1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package transcribe
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/aws/signer/v4"
"github.com/aws/aws-sdk-go-v2/service/transcribe/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new custom language model. When creating a new custom language model,
// you must specify:
// - If you want a Wideband (audio sample rates over 16,000 Hz) or Narrowband
// (audio sample rates under 16,000 Hz) base model
// - The location of your training and tuning files (this must be an Amazon S3
// URI)
// - The language of your model
// - A unique name for your model
func (c *Client) CreateLanguageModel(ctx context.Context, params *CreateLanguageModelInput, optFns ...func(*Options)) (*CreateLanguageModelOutput, error) {
if params == nil {
params = &CreateLanguageModelInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateLanguageModel", params, optFns, c.addOperationCreateLanguageModelMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateLanguageModelOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateLanguageModelInput struct {
// The Amazon Transcribe standard language model, or base model, used to create
// your custom language model. Amazon Transcribe offers two options for base
// models: Wideband and Narrowband. If the audio you want to transcribe has a
// sample rate of 16,000 Hz or greater, choose WideBand . To transcribe audio with
// a sample rate less than 16,000 Hz, choose NarrowBand .
//
// This member is required.
BaseModelName types.BaseModelName
// Contains the Amazon S3 location of the training data you want to use to create
// a new custom language model, and permissions to access this location. When using
// InputDataConfig , you must include these sub-parameters: S3Uri , which is the
// Amazon S3 location of your training data, and DataAccessRoleArn , which is the
// Amazon Resource Name (ARN) of the role that has permission to access your
// specified Amazon S3 location. You can optionally include TuningDataS3Uri , which
// is the Amazon S3 location of your tuning data. If you specify different Amazon
// S3 locations for training and tuning data, the ARN you use must have permissions
// to access both locations.
//
// This member is required.
InputDataConfig *types.InputDataConfig
// The language code that represents the language of your model. Each custom
// language model must contain terms in only one language, and the language you
// select for your custom language model must match the language of your training
// and tuning data. For a list of supported languages and their associated language
// codes, refer to the Supported languages (https://docs.aws.amazon.com/transcribe/latest/dg/supported-languages.html)
// table. Note that US English ( en-US ) is the only language supported with Amazon
// Transcribe Medical. A custom language model can only be used to transcribe files
// in the same language as the model. For example, if you create a custom language
// model using US English ( en-US ), you can only apply this model to files that
// contain English audio.
//
// This member is required.
LanguageCode types.CLMLanguageCode
// A unique name, chosen by you, for your custom language model. This name is case
// sensitive, cannot contain spaces, and must be unique within an Amazon Web
// Services account. If you try to create a new custom language model with the same
// name as an existing custom language model, you get a ConflictException error.
//
// This member is required.
ModelName *string
// Adds one or more custom tags, each in the form of a key:value pair, to a new
// custom language model at the time you create this new model. To learn more about
// using tags with Amazon Transcribe, refer to Tagging resources (https://docs.aws.amazon.com/transcribe/latest/dg/tagging.html)
// .
Tags []types.Tag
noSmithyDocumentSerde
}
type CreateLanguageModelOutput struct {
// The Amazon Transcribe standard language model, or base model, you specified
// when creating your custom language model.
BaseModelName types.BaseModelName
// Lists your data access role ARN (Amazon Resource Name) and the Amazon S3
// locations you provided for your training ( S3Uri ) and tuning ( TuningDataS3Uri
// ) data.
InputDataConfig *types.InputDataConfig
// The language code you selected for your custom language model.
LanguageCode types.CLMLanguageCode
// The name of your custom language model.
ModelName *string
// The status of your custom language model. When the status displays as COMPLETED
// , your model is ready to use.
ModelStatus types.ModelStatus
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateLanguageModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson11_serializeOpCreateLanguageModel{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpCreateLanguageModel{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateLanguageModel"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddClientRequestIDMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddComputeContentLengthMiddleware(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = v4.AddComputePayloadSHA256Middleware(stack); err != nil {
return err
}
if err = addRetryMiddlewares(stack, options); err != nil {
return err
}
if err = awsmiddleware.AddRawResponseToMetadata(stack); err != nil {
return err
}
if err = awsmiddleware.AddRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addOpCreateLanguageModelValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateLanguageModel(options.Region), middleware.Before); err != nil {
return err
}
if err = awsmiddleware.AddRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opCreateLanguageModel(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateLanguageModel",
}
}
|