1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package lookoutequipment
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/service/lookoutequipment/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a scheduled inference. Scheduling an inference is setting up a
//
// continuous real-time inference plan to analyze new measurement data. When
// setting up the schedule, you provide an S3 bucket location for the input data,
// assign it a delimiter between separate entries in the data, set an offset delay
// if desired, and set the frequency of inferencing. You must also provide an S3
// bucket location for the output data.
func (c *Client) CreateInferenceScheduler(ctx context.Context, params *CreateInferenceSchedulerInput, optFns ...func(*Options)) (*CreateInferenceSchedulerOutput, error) {
if params == nil {
params = &CreateInferenceSchedulerInput{}
}
result, metadata, err := c.invokeOperation(ctx, "CreateInferenceScheduler", params, optFns, c.addOperationCreateInferenceSchedulerMiddlewares)
if err != nil {
return nil, err
}
out := result.(*CreateInferenceSchedulerOutput)
out.ResultMetadata = metadata
return out, nil
}
type CreateInferenceSchedulerInput struct {
// A unique identifier for the request. If you do not set the client request
// token, Amazon Lookout for Equipment generates one.
//
// This member is required.
ClientToken *string
// Specifies configuration information for the input data for the inference
// scheduler, including delimiter, format, and dataset location.
//
// This member is required.
DataInputConfiguration *types.InferenceInputConfiguration
// Specifies configuration information for the output results for the inference
// scheduler, including the S3 location for the output.
//
// This member is required.
DataOutputConfiguration *types.InferenceOutputConfiguration
// How often data is uploaded to the source Amazon S3 bucket for the input data.
// The value chosen is the length of time between data uploads. For instance, if
// you select 5 minutes, Amazon Lookout for Equipment will upload the real-time
// data to the source bucket once every 5 minutes. This frequency also determines
// how often Amazon Lookout for Equipment runs inference on your data.
//
// For more information, see [Understanding the inference process].
//
// [Understanding the inference process]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/understanding-inference-process.html
//
// This member is required.
DataUploadFrequency types.DataUploadFrequency
// The name of the inference scheduler being created.
//
// This member is required.
InferenceSchedulerName *string
// The name of the previously trained machine learning model being used to create
// the inference scheduler.
//
// This member is required.
ModelName *string
// The Amazon Resource Name (ARN) of a role with permission to access the data
// source being used for the inference.
//
// This member is required.
RoleArn *string
// The interval (in minutes) of planned delay at the start of each inference
// segment. For example, if inference is set to run every ten minutes, the delay is
// set to five minutes and the time is 09:08. The inference scheduler will wake up
// at the configured interval (which, without a delay configured, would be 09:10)
// plus the additional five minute delay time (so 09:15) to check your Amazon S3
// bucket. The delay provides a buffer for you to upload data at the same
// frequency, so that you don't have to stop and restart the scheduler when
// uploading new data.
//
// For more information, see [Understanding the inference process].
//
// [Understanding the inference process]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/understanding-inference-process.html
DataDelayOffsetInMinutes *int64
// Provides the identifier of the KMS key used to encrypt inference scheduler data
// by Amazon Lookout for Equipment.
ServerSideKmsKeyId *string
// Any tags associated with the inference scheduler.
Tags []types.Tag
noSmithyDocumentSerde
}
type CreateInferenceSchedulerOutput struct {
// The Amazon Resource Name (ARN) of the inference scheduler being created.
InferenceSchedulerArn *string
// The name of inference scheduler being created.
InferenceSchedulerName *string
// Provides a quality assessment for a model that uses labels. If Lookout for
// Equipment determines that the model quality is poor based on training metrics,
// the value is POOR_QUALITY_DETECTED . Otherwise, the value is
// QUALITY_THRESHOLD_MET .
//
// If the model is unlabeled, the model quality can't be assessed and the value of
// ModelQuality is CANNOT_DETERMINE_QUALITY . In this situation, you can get a
// model quality assessment by adding labels to the input dataset and retraining
// the model.
//
// For information about using labels with your models, see [Understanding labeling].
//
// For information about improving the quality of a model, see [Best practices with Amazon Lookout for Equipment].
//
// [Best practices with Amazon Lookout for Equipment]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/best-practices.html
// [Understanding labeling]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/understanding-labeling.html
ModelQuality types.ModelQuality
// Indicates the status of the CreateInferenceScheduler operation.
Status types.InferenceSchedulerStatus
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationCreateInferenceSchedulerMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsAwsjson10_serializeOpCreateInferenceScheduler{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsAwsjson10_deserializeOpCreateInferenceScheduler{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "CreateInferenceScheduler"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = addClientRequestID(stack); err != nil {
return err
}
if err = addComputeContentLength(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = addComputePayloadSHA256(stack); err != nil {
return err
}
if err = addRetry(stack, options); err != nil {
return err
}
if err = addRawResponseToMetadata(stack); err != nil {
return err
}
if err = addRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addTimeOffsetBuild(stack, c); err != nil {
return err
}
if err = addUserAgentRetryMode(stack, options); err != nil {
return err
}
if err = addIdempotencyToken_opCreateInferenceSchedulerMiddleware(stack, options); err != nil {
return err
}
if err = addOpCreateInferenceSchedulerValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateInferenceScheduler(options.Region), middleware.Before); err != nil {
return err
}
if err = addRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
type idempotencyToken_initializeOpCreateInferenceScheduler struct {
tokenProvider IdempotencyTokenProvider
}
func (*idempotencyToken_initializeOpCreateInferenceScheduler) ID() string {
return "OperationIdempotencyTokenAutoFill"
}
func (m *idempotencyToken_initializeOpCreateInferenceScheduler) HandleInitialize(ctx context.Context, in middleware.InitializeInput, next middleware.InitializeHandler) (
out middleware.InitializeOutput, metadata middleware.Metadata, err error,
) {
if m.tokenProvider == nil {
return next.HandleInitialize(ctx, in)
}
input, ok := in.Parameters.(*CreateInferenceSchedulerInput)
if !ok {
return out, metadata, fmt.Errorf("expected middleware input to be of type *CreateInferenceSchedulerInput ")
}
if input.ClientToken == nil {
t, err := m.tokenProvider.GetIdempotencyToken()
if err != nil {
return out, metadata, err
}
input.ClientToken = &t
}
return next.HandleInitialize(ctx, in)
}
func addIdempotencyToken_opCreateInferenceSchedulerMiddleware(stack *middleware.Stack, cfg Options) error {
return stack.Initialize.Add(&idempotencyToken_initializeOpCreateInferenceScheduler{tokenProvider: cfg.IdempotencyTokenProvider}, middleware.Before)
}
func newServiceMetadataMiddleware_opCreateInferenceScheduler(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "CreateInferenceScheduler",
}
}
|