	// A history of all of the secondary statuses that the training job has
	// transitioned through.
	SecondaryStatusTransitions []SecondaryStatusTransition

	// Specifies a limit to how long a model training job can run. It also specifies
	// how long a managed Spot training job has to complete. When the job reaches the
	// time limit, SageMaker ends the training job. Use this API to cap model training
	// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
	// delays job termination for 120 seconds. Algorithms can use this 120-second
	// window to save the model artifacts, so the results of training are not lost.
	StoppingCondition *StoppingCondition

	// An array of key-value pairs. You can use tags to categorize your Amazon Web
	// Services resources in different ways, for example, by purpose, owner, or
	// environment. For more information, see Tagging Amazon Web Services Resources (https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html)
	// .
	Tags []Tag

	// Configuration of storage locations for the Amazon SageMaker Debugger
	// TensorBoard output data.
	TensorBoardOutputConfig *TensorBoardOutputConfig

	// Indicates the time when the training job ends on training instances. You are
	// billed for the time interval between the value of TrainingStartTime and this
	// time. For successful jobs and stopped jobs, this is the time after model
	// artifacts are uploaded. For failed jobs, this is the time when SageMaker detects
	// a job failure.
	TrainingEndTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	TrainingJobArn *string

	// The name of the training job.
	TrainingJobName *string

	// The status of the training job. Training job statuses are:
	//   - InProgress - The training is in progress.
	//   - Completed - The training job has completed.
	//   - Failed - The training job has failed. To see the reason for the failure, see
	//   the FailureReason field in the response to a DescribeTrainingJobResponse call.
	//   - Stopping - The training job is stopping.
	//   - Stopped - The training job has stopped.
	// For more detailed information, see SecondaryStatus .
	TrainingJobStatus TrainingJobStatus

	// Indicates the time when the training job starts on training instances. You are
	// billed for the time interval between this time and the value of TrainingEndTime
	// . The start time in CloudWatch Logs might be later than this time. The
	// difference is due to the time it takes to download the training data and to the
	// size of the training container.
	TrainingStartTime *time.Time

	// The training time in seconds.
	TrainingTimeInSeconds *int32

	// The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if
	// the training job was launched by a hyperparameter tuning job.
	TuningJobArn *string

	// A VpcConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html)
	// object that specifies the VPC that this training job has access to. For more
	// information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud (https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html)
	// .
	VpcConfig *VpcConfig

	noSmithyDocumentSerde
}

// Defines the input needed to run a training job using the algorithm.
type TrainingJobDefinition struct {

	// An array of Channel objects, each of which specifies an input source.
	//
	// This member is required.
	InputDataConfig []Channel

	// the path to the S3 bucket where you want to store model artifacts. SageMaker
	// creates subfolders for the artifacts.
	//
	// This member is required.
	OutputDataConfig *OutputDataConfig

	// The resources, including the ML compute instances and ML storage volumes, to
	// use for model training.
	//
	// This member is required.
	ResourceConfig *ResourceConfig

	// Specifies a limit to how long a model training job can run. It also specifies
	// how long a managed Spot training job has to complete. When the job reaches the
	// time limit, SageMaker ends the training job. Use this API to cap model training
	// costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which
	// delays job termination for 120 seconds. Algorithms can use this 120-second
	// window to save the model artifacts.
	//
	// This member is required.
	StoppingCondition *StoppingCondition

	// The training input mode that the algorithm supports. For more information about
	// input modes, see Algorithms (https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html)
	// . Pipe mode If an algorithm supports Pipe mode, Amazon SageMaker streams data
	// directly from Amazon S3 to the container. File mode If an algorithm supports
	// File mode, SageMaker downloads the training data from S3 to the provisioned ML
	// storage volume, and mounts the directory to the Docker volume for the training
	// container. You must provision the ML storage volume with sufficient capacity to
	// accommodate the data downloaded from S3. In addition to the training data, the
	// ML storage volume also stores the output model. The algorithm container uses the
	// ML storage volume to also store intermediate information, if any. For
	// distributed algorithms, training data is distributed uniformly. Your training
	// duration is predictable if the input data objects sizes are approximately the
	// same. SageMaker does not split the files any further for model training. If the
	// object sizes are skewed, training won't be optimal as the data distribution is
	// also skewed when one host in a training cluster is overloaded, thus becoming a
	// bottleneck in training. FastFile mode If an algorithm supports FastFile mode,
	// SageMaker streams data directly from S3 to the container with no code changes,
	// and provides file system access to the data. Users can author their training
	// script to interact with these files as if they were stored on disk. FastFile
	// mode works best when the data is read sequentially. Augmented manifest files
	// aren't supported. The startup time is lower when there are fewer files in the S3
	// bucket provided.
	//
	// This member is required.
	TrainingInputMode TrainingInputMode

	// The hyperparameters used for the training job.
	HyperParameters map[string]string

	noSmithyDocumentSerde
}

// The numbers of training jobs launched by a hyperparameter tuning job,
// categorized by status.
type TrainingJobStatusCounters struct {

	// The number of completed training jobs launched by the hyperparameter tuning job.
	Completed *int32

	// The number of in-progress training jobs launched by a hyperparameter tuning job.
	InProgress *int32

	// The number of training jobs that failed and can't be retried. A failed training
	// job can't be retried if it failed because a client error occurred.
	NonRetryableError *int32

	// The number of training jobs that failed, but can be retried. A failed training
	// job can be retried only if it failed because an internal service error occurred.
	RetryableError *int32

	// The number of training jobs launched by a hyperparameter tuning job that were
	// manually stopped.
	Stopped *int32

	noSmithyDocumentSerde
}

// Metadata for a training job step.
type TrainingJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the training job that was run by this step
	// execution.
	Arn *string

	noSmithyDocumentSerde
}

// Provides summary information about a training job.
type TrainingJobSummary struct {

	// A timestamp that shows when the training job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the training job.
	//
	// This member is required.
	TrainingJobArn *string

	// The name of the training job that you want a summary for.
	//
	// This member is required.
	TrainingJobName *string

	// The status of the training job.
	//
	// This member is required.
	TrainingJobStatus TrainingJobStatus

	// Timestamp when the training job was last modified.
	LastModifiedTime *time.Time

	// A timestamp that shows when the training job ended. This field is set only if
	// the training job has one of the terminal statuses ( Completed , Failed , or
	// Stopped ).
	TrainingEndTime *time.Time

	// The status of the warm pool associated with the training job.
	WarmPoolStatus *WarmPoolStatus

	noSmithyDocumentSerde
}

// An object containing authentication information for a private Docker registry.
type TrainingRepositoryAuthConfig struct {

	// The Amazon Resource Name (ARN) of an Amazon Web Services Lambda function used
	// to give SageMaker access credentials to your private Docker registry.
	//
	// This member is required.
	TrainingRepositoryCredentialsProviderArn *string

	noSmithyDocumentSerde
}

// Defines how the algorithm is used for a training job.
type TrainingSpecification struct {

	// A list of the instance types that this algorithm can use for training.
	//
	// This member is required.
	SupportedTrainingInstanceTypes []TrainingInstanceType

	// A list of ChannelSpecification objects, which specify the input sources to be
	// used by the algorithm.
	//
	// This member is required.
	TrainingChannels []ChannelSpecification

	// The Amazon ECR registry path of the Docker image that contains the training
	// algorithm.
	//
	// This member is required.
	TrainingImage *string

	// The additional data source used during the training job.
	AdditionalS3DataSource *AdditionalS3DataSource

	// A list of MetricDefinition objects, which are used for parsing metrics
	// generated by the algorithm.
	MetricDefinitions []MetricDefinition

	// A list of the HyperParameterSpecification objects, that define the supported
	// hyperparameters. This is required if the algorithm supports automatic model
	// tuning.>
	SupportedHyperParameters []HyperParameterSpecification

	// A list of the metrics that the algorithm emits that can be used as the
	// objective metric in a hyperparameter tuning job.
	SupportedTuningJobObjectiveMetrics []HyperParameterTuningJobObjective

	// Indicates whether the algorithm supports distributed training. If set to false,
	// buyers can't request more than one instance during training.
	SupportsDistributedTraining *bool

	// An MD5 hash of the training algorithm that identifies the Docker image used for
	// training.
	TrainingImageDigest *string

	noSmithyDocumentSerde
}

// Describes the location of the channel data.
type TransformDataSource struct {

	// The S3 location of the data source that is associated with a channel.
	//
	// This member is required.
	S3DataSource *TransformS3DataSource

	noSmithyDocumentSerde
}

// Describes the input source of a transform job and the way the transform job
// consumes it.
type TransformInput struct {

	// Describes the location of the channel data, which is, the S3 location of the
	// input data that the model can consume.
	//
	// This member is required.
	DataSource *TransformDataSource

	// If your transform data is compressed, specify the compression type. Amazon
	// SageMaker automatically decompresses the data for the transform job accordingly.
	// The default value is None .
	CompressionType CompressionType

	// The multipurpose internet mail extension (MIME) type of the data. Amazon
	// SageMaker uses the MIME type with each http call to transfer data to the
	// transform job.
	ContentType *string

	// The method to use to split the transform job's data files into smaller batches.
	// Splitting is necessary when the total size of each object is too large to fit in
	// a single request. You can also use data splitting to improve performance by
	// processing multiple concurrent mini-batches. The default value for SplitType is
	// None , which indicates that input data files are not split, and request payloads
	// contain the entire contents of an input object. Set the value of this parameter
	// to Line to split records on a newline character boundary. SplitType also
	// supports a number of record-oriented binary data formats. Currently, the
	// supported record formats are:
	//   - RecordIO
	//   - TFRecord
	// When splitting is enabled, the size of a mini-batch depends on the values of
	// the BatchStrategy and MaxPayloadInMB parameters. When the value of BatchStrategy
	// is MultiRecord , Amazon SageMaker sends the maximum number of records in each
	// request, up to the MaxPayloadInMB limit. If the value of BatchStrategy is
	// SingleRecord , Amazon SageMaker sends individual records in each request. Some
	// data formats represent a record as a binary payload wrapped with extra padding
	// bytes. When splitting is applied to a binary data format, padding is removed if
	// the value of BatchStrategy is set to SingleRecord . Padding is not removed if
	// the value of BatchStrategy is set to MultiRecord . For more information about
	// RecordIO , see Create a Dataset Using RecordIO (https://mxnet.apache.org/api/faq/recordio)
	// in the MXNet documentation. For more information about TFRecord , see Consuming
	// TFRecord data (https://www.tensorflow.org/guide/data#consuming_tfrecord_data) in
	// the TensorFlow documentation.
	SplitType SplitType

	noSmithyDocumentSerde
}

// A batch transform job. For information about SageMaker batch transform, see Use
// Batch Transform (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html)
// .
type TransformJob struct {

	// The Amazon Resource Name (ARN) of the AutoML job that created the transform job.
	AutoMLJobArn *string

	// Specifies the number of records to include in a mini-batch for an HTTP
	// inference request. A record is a single unit of input data that inference can be
	// made on. For example, a single line in a CSV file is a record.
	BatchStrategy BatchStrategy

	// A timestamp that shows when the transform Job was created.
	CreationTime *time.Time

	// Configuration to control how SageMaker captures inference data for batch
	// transform jobs.
	DataCaptureConfig *BatchDataCaptureConfig

	// The data structure used to specify the data to be used for inference in a batch
	// transform job and to associate the data that is relevant to the prediction
	// results in the output. The input filter provided allows you to exclude input
	// data that is not needed for inference in a batch transform job. The output
	// filter provided allows you to include input data relevant to interpreting the
	// predictions in the output from the job. For more information, see Associate
	// Prediction Results with their Corresponding Input Records (https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html)
	// .
	DataProcessing *DataProcessing

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]string

	// Associates a SageMaker job as a trial component with an experiment and trial.
	// Specified when you call the following APIs:
	//   - CreateProcessingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html)
	//   - CreateTrainingJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html)
	//   - CreateTransformJob (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html)
	ExperimentConfig *ExperimentConfig

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// The Amazon Resource Name (ARN) of the labeling job that created the transform
	// job.
	LabelingJobArn *string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. If MaxConcurrentTransforms is set to 0 or left unset, SageMaker
	// checks the optional execution-parameters to determine the settings for your
	// chosen algorithm. If the execution-parameters endpoint is not enabled, the
	// default value is 1. For built-in algorithms, you don't need to set a value for
	// MaxConcurrentTransforms .
	MaxConcurrentTransforms *int32

	// The maximum allowed size of the payload, in MB. A payload is the data portion
	// of a record (without metadata). The value in MaxPayloadInMB must be greater
	// than, or equal to, the size of a single record. To estimate the size of a record
	// in MB, divide the size of your dataset by the number of records. To ensure that
	// the records fit within the maximum payload size, we recommend using a slightly
	// larger value. The default value is 6 MB. For cases where the payload might be
	// arbitrarily large and is transmitted using HTTP chunked encoding, set the value
	// to 0. This feature works only in supported algorithms. Currently, SageMaker
	// built-in algorithms do not support HTTP chunked encoding.
	MaxPayloadInMB *int32

	// Configures the timeout and maximum number of retries for processing a transform
	// job invocation.
	ModelClientConfig *ModelClientConfig

	// The name of the model associated with the transform job.
	ModelName *string

	// A list of tags associated with the transform job.
	Tags []Tag

	// Indicates when the transform job has been completed, or has stopped or failed.
	// You are billed for the time interval between this time and the value of
	// TransformStartTime .
	TransformEndTime *time.Time

	// Describes the input source of a transform job and the way the transform job
	// consumes it.
	TransformInput *TransformInput

	// The Amazon Resource Name (ARN) of the transform job.
	TransformJobArn *string

	// The name of the transform job.
	TransformJobName *string

	// The status of the transform job. Transform job statuses are:
	//   - InProgress - The job is in progress.
	//   - Completed - The job has completed.
	//   - Failed - The transform job has failed. To see the reason for the failure,
	//   see the FailureReason field in the response to a DescribeTransformJob call.
	//   - Stopping - The transform job is stopping.
	//   - Stopped - The transform job has stopped.
	TransformJobStatus TransformJobStatus

	// Describes the results of a transform job.
	TransformOutput *TransformOutput

	// Describes the resources, including ML instance types and ML instance count, to
	// use for transform job.
	TransformResources *TransformResources

	// Indicates when the transform job starts on ML instances. You are billed for the
	// time interval between this time and the value of TransformEndTime .
	TransformStartTime *time.Time

	noSmithyDocumentSerde
}

// Defines the input needed to run a transform job using the inference
// specification specified in the algorithm.
type TransformJobDefinition struct {

	// A description of the input source and the way the transform job consumes it.
	//
	// This member is required.
	TransformInput *TransformInput

	// Identifies the Amazon S3 location where you want Amazon SageMaker to save the
	// results from the transform job.
	//
	// This member is required.
	TransformOutput *TransformOutput

	// Identifies the ML compute instances for the transform job.
	//
	// This member is required.
	TransformResources *TransformResources

	// A string that determines the number of records included in a single mini-batch.
	// SingleRecord means only one record is used per mini-batch. MultiRecord means a
	// mini-batch is set to contain as many records that can fit within the
	// MaxPayloadInMB limit.
	BatchStrategy BatchStrategy

	// The environment variables to set in the Docker container. We support up to 16
	// key and values entries in the map.
	Environment map[string]string

	// The maximum number of parallel requests that can be sent to each instance in a
	// transform job. The default value is 1.
	MaxConcurrentTransforms *int32

	// The maximum payload size allowed, in MB. A payload is the data portion of a
	// record (without metadata).
	MaxPayloadInMB *int32

	noSmithyDocumentSerde
}

// Metadata for a transform job step.
type TransformJobStepMetadata struct {

	// The Amazon Resource Name (ARN) of the transform job that was run by this step
	// execution.
	Arn *string

	noSmithyDocumentSerde
}

// Provides a summary of a transform job. Multiple TransformJobSummary objects are
// returned as a list after in response to a ListTransformJobs (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTransformJobs.html)
// call.
type TransformJobSummary struct {

	// A timestamp that shows when the transform Job was created.
	//
	// This member is required.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the transform job.
	//
	// This member is required.
	TransformJobArn *string

	// The name of the transform job.
	//
	// This member is required.
	TransformJobName *string

	// The status of the transform job.
	//
	// This member is required.
	TransformJobStatus TransformJobStatus

	// If the transform job failed, the reason it failed.
	FailureReason *string

	// Indicates when the transform job was last modified.
	LastModifiedTime *time.Time

	// Indicates when the transform job ends on compute instances. For successful jobs
	// and stopped jobs, this is the exact time recorded after the results are
	// uploaded. For failed jobs, this is when Amazon SageMaker detected that the job
	// failed.
	TransformEndTime *time.Time

	noSmithyDocumentSerde
}

// Describes the results of a transform job.
type TransformOutput struct {

	// The Amazon S3 path where you want Amazon SageMaker to store the results of the
	// transform job. For example, s3://bucket-name/key-name-prefix . For every S3
	// object used as input for the transform job, batch transform stores the
	// transformed data with an . out suffix in a corresponding subfolder in the
	// location in the output prefix. For example, for the input data stored at
	// s3://bucket-name/input-name-prefix/dataset01/data.csv , batch transform stores
	// the transformed data at
	// s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out . Batch
	// transform doesn't upload partially processed objects. For an input S3 object
	// that contains multiple records, it creates an . out file only if the transform
	// job succeeds on the entire file. When the input contains multiple S3 objects,
	// the batch transform job processes the listed S3 objects and uploads only the
	// output for successfully processed objects. If any object fails in the transform
	// job batch transform marks the job as failed to prompt investigation.
	//
	// This member is required.
	S3OutputPath *string

	// The MIME type used to specify the output data. Amazon SageMaker uses the MIME
	// type with each http call to transfer data from the transform job.
	Accept *string

	// Defines how to assemble the results of the transform job as a single S3 object.
	// Choose a format that is most convenient to you. To concatenate the results in
	// binary format, specify None . To add a newline character at the end of every
	// transformed record, specify Line .
	AssembleWith AssemblyType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon
	// S3 server-side encryption. The KmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	// If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key
	// for Amazon S3 for your role's account. For more information, see KMS-Managed
	// Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html)
	// in the Amazon Simple Storage Service Developer Guide. The KMS key policy must
	// grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html)
	// request. For more information, see Using Key Policies in Amazon Web Services KMS (https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html)
	// in the Amazon Web Services Key Management Service Developer Guide.
	KmsKeyId *string

	noSmithyDocumentSerde
}

// Describes the resources, including ML instance types and ML instance count, to
// use for transform job.
type TransformResources struct {

	// The number of ML compute instances to use in the transform job. The default
	// value is 1 , and the maximum is 100 . For distributed transform jobs, specify a
	// value greater than 1 .
	//
	// This member is required.
	InstanceCount *int32

	// The ML compute instance type for the transform job. If you are using built-in
	// algorithms to transform moderately sized datasets, we recommend using
	// ml.m4.xlarge or ml.m5.large instance types.
	//
	// This member is required.
	InstanceType TransformInstanceType

	// The Amazon Web Services Key Management Service (Amazon Web Services KMS) key
	// that Amazon SageMaker uses to encrypt model data on the storage volume attached
	// to the ML compute instance(s) that run the batch transform job. Certain
	// Nitro-based instances include local storage, dependent on the instance type.
	// Local storage volumes are encrypted using a hardware module on the instance. You
	// can't request a VolumeKmsKeyId when using an instance type with local storage.
	// For a list of instance types that support local instance storage, see Instance
	// Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes)
	// . For more information about local instance storage encryption, see SSD
	// Instance Store Volumes (https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html)
	// . The VolumeKmsKeyId can be any of the following formats:
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Key ARN:
	//   arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//   - Alias name: alias/ExampleAlias
	//   - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
	VolumeKmsKeyId *string

	noSmithyDocumentSerde
}

// Describes the S3 data source.
type TransformS3DataSource struct {

	// If you choose S3Prefix , S3Uri identifies a key name prefix. Amazon SageMaker
	// uses all objects with the specified key name prefix for batch transform. If you
	// choose ManifestFile , S3Uri identifies an object that is a manifest file
	// containing a list of object keys that you want Amazon SageMaker to use for batch
	// transform. The following values are compatible: ManifestFile , S3Prefix The
	// following value is not compatible: AugmentedManifestFile
	//
	// This member is required.
	S3DataType S3DataType

	// Depending on the value specified for the S3DataType , identifies either a key
	// name prefix or a manifest. For example:
	//   - A key name prefix might look like this: s3://bucketname/exampleprefix .
	//   - A manifest might look like this: s3://bucketname/example.manifest The
	//   manifest is an S3 object which is a JSON file with the following format: [
	//   {"prefix": "s3://customer_bucket/some/prefix/"}, "relative/path/to/custdata-1",
	//   "relative/path/custdata-2", ... "relative/path/custdata-N" ] The preceding
	//   JSON matches the following S3Uris :
	//   s3://customer_bucket/some/prefix/relative/path/to/custdata-1
	//   s3://customer_bucket/some/prefix/relative/path/custdata-2 ...
	//   s3://customer_bucket/some/prefix/relative/path/custdata-N The complete set of
	//   S3Uris in this manifest constitutes the input data for the channel for this
	//   datasource. The object that each S3Uris points to must be readable by the IAM
	//   role that Amazon SageMaker uses to perform tasks on your behalf.
	//
	// This member is required.
	S3Uri *string

	noSmithyDocumentSerde
}

// The properties of a trial as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type Trial struct {

	// Who created the trial.
	CreatedBy *UserContext

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName
	// is displayed.
	DisplayName *string

	// The name of the experiment the trial is part of.
	ExperimentName *string

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// Who last modified the trial.
	LastModifiedTime *time.Time

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The source of the trial.
	Source *TrialSource

	// The list of tags that are associated with the trial. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// A list of the components associated with the trial. For each component, a
	// summary of the component's properties is included.
	TrialComponentSummaries []TrialComponentSimpleSummary

	// The name of the trial.
	TrialName *string

	noSmithyDocumentSerde
}

// The properties of a trial component as returned by the Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
// API.
type TrialComponent struct {

	// Who created the trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// The input artifacts of the component.
	InputArtifacts map[string]TrialComponentArtifact

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the lineage group resource.
	LineageGroupArn *string

	// Metadata properties of the tracking entity, trial, or trial component.
	MetadataProperties *MetadataProperties

	// The metrics for the component.
	Metrics []TrialComponentMetricSummary

	// The output artifacts of the component.
	OutputArtifacts map[string]TrialComponentArtifact

	// The hyperparameters of the component.
	Parameters map[string]TrialComponentParameterValue

	// An array of the parents of the component. A parent is a trial the component is
	// associated with and the experiment the trial is part of. A component might not
	// have any parents.
	Parents []Parent

	// The name of the experiment run.
	RunName *string

	// The Amazon Resource Name (ARN) and job type of the source of the component.
	Source *TrialComponentSource

	// Details of the source of the component.
	SourceDetail *TrialComponentSourceDetail

	// When the component started.
	StartTime *time.Time

	// The status of the trial component.
	Status *TrialComponentStatus

	// The list of tags that are associated with the component. You can use Search (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html)
	// API to search on the tags.
	Tags []Tag

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	noSmithyDocumentSerde
}

// Represents an input or output artifact of a trial component. You specify
// TrialComponentArtifact as part of the InputArtifacts and OutputArtifacts
// parameters in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html)
// request. Examples of input artifacts are datasets, algorithms, hyperparameters,
// source code, and instance types. Examples of output artifacts are metrics,
// snapshots, logs, and images.
type TrialComponentArtifact struct {

	// The location of the artifact.
	//
	// This member is required.
	Value *string

	// The media type of the artifact, which indicates the type of data in the
	// artifact file. The media type consists of a type and a subtype concatenated with
	// a slash (/) character, for example, text/csv, image/jpeg, and s3/uri. The type
	// specifies the category of the media. The subtype specifies the kind of data.
	MediaType *string

	noSmithyDocumentSerde
}

// A summary of the metrics of a trial component.
type TrialComponentMetricSummary struct {

	// The average value of the metric.
	Avg *float64

	// The number of samples used to generate the metric.
	Count *int32

	// The most recent value of the metric.
	Last *float64

	// The maximum value of the metric.
	Max *float64

	// The name of the metric.
	MetricName *string

	// The minimum value of the metric.
	Min *float64

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// The standard deviation of the metric.
	StdDev *float64

	// When the metric was last updated.
	TimeStamp *time.Time

	noSmithyDocumentSerde
}

// The value of a hyperparameter. Only one of NumberValue or StringValue can be
// specified. This object is specified in the CreateTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html)
// request.
//
// The following types satisfy this interface:
//
//	TrialComponentParameterValueMemberNumberValue
//	TrialComponentParameterValueMemberStringValue
type TrialComponentParameterValue interface {
	isTrialComponentParameterValue()
}

// The numeric value of a numeric hyperparameter. If you specify a value for this
// parameter, you can't specify the StringValue parameter.
type TrialComponentParameterValueMemberNumberValue struct {
	Value float64

	noSmithyDocumentSerde
}

func (*TrialComponentParameterValueMemberNumberValue) isTrialComponentParameterValue() {}

// The string value of a categorical hyperparameter. If you specify a value for
// this parameter, you can't specify the NumberValue parameter.
type TrialComponentParameterValueMemberStringValue struct {
	Value string

	noSmithyDocumentSerde
}

func (*TrialComponentParameterValueMemberStringValue) isTrialComponentParameterValue() {}

// A short summary of a trial component.
type TrialComponentSimpleSummary struct {

	// Information about the user who created or modified an experiment, trial, trial
	// component, lineage group, project, or model card.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource

	noSmithyDocumentSerde
}

// The Amazon Resource Name (ARN) and job type of the source of a trial component.
type TrialComponentSource struct {

	// The source Amazon Resource Name (ARN).
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string

	noSmithyDocumentSerde
}

// Detailed information about the source of a trial component. Either ProcessingJob
// or TrainingJob is returned.
type TrialComponentSourceDetail struct {

	// Information about a processing job that's the source of a trial component.
	ProcessingJob *ProcessingJob

	// The Amazon Resource Name (ARN) of the source.
	SourceArn *string

	// Information about a training job that's the source of a trial component.
	TrainingJob *TrainingJob

	// Information about a transform job that's the source of a trial component.
	TransformJob *TransformJob

	noSmithyDocumentSerde
}

// The status of the trial component.
type TrialComponentStatus struct {

	// If the component failed, a message describing why.
	Message *string

	// The status of the trial component.
	PrimaryStatus TrialComponentPrimaryStatus

	noSmithyDocumentSerde
}

// A summary of the properties of a trial component. To get all the properties,
// call the DescribeTrialComponent (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrialComponent.html)
// API and provide the TrialComponentName .
type TrialComponentSummary struct {

	// Who created the trial component.
	CreatedBy *UserContext

	// When the component was created.
	CreationTime *time.Time

	// The name of the component as displayed. If DisplayName isn't specified,
	// TrialComponentName is displayed.
	DisplayName *string

	// When the component ended.
	EndTime *time.Time

	// Who last modified the component.
	LastModifiedBy *UserContext

	// When the component was last modified.
	LastModifiedTime *time.Time

	// When the component started.
	StartTime *time.Time

	// The status of the component. States include:
	//   - InProgress
	//   - Completed
	//   - Failed
	Status *TrialComponentStatus

	// The Amazon Resource Name (ARN) of the trial component.
	TrialComponentArn *string

	// The name of the trial component.
	TrialComponentName *string

	// The Amazon Resource Name (ARN) and job type of the source of a trial component.
	TrialComponentSource *TrialComponentSource

	noSmithyDocumentSerde
}

// The source of the trial.
type TrialSource struct {

	// The Amazon Resource Name (ARN) of the source.
	//
	// This member is required.
	SourceArn *string

	// The source job type.
	SourceType *string

	noSmithyDocumentSerde
}

// A summary of the properties of a trial. To get the complete set of properties,
// call the DescribeTrial (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html)
// API and provide the TrialName .
type TrialSummary struct {

	// When the trial was created.
	CreationTime *time.Time

	// The name of the trial as displayed. If DisplayName isn't specified, TrialName
	// is displayed.
	DisplayName *string

	// When the trial was last modified.
	LastModifiedTime *time.Time

	// The Amazon Resource Name (ARN) of the trial.
	TrialArn *string

	// The name of the trial.
	TrialName *string

	// The source of the trial.
	TrialSource *TrialSource

	noSmithyDocumentSerde
}

// Time to live duration, where the record is hard deleted after the expiration
// time is reached; ExpiresAt = EventTime + TtlDuration . For information on
// HardDelete, see the DeleteRecord (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_feature_store_DeleteRecord.html)
// API in the Amazon SageMaker API Reference guide.
type TtlDuration struct {

	// TtlDuration time unit.
	Unit TtlDurationUnit

	// TtlDuration time value.
	Value *int32

	noSmithyDocumentSerde
}

// The job completion criteria.
type TuningJobCompletionCriteria struct {

	// A flag to stop your hyperparameter tuning job if model performance fails to
	// improve as evaluated against an objective function.
	BestObjectiveNotImproving *BestObjectiveNotImproving

	// A flag to top your hyperparameter tuning job if automatic model tuning (AMT)
	// has detected that your model has converged as evaluated against your objective
	// function.
	ConvergenceDetected *ConvergenceDetected

	// The value of the objective metric.
	TargetObjectiveMetricValue *float32

	noSmithyDocumentSerde
}

// Metadata for a tuning step.
type TuningJobStepMetaData struct {

	// The Amazon Resource Name (ARN) of the tuning job that was run by this step
	// execution.
	Arn *string

	noSmithyDocumentSerde
}

// Provided configuration information for the worker UI for a labeling job.
// Provide either HumanTaskUiArn or UiTemplateS3Uri . For named entity recognition,
// 3D point cloud and video frame labeling jobs, use HumanTaskUiArn . For all other
// Ground Truth built-in task types and custom task types, use UiTemplateS3Uri to
// specify the location of a worker task template in Amazon S3.
type UiConfig struct {

	// The ARN of the worker task template used to render the worker UI and tools for
	// labeling job tasks. Use this parameter when you are creating a labeling job for
	// named entity recognition, 3D point cloud and video frame labeling jobs. Use your
	// labeling job task type to select one of the following ARNs and use it with this
	// parameter when you create a labeling job. Replace aws-region with the Amazon
	// Web Services Region you are creating your labeling job in. For example, replace
	// aws-region with us-west-1 if you create a labeling job in US West (N.
	// California). Named Entity Recognition Use the following HumanTaskUiArn for
	// named entity recognition labeling jobs:
	// arn:aws:sagemaker:aws-region:394669845002:human-task-ui/NamedEntityRecognition
	// 3D Point Cloud HumanTaskUiArns Use this HumanTaskUiArn for 3D point cloud
	// object detection and 3D point cloud object detection adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectDetection
	// Use this HumanTaskUiArn for 3D point cloud object tracking and 3D point cloud
	// object tracking adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudObjectTracking
	// Use this HumanTaskUiArn for 3D point cloud semantic segmentation and 3D point
	// cloud semantic segmentation adjustment labeling jobs.
	//   -
	//   arn:aws:sagemaker:aws-region:394669845002:human-task-ui/PointCloudSemanticSegmentation
	// Video Frame HumanTaskUiArns Use this HumanTaskUiArn for video frame object
	// detection and video frame object detection adjustment labeling jobs.
	//   - arn:aws:sagemaker:region:394669845002:human-task-ui/VideoObjectDetection
	// Use this HumanTaskUiArn for video frame object tracking and video frame object
	// tracking adjustment labeling jobs.
	//   - arn:aws:sagemaker:aws-region:394669845002:human-task-ui/VideoObjectTracking
	HumanTaskUiArn *string

	// The Amazon S3 bucket location of the UI template, or worker task template. This
	// is the template used to render the worker UI and tools for labeling job tasks.
	// For more information about the contents of a UI template, see Creating Your
	// Custom Labeling Task Template (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html)
	// .
	UiTemplateS3Uri *string

	noSmithyDocumentSerde
}

// The Liquid template for the worker user interface.
type UiTemplate struct {

	// The content of the Liquid template for the worker user interface.
	//
	// This member is required.
	Content *string

	noSmithyDocumentSerde
}

// Container for user interface template information.
type UiTemplateInfo struct {

	// The SHA-256 digest of the contents of the template.
	ContentSha256 *string

	// The URL for the user interface template.
	Url *string

	noSmithyDocumentSerde
}

// Represents an amount of money in United States dollars.
type USD struct {

	// The fractional portion, in cents, of the amount.
	Cents *int32

	// The whole number of dollars in the amount.
	Dollars *int32

	// Fractions of a cent, in tenths.
	TenthFractionsOfACent *int32

	noSmithyDocumentSerde
}

// Information about the user who created or modified an experiment, trial, trial
// component, lineage group, project, or model card.
type UserContext struct {

	// The domain associated with the user.
	DomainId *string

	// The IAM Identity details associated with the user. These details are associated
	// with model package groups, model packages, and project entities only.
	IamIdentity *IamIdentity

	// The Amazon Resource Name (ARN) of the user's profile.
	UserProfileArn *string

	// The name of the user's profile.
	UserProfileName *string

	noSmithyDocumentSerde
}

// The user profile details.
type UserProfileDetails struct {

	// The creation time.
	CreationTime *time.Time

	// The domain ID.
	DomainId *string

	// The last modified time.
	LastModifiedTime *time.Time

	// The status.
	Status UserProfileStatus

	// The user profile name.
	UserProfileName *string

	noSmithyDocumentSerde
}

// A collection of settings that apply to users in a domain. These settings are
// specified when the CreateUserProfile API is called, and as DefaultUserSettings
// when the CreateDomain API is called. SecurityGroups is aggregated when
// specified in both calls. For all other settings in UserSettings , the values
// specified in CreateUserProfile take precedence over those specified in
// CreateDomain .
type UserSettings struct {

	// The Canvas app settings.
	CanvasAppSettings *CanvasAppSettings

	// The Code Editor application settings.
	CodeEditorAppSettings *CodeEditorAppSettings

	// The settings for assigning a custom file system to a user profile. Permitted
	// users can access this file system in Amazon SageMaker Studio.
	CustomFileSystemConfigs []CustomFileSystemConfig

	// Details about the POSIX identity that is used for file system operations.
	CustomPosixUserConfig *CustomPosixUserConfig

	// The default experience that the user is directed to when accessing the domain.
	// The supported values are:
	//   - studio:: : Indicates that Studio is the default experience. This value can
	//   only be passed if StudioWebPortal is set to ENABLED .
	//   - app:JupyterServer: : Indicates that Studio Classic is the default
	//   experience.
	DefaultLandingUri *string

	// The execution role for the user.
	ExecutionRole *string

	// The settings for the JupyterLab application.
	JupyterLabAppSettings *JupyterLabAppSettings

	// The Jupyter server's app settings.
	JupyterServerAppSettings *JupyterServerAppSettings

	// The kernel gateway app settings.
	KernelGatewayAppSettings *KernelGatewayAppSettings

	// A collection of settings that configure the RSessionGateway app.
	RSessionAppSettings *RSessionAppSettings

	// A collection of settings that configure user interaction with the
	// RStudioServerPro app.
	RStudioServerProAppSettings *RStudioServerProAppSettings

	// The security groups for the Amazon Virtual Private Cloud (VPC) that the domain
	// uses for communication. Optional when the CreateDomain.AppNetworkAccessType
	// parameter is set to PublicInternetOnly . Required when the
	// CreateDomain.AppNetworkAccessType parameter is set to VpcOnly , unless specified
	// as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a
	// security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the
	// number of security groups that you can specify is one less than the maximum
	// number shown.
	SecurityGroups []string

	// Specifies options for sharing Amazon SageMaker Studio notebooks.
	SharingSettings *SharingSettings

	// The storage settings for a private space.
	SpaceStorageSettings *DefaultSpaceStorageSettings

	// Whether the user can access Studio. If this value is set to DISABLED , the user
	// cannot access Studio, even if that is the default experience for the domain.
	StudioWebPortal StudioWebPortal

	// The TensorBoard app settings.
	TensorBoardAppSettings *TensorBoardAppSettings

	noSmithyDocumentSerde
}

// Specifies a production variant property type for an Endpoint. If you are
// updating an endpoint with the RetainAllVariantProperties option of
// UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// set to true , the VariantProperty objects listed in the
// ExcludeRetainedVariantProperties parameter of UpdateEndpointInput (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateEndpoint.html)
// override the existing variant properties of the endpoint.
type VariantProperty struct {

	// The type of variant property. The supported values are:
	//   - DesiredInstanceCount : Overrides the existing variant instance counts using
	//   the InitialInstanceCount values in the ProductionVariants of
	//   CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	//   .
	//   - DesiredWeight : Overrides the existing variant weights using the
	//   InitialVariantWeight values in the ProductionVariants of CreateEndpointConfig (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html)
	//   .
	//   - DataCaptureConfig : (Not currently supported.)
	//
	// This member is required.
	VariantPropertyType VariantPropertyType

	noSmithyDocumentSerde
}

// Configuration for your vector collection type.
type VectorConfig struct {

	// The number of elements in your vector.
	//
	// This member is required.
	Dimension *int32

	noSmithyDocumentSerde
}

// A lineage entity connected to the starting entity(ies).
type Vertex struct {

	// The Amazon Resource Name (ARN) of the lineage entity resource.
	Arn *string

	// The type of resource of the lineage entity.
	LineageType LineageType

	// The type of the lineage entity resource. For example: DataSet , Model , Endpoint
	// , etc...
	Type *string

	noSmithyDocumentSerde
}

// The list of key-value pairs that you specify for your resources.
type VisibilityConditions struct {

	// The key for that specifies the tag that you're using to filter the search
	// results. The key must start with Tags. .
	Key *string

	// The value for the tag that you're using to filter the search results.
	Value *string

	noSmithyDocumentSerde
}

// Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs,
// hosted models, and compute resources have access to. You can control access to
// and from your resources by configuring a VPC. For more information, see Give
// SageMaker Access to Resources in your Amazon VPC (https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html)
// .
type VpcConfig struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx . Specify the security
	// groups for the VPC that is specified in the Subnets field.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC to which you want to connect your training job
	// or model. For information about the availability of specific instance types, see
	// Supported Instance Types and Availability Zones (https://docs.aws.amazon.com/sagemaker/latest/dg/instance-types-az.html)
	// .
	//
	// This member is required.
	Subnets []string

	noSmithyDocumentSerde
}

// Status and billing information about the warm pool.
type WarmPoolStatus struct {

	// The status of the warm pool.
	//   - InUse : The warm pool is in use for the training job.
	//   - Available : The warm pool is available to reuse for a matching training job.
	//   - Reused : The warm pool moved to a matching training job for reuse.
	//   - Terminated : The warm pool is no longer available. Warm pools are
	//   unavailable if they are terminated by a user, terminated for a patch update, or
	//   terminated for exceeding the specified KeepAlivePeriodInSeconds .
	//
	// This member is required.
	Status WarmPoolResourceStatus

	// The billable time in seconds used by the warm pool. Billable time refers to the
	// absolute wall-clock time. Multiply ResourceRetainedBillableTimeInSeconds by the
	// number of instances ( InstanceCount ) in your training cluster to get the total
	// compute time SageMaker bills you if you run warm pool training. The formula is
	// as follows: ResourceRetainedBillableTimeInSeconds * InstanceCount .
	ResourceRetainedBillableTimeInSeconds *int32

	// The name of the matching training job that reused the warm pool.
	ReusedByJob *string

	noSmithyDocumentSerde
}

// A single private workforce, which is automatically created when you create your
// first private work team. You can create one private work force in each Amazon
// Web Services Region. By default, any workforce-related API operation used in a
// specific region will apply to the workforce created in that region. To learn how
// to create a private workforce, see Create a Private Workforce (https://docs.aws.amazon.com/sagemaker/latest/dg/sms-workforce-create-private.html)
// .
type Workforce struct {

	// The Amazon Resource Name (ARN) of the private workforce.
	//
	// This member is required.
	WorkforceArn *string

	// The name of the private workforce.
	//
	// This member is required.
	WorkforceName *string

	// The configuration of an Amazon Cognito workforce. A single Cognito workforce is
	// created using and corresponds to a single Amazon Cognito user pool (https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html)
	// .
	CognitoConfig *CognitoConfig

	// The date that the workforce is created.
	CreateDate *time.Time

	// The reason your workforce failed.
	FailureReason *string

	// The most recent date that UpdateWorkforce (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateWorkforce.html)
	// was used to successfully add one or more IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// ) to a private workforce's allow list.
	LastUpdatedDate *time.Time

	// The configuration of an OIDC Identity Provider (IdP) private workforce.
	OidcConfig *OidcConfigForResponse

	// A list of one to ten IP address ranges ( CIDRs (https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
	// ) to be added to the workforce allow list. By default, a workforce isn't
	// restricted to specific IP addresses.
	SourceIpConfig *SourceIpConfig

	// The status of your workforce.
	Status WorkforceStatus

	// The subdomain for your OIDC Identity Provider.
	SubDomain *string

	// The configuration of a VPC workforce.
	WorkforceVpcConfig *WorkforceVpcConfigResponse

	noSmithyDocumentSerde
}

// The VPC object you use to create or update a workforce.
type WorkforceVpcConfigRequest struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
	// be for the same VPC as specified in the subnet.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect.
	Subnets []string

	// The ID of the VPC that the workforce uses for communication.
	VpcId *string

	noSmithyDocumentSerde
}

// A VpcConfig object that specifies the VPC that you want your workforce to
// connect to.
type WorkforceVpcConfigResponse struct {

	// The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must
	// be for the same VPC as specified in the subnet.
	//
	// This member is required.
	SecurityGroupIds []string

	// The ID of the subnets in the VPC that you want to connect.
	//
	// This member is required.
	Subnets []string

	// The ID of the VPC that the workforce uses for communication.
	//
	// This member is required.
	VpcId *string

	// The IDs for the VPC service endpoints of your VPC workforce when it is created
	// and updated.
	VpcEndpointId *string

	noSmithyDocumentSerde
}

// The workspace settings for the SageMaker Canvas application.
type WorkspaceSettings struct {

	// The Amazon S3 bucket used to store artifacts generated by Canvas. Updating the
	// Amazon S3 location impacts existing configuration settings, and Canvas users no
	// longer have access to their artifacts. Canvas users must log out and log back in
	// to apply the new location.
	S3ArtifactPath *string

	// The Amazon Web Services Key Management Service (KMS) encryption key ID that is
	// used to encrypt artifacts generated by Canvas in the Amazon S3 bucket.
	S3KmsKeyId *string

	noSmithyDocumentSerde
}

// Provides details about a labeling work team.
type Workteam struct {

	// A description of the work team.
	//
	// This member is required.
	Description *string

	// A list of MemberDefinition objects that contains objects that identify the
	// workers that make up the work team. Workforces can be created using Amazon
	// Cognito or your own OIDC Identity Provider (IdP). For private workforces created
	// using Amazon Cognito use CognitoMemberDefinition . For workforces created using
	// your own OIDC identity provider (IdP) use OidcMemberDefinition .
	//
	// This member is required.
	MemberDefinitions []MemberDefinition

	// The Amazon Resource Name (ARN) that identifies the work team.
	//
	// This member is required.
	WorkteamArn *string

	// The name of the work team.
	//
	// This member is required.
	WorkteamName *string

	// The date and time that the work team was created (timestamp).
	CreateDate *time.Time

	// The date and time that the work team was last updated (timestamp).
	LastUpdatedDate *time.Time

	// Configures SNS notifications of available or expiring work items for work teams.
	NotificationConfiguration *NotificationConfiguration

	// The Amazon Marketplace identifier for a vendor's work team.
	ProductListingIds []string

	// The URI of the labeling job's user interface. Workers open this URI to start
	// labeling your data objects.
	SubDomain *string

	// The Amazon Resource Name (ARN) of the workforce.
	WorkforceArn *string

	noSmithyDocumentSerde
}

type noSmithyDocumentSerde = smithydocument.NoSerde

// UnknownUnionMember is returned when a union member is returned over the wire,
// but has an unknown tag.
type UnknownUnionMember struct {
	Tag   string
	Value []byte

	noSmithyDocumentSerde
}

func (*UnknownUnionMember) isAutoMLProblemTypeConfig()             {}
func (*UnknownUnionMember) isAutoMLProblemTypeResolvedAttributes() {}
func (*UnknownUnionMember) isCollectionConfig()                    {}
func (*UnknownUnionMember) isCustomFileSystem()                    {}
func (*UnknownUnionMember) isCustomFileSystemConfig()              {}
func (*UnknownUnionMember) isMetricSpecification()                 {}
func (*UnknownUnionMember) isScalingPolicy()                       {}
func (*UnknownUnionMember) isTrialComponentParameterValue()        {}