File: api_op_DescribeModel.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.30.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 662,428 kB
  • sloc: java: 16,875; makefile: 432; sh: 175
file content (327 lines) | stat: -rw-r--r-- 11,787 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Code generated by smithy-go-codegen DO NOT EDIT.

package lookoutequipment

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/service/lookoutequipment/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
	"time"
)

// Provides a JSON containing the overall information about a specific machine
// learning model, including model name and ARN, dataset, training and evaluation
// information, status, and so on.
func (c *Client) DescribeModel(ctx context.Context, params *DescribeModelInput, optFns ...func(*Options)) (*DescribeModelOutput, error) {
	if params == nil {
		params = &DescribeModelInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "DescribeModel", params, optFns, c.addOperationDescribeModelMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*DescribeModelOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type DescribeModelInput struct {

	// The name of the machine learning model to be described.
	//
	// This member is required.
	ModelName *string

	noSmithyDocumentSerde
}

type DescribeModelOutput struct {

	// Indicates the end time of the inference data that has been accumulated.
	AccumulatedInferenceDataEndTime *time.Time

	// Indicates the start time of the inference data that has been accumulated.
	AccumulatedInferenceDataStartTime *time.Time

	// The name of the model version used by the inference schedular when running a
	// scheduled inference execution.
	ActiveModelVersion *int64

	// The Amazon Resource Name (ARN) of the model version used by the inference
	// scheduler when running a scheduled inference execution.
	ActiveModelVersionArn *string

	// Indicates the time and date at which the machine learning model was created.
	CreatedAt *time.Time

	// The configuration is the TargetSamplingRate , which is the sampling rate of the
	// data after post processing by Amazon Lookout for Equipment. For example, if you
	// provide data that has been collected at a 1 second level and you want the system
	// to resample the data at a 1 minute rate before training, the TargetSamplingRate
	// is 1 minute.
	//
	// When providing a value for the TargetSamplingRate , you must attach the prefix
	// "PT" to the rate you want. The value for a 1 second rate is therefore PT1S, the
	// value for a 15 minute rate is PT15M, and the value for a 1 hour rate is PT1H
	DataPreProcessingConfiguration *types.DataPreProcessingConfiguration

	// The Amazon Resouce Name (ARN) of the dataset used to create the machine
	// learning model being described.
	DatasetArn *string

	// The name of the dataset being used by the machine learning being described.
	DatasetName *string

	//  Indicates the time reference in the dataset that was used to end the subset of
	// evaluation data for the machine learning model.
	EvaluationDataEndTime *time.Time

	//  Indicates the time reference in the dataset that was used to begin the subset
	// of evaluation data for the machine learning model.
	EvaluationDataStartTime *time.Time

	// If the training of the machine learning model failed, this indicates the reason
	// for that failure.
	FailedReason *string

	// The date and time when the import job was completed. This field appears if the
	// active model version was imported.
	ImportJobEndTime *time.Time

	// The date and time when the import job was started. This field appears if the
	// active model version was imported.
	ImportJobStartTime *time.Time

	// Specifies configuration information about the labels input, including its S3
	// location.
	LabelsInputConfiguration *types.LabelsInputConfiguration

	// Indicates the last time the machine learning model was updated. The type of
	// update is not specified.
	LastUpdatedTime *time.Time

	// Indicates the number of days of data used in the most recent scheduled
	// retraining run.
	LatestScheduledRetrainingAvailableDataInDays *int32

	// If the model version was generated by retraining and the training failed, this
	// indicates the reason for that failure.
	LatestScheduledRetrainingFailedReason *string

	// Indicates the most recent model version that was generated by retraining.
	LatestScheduledRetrainingModelVersion *int64

	// Indicates the start time of the most recent scheduled retraining run.
	LatestScheduledRetrainingStartTime *time.Time

	// Indicates the status of the most recent scheduled retraining run.
	LatestScheduledRetrainingStatus types.ModelVersionStatus

	// The Amazon Resource Name (ARN) of the machine learning model being described.
	ModelArn *string

	// Configuration information for the model's pointwise model diagnostics.
	ModelDiagnosticsOutputConfiguration *types.ModelDiagnosticsOutputConfiguration

	// The Model Metrics show an aggregated summary of the model's performance within
	// the evaluation time range. This is the JSON content of the metrics created when
	// evaluating the model.
	//
	// This value conforms to the media type: application/json
	ModelMetrics *string

	// The name of the machine learning model being described.
	ModelName *string

	// Provides a quality assessment for a model that uses labels. If Lookout for
	// Equipment determines that the model quality is poor based on training metrics,
	// the value is POOR_QUALITY_DETECTED . Otherwise, the value is
	// QUALITY_THRESHOLD_MET .
	//
	// If the model is unlabeled, the model quality can't be assessed and the value of
	// ModelQuality is CANNOT_DETERMINE_QUALITY . In this situation, you can get a
	// model quality assessment by adding labels to the input dataset and retraining
	// the model.
	//
	// For information about using labels with your models, see [Understanding labeling].
	//
	// For information about improving the quality of a model, see [Best practices with Amazon Lookout for Equipment].
	//
	// [Best practices with Amazon Lookout for Equipment]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/best-practices.html
	// [Understanding labeling]: https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/understanding-labeling.html
	ModelQuality types.ModelQuality

	// The date the active model version was activated.
	ModelVersionActivatedAt *time.Time

	// Indicates the date and time that the next scheduled retraining run will start
	// on. Lookout for Equipment truncates the time you provide to the nearest UTC day.
	NextScheduledRetrainingStartDate *time.Time

	// Indicates that the asset associated with this sensor has been shut off. As long
	// as this condition is met, Lookout for Equipment will not use data from this
	// asset for training, evaluation, or inference.
	OffCondition *string

	// The model version that was set as the active model version prior to the current
	// active model version.
	PreviousActiveModelVersion *int64

	// The ARN of the model version that was set as the active model version prior to
	// the current active model version.
	PreviousActiveModelVersionArn *string

	// The date and time when the previous active model version was activated.
	PreviousModelVersionActivatedAt *time.Time

	// If the model version was retrained, this field shows a summary of the
	// performance of the prior model on the new training range. You can use the
	// information in this JSON-formatted object to compare the new model version and
	// the prior model version.
	//
	// This value conforms to the media type: application/json
	PriorModelMetrics *string

	// Indicates the status of the retraining scheduler.
	RetrainingSchedulerStatus types.RetrainingSchedulerStatus

	//  The Amazon Resource Name (ARN) of a role with permission to access the data
	// source for the machine learning model being described.
	RoleArn *string

	// A JSON description of the data that is in each time series dataset, including
	// names, column names, and data types.
	//
	// This value conforms to the media type: application/json
	Schema *string

	// Provides the identifier of the KMS key used to encrypt model data by Amazon
	// Lookout for Equipment.
	ServerSideKmsKeyId *string

	// The Amazon Resource Name (ARN) of the source model version. This field appears
	// if the active model version was imported.
	SourceModelVersionArn *string

	// Specifies the current status of the model being described. Status describes the
	// status of the most recent action of the model.
	Status types.ModelStatus

	//  Indicates the time reference in the dataset that was used to end the subset of
	// training data for the machine learning model.
	TrainingDataEndTime *time.Time

	//  Indicates the time reference in the dataset that was used to begin the subset
	// of training data for the machine learning model.
	TrainingDataStartTime *time.Time

	// Indicates the time at which the training of the machine learning model was
	// completed.
	TrainingExecutionEndTime *time.Time

	// Indicates the time at which the training of the machine learning model began.
	TrainingExecutionStartTime *time.Time

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationDescribeModelMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsAwsjson10_serializeOpDescribeModel{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsAwsjson10_deserializeOpDescribeModel{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "DescribeModel"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = addClientRequestID(stack); err != nil {
		return err
	}
	if err = addComputeContentLength(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = addComputePayloadSHA256(stack); err != nil {
		return err
	}
	if err = addRetry(stack, options); err != nil {
		return err
	}
	if err = addRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = addRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addTimeOffsetBuild(stack, c); err != nil {
		return err
	}
	if err = addUserAgentRetryMode(stack, options); err != nil {
		return err
	}
	if err = addOpDescribeModelValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opDescribeModel(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opDescribeModel(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "DescribeModel",
	}
}