1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package neptunedata
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new Neptune ML data processing job for processing the graph data
// exported from Neptune for training. See [The dataprocessing command]dataprocessing .
//
// When invoking this operation in a Neptune cluster that has IAM authentication
// enabled, the IAM user or role making the request must have a policy attached
// that allows the [neptune-db:StartMLModelDataProcessingJob]IAM action in that cluster.
//
// [neptune-db:StartMLModelDataProcessingJob]: https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actions.html#startmlmodeldataprocessingjob
// [The dataprocessing command]: https://docs.aws.amazon.com/neptune/latest/userguide/machine-learning-api-dataprocessing.html
func (c *Client) StartMLDataProcessingJob(ctx context.Context, params *StartMLDataProcessingJobInput, optFns ...func(*Options)) (*StartMLDataProcessingJobOutput, error) {
if params == nil {
params = &StartMLDataProcessingJobInput{}
}
result, metadata, err := c.invokeOperation(ctx, "StartMLDataProcessingJob", params, optFns, c.addOperationStartMLDataProcessingJobMiddlewares)
if err != nil {
return nil, err
}
out := result.(*StartMLDataProcessingJobOutput)
out.ResultMetadata = metadata
return out, nil
}
type StartMLDataProcessingJobInput struct {
// The URI of the Amazon S3 location where you want SageMaker to download the data
// needed to run the data processing job.
//
// This member is required.
InputDataS3Location *string
// The URI of the Amazon S3 location where you want SageMaker to save the results
// of a data processing job.
//
// This member is required.
ProcessedDataS3Location *string
// A data specification file that describes how to load the exported graph data
// for training. The file is automatically generated by the Neptune export toolkit.
// The default is training-data-configuration.json .
ConfigFileName *string
// A unique identifier for the new job. The default is an autogenerated UUID.
Id *string
// One of the two model types that Neptune ML currently supports: heterogeneous
// graph models ( heterogeneous ), and knowledge graph ( kge ). The default is
// none. If not specified, Neptune ML chooses the model type automatically based on
// the data.
ModelType *string
// The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to
// perform tasks on your behalf. This must be listed in your DB cluster parameter
// group or an error will occur.
NeptuneIamRoleArn *string
// The job ID of a completed data processing job run on an earlier version of the
// data.
PreviousDataProcessingJobId *string
// The type of ML instance used during data processing. Its memory should be large
// enough to hold the processed dataset. The default is the smallest ml.r5 type
// whose memory is ten times larger than the size of the exported graph data on
// disk.
ProcessingInstanceType *string
// The disk volume size of the processing instance. Both input data and processed
// data are stored on disk, so the volume size must be large enough to hold both
// data sets. The default is 0. If not specified or 0, Neptune ML chooses the
// volume size automatically based on the data size.
ProcessingInstanceVolumeSizeInGB *int32
// Timeout in seconds for the data processing job. The default is 86,400 (1 day).
ProcessingTimeOutInSeconds *int32
// The Amazon Key Management Service (Amazon KMS) key that SageMaker uses to
// encrypt the output of the processing job. The default is none.
S3OutputEncryptionKMSKey *string
// The ARN of an IAM role for SageMaker execution. This must be listed in your DB
// cluster parameter group or an error will occur.
SagemakerIamRoleArn *string
// The VPC security group IDs. The default is None.
SecurityGroupIds []string
// The IDs of the subnets in the Neptune VPC. The default is None.
Subnets []string
// The Amazon Key Management Service (Amazon KMS) key that SageMaker uses to
// encrypt data on the storage volume attached to the ML compute instances that run
// the training job. The default is None.
VolumeEncryptionKMSKey *string
noSmithyDocumentSerde
}
type StartMLDataProcessingJobOutput struct {
// The ARN of the data processing job.
Arn *string
// The time it took to create the new processing job, in milliseconds.
CreationTimeInMillis *int64
// The unique ID of the new data processing job.
Id *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationStartMLDataProcessingJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsRestjson1_serializeOpStartMLDataProcessingJob{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsRestjson1_deserializeOpStartMLDataProcessingJob{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "StartMLDataProcessingJob"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = addClientRequestID(stack); err != nil {
return err
}
if err = addComputeContentLength(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = addComputePayloadSHA256(stack); err != nil {
return err
}
if err = addRetry(stack, options); err != nil {
return err
}
if err = addRawResponseToMetadata(stack); err != nil {
return err
}
if err = addRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addTimeOffsetBuild(stack, c); err != nil {
return err
}
if err = addUserAgentRetryMode(stack, options); err != nil {
return err
}
if err = addOpStartMLDataProcessingJobValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opStartMLDataProcessingJob(options.Region), middleware.Before); err != nil {
return err
}
if err = addRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opStartMLDataProcessingJob(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "StartMLDataProcessingJob",
}
}
|