File: api_op_DeriveSharedSecret.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.30.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 662,428 kB
  • sloc: java: 16,875; makefile: 432; sh: 175
file content (349 lines) | stat: -rw-r--r-- 14,321 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
// Code generated by smithy-go-codegen DO NOT EDIT.

package kms

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/service/kms/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Derives a shared secret using a key agreement algorithm.
//
// You must use an asymmetric NIST-recommended elliptic curve (ECC) or SM2 (China
// Regions only) KMS key pair with a KeyUsage value of KEY_AGREEMENT to call
// DeriveSharedSecret.
//
// DeriveSharedSecret uses the [Elliptic Curve Cryptography Cofactor Diffie-Hellman Primitive] (ECDH) to establish a key agreement between two
// peers by deriving a shared secret from their elliptic curve public-private key
// pairs. You can use the raw shared secret that DeriveSharedSecret returns to
// derive a symmetric key that can encrypt and decrypt data that is sent between
// the two peers, or that can generate and verify HMACs. KMS recommends that you
// follow [NIST recommendations for key derivation]when using the raw shared secret to derive a symmetric key.
//
// The following workflow demonstrates how to establish key agreement over an
// insecure communication channel using DeriveSharedSecret.
//
//   - Alice calls CreateKeyto create an asymmetric KMS key pair with a KeyUsage value of
//     KEY_AGREEMENT .
//
// The asymmetric KMS key must use a NIST-recommended elliptic curve (ECC) or SM2
//
//	(China Regions only) key spec.
//
//	- Bob creates an elliptic curve key pair.
//
// Bob can call CreateKeyto create an asymmetric KMS key pair or generate a key pair
//
//	outside of KMS. Bob's key pair must use the same NIST-recommended elliptic curve
//	(ECC) or SM2 (China Regions ony) curve as Alice.
//
//	- Alice and Bob exchange their public keys through an insecure communication
//	channel (like the internet).
//
// Use GetPublicKeyto download the public key of your asymmetric KMS key pair.
//
// KMS strongly recommends verifying that the public key you receive came from the
//
//	expected party before using it to derive a shared secret.
//
//	- Alice calls DeriveSharedSecret.
//
// KMS uses the private key from the KMS key pair generated in Step 1, Bob's
//
//	public key, and the Elliptic Curve Cryptography Cofactor Diffie-Hellman
//	Primitive to derive the shared secret. The private key in your KMS key pair
//	never leaves KMS unencrypted. DeriveSharedSecret returns the raw shared secret.
//
//	- Bob uses the Elliptic Curve Cryptography Cofactor Diffie-Hellman Primitive
//	to calculate the same raw secret using his private key and Alice's public key.
//
// To derive a shared secret you must provide a key agreement algorithm, the
// private key of the caller's asymmetric NIST-recommended elliptic curve or SM2
// (China Regions only) KMS key pair, and the public key from your peer's
// NIST-recommended elliptic curve or SM2 (China Regions only) key pair. The public
// key can be from another asymmetric KMS key pair or from a key pair generated
// outside of KMS, but both key pairs must be on the same elliptic curve.
//
// The KMS key that you use for this operation must be in a compatible key state.
// For details, see [Key states of KMS keys]in the Key Management Service Developer Guide.
//
// Cross-account use: Yes. To perform this operation with a KMS key in a different
// Amazon Web Services account, specify the key ARN or alias ARN in the value of
// the KeyId parameter.
//
// Required permissions: [kms:DeriveSharedSecret] (key policy)
//
// Related operations:
//
// # CreateKey
//
// # GetPublicKey
//
// # DescribeKey
//
// Eventual consistency: The KMS API follows an eventual consistency model. For
// more information, see [KMS eventual consistency].
//
// [Key states of KMS keys]: https://docs.aws.amazon.com/kms/latest/developerguide/key-state.html
// [kms:DeriveSharedSecret]: https://docs.aws.amazon.com/kms/latest/developerguide/kms-api-permissions-reference.html
// [Elliptic Curve Cryptography Cofactor Diffie-Hellman Primitive]: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf#page=60
// [KMS eventual consistency]: https://docs.aws.amazon.com/kms/latest/developerguide/programming-eventual-consistency.html
// [NIST recommendations for key derivation]: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf
func (c *Client) DeriveSharedSecret(ctx context.Context, params *DeriveSharedSecretInput, optFns ...func(*Options)) (*DeriveSharedSecretOutput, error) {
	if params == nil {
		params = &DeriveSharedSecretInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "DeriveSharedSecret", params, optFns, c.addOperationDeriveSharedSecretMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*DeriveSharedSecretOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type DeriveSharedSecretInput struct {

	// Specifies the key agreement algorithm used to derive the shared secret. The
	// only valid value is ECDH .
	//
	// This member is required.
	KeyAgreementAlgorithm types.KeyAgreementAlgorithmSpec

	// Identifies an asymmetric NIST-recommended ECC or SM2 (China Regions only) KMS
	// key. KMS uses the private key in the specified key pair to derive the shared
	// secret. The key usage of the KMS key must be KEY_AGREEMENT . To find the
	// KeyUsage of a KMS key, use the DescribeKey operation.
	//
	// To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When
	// using an alias name, prefix it with "alias/" . To specify a KMS key in a
	// different Amazon Web Services account, you must use the key ARN or alias ARN.
	//
	// For example:
	//
	//   - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//   - Key ARN:
	//   arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
	//
	//   - Alias name: alias/ExampleAlias
	//
	//   - Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias
	//
	// To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name
	// and alias ARN, use ListAliases.
	//
	// This member is required.
	KeyId *string

	// Specifies the public key in your peer's NIST-recommended elliptic curve (ECC)
	// or SM2 (China Regions only) key pair.
	//
	// The public key must be a DER-encoded X.509 public key, also known as
	// SubjectPublicKeyInfo (SPKI), as defined in [RFC 5280].
	//
	// GetPublicKeyreturns the public key of an asymmetric KMS key pair in the required
	// DER-encoded format.
	//
	// If you use [Amazon Web Services CLI version 1], you must provide the DER-encoded X.509 public key in a file.
	// Otherwise, the Amazon Web Services CLI Base64-encodes the public key a second
	// time, resulting in a ValidationException .
	//
	// You can specify the public key as binary data in a file using fileb ( fileb:// )
	// or in-line using a Base64 encoded string.
	//
	// [RFC 5280]: https://tools.ietf.org/html/rfc5280
	// [Amazon Web Services CLI version 1]: https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-welcome.html
	//
	// This member is required.
	PublicKey []byte

	// Checks if your request will succeed. DryRun is an optional parameter.
	//
	// To learn more about how to use this parameter, see [Testing your KMS API calls] in the Key Management
	// Service Developer Guide.
	//
	// [Testing your KMS API calls]: https://docs.aws.amazon.com/kms/latest/developerguide/programming-dryrun.html
	DryRun *bool

	// A list of grant tokens.
	//
	// Use a grant token when your permission to call this operation comes from a new
	// grant that has not yet achieved eventual consistency. For more information, see [Grant token]
	// and [Using a grant token]in the Key Management Service Developer Guide.
	//
	// [Grant token]: https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#grant_token
	// [Using a grant token]: https://docs.aws.amazon.com/kms/latest/developerguide/grant-manage.html#using-grant-token
	GrantTokens []string

	// A signed [attestation document] from an Amazon Web Services Nitro enclave and the encryption
	// algorithm to use with the enclave's public key. The only valid encryption
	// algorithm is RSAES_OAEP_SHA_256 .
	//
	// This parameter only supports attestation documents for Amazon Web Services
	// Nitro Enclaves. To call DeriveSharedSecret for an Amazon Web Services Nitro
	// Enclaves, use the [Amazon Web Services Nitro Enclaves SDK]to generate the attestation document and then use the
	// Recipient parameter from any Amazon Web Services SDK to provide the attestation
	// document for the enclave.
	//
	// When you use this parameter, instead of returning a plaintext copy of the
	// shared secret, KMS encrypts the plaintext shared secret under the public key in
	// the attestation document, and returns the resulting ciphertext in the
	// CiphertextForRecipient field in the response. This ciphertext can be decrypted
	// only with the private key in the enclave. The CiphertextBlob field in the
	// response contains the encrypted shared secret derived from the KMS key specified
	// by the KeyId parameter and public key specified by the PublicKey parameter. The
	// SharedSecret field in the response is null or empty.
	//
	// For information about the interaction between KMS and Amazon Web Services Nitro
	// Enclaves, see [How Amazon Web Services Nitro Enclaves uses KMS]in the Key Management Service Developer Guide.
	//
	// [attestation document]: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nitro-enclave-how.html#term-attestdoc
	// [How Amazon Web Services Nitro Enclaves uses KMS]: https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html
	// [Amazon Web Services Nitro Enclaves SDK]: https://docs.aws.amazon.com/enclaves/latest/user/developing-applications.html#sdk
	Recipient *types.RecipientInfo

	noSmithyDocumentSerde
}

type DeriveSharedSecretOutput struct {

	// The plaintext shared secret encrypted with the public key in the attestation
	// document.
	//
	// This field is included in the response only when the Recipient parameter in the
	// request includes a valid attestation document from an Amazon Web Services Nitro
	// enclave. For information about the interaction between KMS and Amazon Web
	// Services Nitro Enclaves, see [How Amazon Web Services Nitro Enclaves uses KMS]in the Key Management Service Developer Guide.
	//
	// [How Amazon Web Services Nitro Enclaves uses KMS]: https://docs.aws.amazon.com/kms/latest/developerguide/services-nitro-enclaves.html
	CiphertextForRecipient []byte

	// Identifies the key agreement algorithm used to derive the shared secret.
	KeyAgreementAlgorithm types.KeyAgreementAlgorithmSpec

	// Identifies the KMS key used to derive the shared secret.
	KeyId *string

	// The source of the key material for the specified KMS key.
	//
	// When this value is AWS_KMS , KMS created the key material. When this value is
	// EXTERNAL , the key material was imported or the KMS key doesn't have any key
	// material.
	//
	// The only valid values for DeriveSharedSecret are AWS_KMS and EXTERNAL .
	// DeriveSharedSecret does not support KMS keys with a KeyOrigin value of
	// AWS_CLOUDHSM or EXTERNAL_KEY_STORE .
	KeyOrigin types.OriginType

	// The raw secret derived from the specified key agreement algorithm, private key
	// in the asymmetric KMS key, and your peer's public key.
	//
	// If the response includes the CiphertextForRecipient field, the SharedSecret
	// field is null or empty.
	SharedSecret []byte

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationDeriveSharedSecretMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson11_serializeOpDeriveSharedSecret{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson11_deserializeOpDeriveSharedSecret{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "DeriveSharedSecret"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = addClientRequestID(stack); err != nil {
		return err
	}
	if err = addComputeContentLength(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = addComputePayloadSHA256(stack); err != nil {
		return err
	}
	if err = addRetry(stack, options); err != nil {
		return err
	}
	if err = addRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = addRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addTimeOffsetBuild(stack, c); err != nil {
		return err
	}
	if err = addUserAgentRetryMode(stack, options); err != nil {
		return err
	}
	if err = addOpDeriveSharedSecretValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDeriveSharedSecret(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opDeriveSharedSecret(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "DeriveSharedSecret",
	}
}