File: api_op_CreateModel.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.30.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 662,428 kB
  • sloc: java: 16,875; makefile: 432; sh: 175
file content (260 lines) | stat: -rw-r--r-- 8,662 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Code generated by smithy-go-codegen DO NOT EDIT.

package lookoutequipment

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/service/lookoutequipment/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
	"time"
)

// Creates a machine learning model for data inference.
//
// A machine-learning (ML) model is a mathematical model that finds patterns in
// your data. In Amazon Lookout for Equipment, the model learns the patterns of
// normal behavior and detects abnormal behavior that could be potential equipment
// failure (or maintenance events). The models are made by analyzing normal data
// and abnormalities in machine behavior that have already occurred.
//
// Your model is trained using a portion of the data from your dataset and uses
// that data to learn patterns of normal behavior and abnormal patterns that lead
// to equipment failure. Another portion of the data is used to evaluate the
// model's accuracy.
func (c *Client) CreateModel(ctx context.Context, params *CreateModelInput, optFns ...func(*Options)) (*CreateModelOutput, error) {
	if params == nil {
		params = &CreateModelInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "CreateModel", params, optFns, c.addOperationCreateModelMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*CreateModelOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type CreateModelInput struct {

	// A unique identifier for the request. If you do not set the client request
	// token, Amazon Lookout for Equipment generates one.
	//
	// This member is required.
	ClientToken *string

	// The name of the dataset for the machine learning model being created.
	//
	// This member is required.
	DatasetName *string

	// The name for the machine learning model to be created.
	//
	// This member is required.
	ModelName *string

	// The configuration is the TargetSamplingRate , which is the sampling rate of the
	// data after post processing by Amazon Lookout for Equipment. For example, if you
	// provide data that has been collected at a 1 second level and you want the system
	// to resample the data at a 1 minute rate before training, the TargetSamplingRate
	// is 1 minute.
	//
	// When providing a value for the TargetSamplingRate , you must attach the prefix
	// "PT" to the rate you want. The value for a 1 second rate is therefore PT1S, the
	// value for a 15 minute rate is PT15M, and the value for a 1 hour rate is PT1H
	DataPreProcessingConfiguration *types.DataPreProcessingConfiguration

	// The data schema for the machine learning model being created.
	DatasetSchema *types.DatasetSchema

	//  Indicates the time reference in the dataset that should be used to end the
	// subset of evaluation data for the machine learning model.
	EvaluationDataEndTime *time.Time

	// Indicates the time reference in the dataset that should be used to begin the
	// subset of evaluation data for the machine learning model.
	EvaluationDataStartTime *time.Time

	// The input configuration for the labels being used for the machine learning
	// model that's being created.
	LabelsInputConfiguration *types.LabelsInputConfiguration

	// The Amazon S3 location where you want Amazon Lookout for Equipment to save the
	// pointwise model diagnostics.
	//
	// You must also specify the RoleArn request parameter.
	ModelDiagnosticsOutputConfiguration *types.ModelDiagnosticsOutputConfiguration

	// Indicates that the asset associated with this sensor has been shut off. As long
	// as this condition is met, Lookout for Equipment will not use data from this
	// asset for training, evaluation, or inference.
	OffCondition *string

	//  The Amazon Resource Name (ARN) of a role with permission to access the data
	// source being used to create the machine learning model.
	RoleArn *string

	// Provides the identifier of the KMS key used to encrypt model data by Amazon
	// Lookout for Equipment.
	ServerSideKmsKeyId *string

	//  Any tags associated with the machine learning model being created.
	Tags []types.Tag

	// Indicates the time reference in the dataset that should be used to end the
	// subset of training data for the machine learning model.
	TrainingDataEndTime *time.Time

	// Indicates the time reference in the dataset that should be used to begin the
	// subset of training data for the machine learning model.
	TrainingDataStartTime *time.Time

	noSmithyDocumentSerde
}

type CreateModelOutput struct {

	// The Amazon Resource Name (ARN) of the model being created.
	ModelArn *string

	// Indicates the status of the CreateModel operation.
	Status types.ModelStatus

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationCreateModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson10_serializeOpCreateModel{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson10_deserializeOpCreateModel{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "CreateModel"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = addClientRequestID(stack); err != nil {
		return err
	}
	if err = addComputeContentLength(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = addComputePayloadSHA256(stack); err != nil {
		return err
	}
	if err = addRetry(stack, options); err != nil {
		return err
	}
	if err = addRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = addRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addTimeOffsetBuild(stack, c); err != nil {
		return err
	}
	if err = addUserAgentRetryMode(stack, options); err != nil {
		return err
	}
	if err = addIdempotencyToken_opCreateModelMiddleware(stack, options); err != nil {
		return err
	}
	if err = addOpCreateModelValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opCreateModel(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

type idempotencyToken_initializeOpCreateModel struct {
	tokenProvider IdempotencyTokenProvider
}

func (*idempotencyToken_initializeOpCreateModel) ID() string {
	return "OperationIdempotencyTokenAutoFill"
}

func (m *idempotencyToken_initializeOpCreateModel) HandleInitialize(ctx context.Context, in middleware.InitializeInput, next middleware.InitializeHandler) (
	out middleware.InitializeOutput, metadata middleware.Metadata, err error,
) {
	if m.tokenProvider == nil {
		return next.HandleInitialize(ctx, in)
	}

	input, ok := in.Parameters.(*CreateModelInput)
	if !ok {
		return out, metadata, fmt.Errorf("expected middleware input to be of type *CreateModelInput ")
	}

	if input.ClientToken == nil {
		t, err := m.tokenProvider.GetIdempotencyToken()
		if err != nil {
			return out, metadata, err
		}
		input.ClientToken = &t
	}
	return next.HandleInitialize(ctx, in)
}
func addIdempotencyToken_opCreateModelMiddleware(stack *middleware.Stack, cfg Options) error {
	return stack.Initialize.Add(&idempotencyToken_initializeOpCreateModel{tokenProvider: cfg.IdempotencyTokenProvider}, middleware.Before)
}

func newServiceMetadataMiddleware_opCreateModel(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "CreateModel",
	}
}