1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package neptunedata
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/service/neptunedata/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new Neptune ML model training job. See [Model training using the modeltraining command]modeltraining .
//
// When invoking this operation in a Neptune cluster that has IAM authentication
// enabled, the IAM user or role making the request must have a policy attached
// that allows the [neptune-db:StartMLModelTrainingJob]IAM action in that cluster.
//
// [Model training using the modeltraining command]: https://docs.aws.amazon.com/neptune/latest/userguide/machine-learning-api-modeltraining.html
// [neptune-db:StartMLModelTrainingJob]: https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actions.html#startmlmodeltrainingjob
func (c *Client) StartMLModelTrainingJob(ctx context.Context, params *StartMLModelTrainingJobInput, optFns ...func(*Options)) (*StartMLModelTrainingJobOutput, error) {
if params == nil {
params = &StartMLModelTrainingJobInput{}
}
result, metadata, err := c.invokeOperation(ctx, "StartMLModelTrainingJob", params, optFns, c.addOperationStartMLModelTrainingJobMiddlewares)
if err != nil {
return nil, err
}
out := result.(*StartMLModelTrainingJobOutput)
out.ResultMetadata = metadata
return out, nil
}
type StartMLModelTrainingJobInput struct {
// The job ID of the completed data-processing job that has created the data that
// the training will work with.
//
// This member is required.
DataProcessingJobId *string
// The location in Amazon S3 where the model artifacts are to be stored.
//
// This member is required.
TrainModelS3Location *string
// The type of ML instance used in preparing and managing training of ML models.
// This is a CPU instance chosen based on memory requirements for processing the
// training data and model.
BaseProcessingInstanceType *string
// The configuration for custom model training. This is a JSON object.
CustomModelTrainingParameters *types.CustomModelTrainingParameters
// Optimizes the cost of training machine-learning models by using Amazon Elastic
// Compute Cloud spot instances. The default is False .
EnableManagedSpotTraining *bool
// A unique identifier for the new job. The default is An autogenerated UUID.
Id *string
// Maximum total number of training jobs to start for the hyperparameter tuning
// job. The default is 2. Neptune ML automatically tunes the hyperparameters of the
// machine learning model. To obtain a model that performs well, use at least 10
// jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the
// more tuning runs, the better the results.
MaxHPONumberOfTrainingJobs *int32
// Maximum number of parallel training jobs to start for the hyperparameter tuning
// job. The default is 2. The number of parallel jobs you can run is limited by the
// available resources on your training instance.
MaxHPOParallelTrainingJobs *int32
// The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3
// resources. This must be listed in your DB cluster parameter group or an error
// will occur.
NeptuneIamRoleArn *string
// The job ID of a completed model-training job that you want to update
// incrementally based on updated data.
PreviousModelTrainingJobId *string
// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the
// output of the processing job. The default is none.
S3OutputEncryptionKMSKey *string
// The ARN of an IAM role for SageMaker execution.This must be listed in your DB
// cluster parameter group or an error will occur.
SagemakerIamRoleArn *string
// The VPC security group IDs. The default is None.
SecurityGroupIds []string
// The IDs of the subnets in the Neptune VPC. The default is None.
Subnets []string
// The type of ML instance used for model training. All Neptune ML models support
// CPU, GPU, and multiGPU training. The default is ml.p3.2xlarge . Choosing the
// right instance type for training depends on the task type, graph size, and your
// budget.
TrainingInstanceType *string
// The disk volume size of the training instance. Both input data and the output
// model are stored on disk, so the volume size must be large enough to hold both
// data sets. The default is 0. If not specified or 0, Neptune ML selects a disk
// volume size based on the recommendation generated in the data processing step.
TrainingInstanceVolumeSizeInGB *int32
// Timeout in seconds for the training job. The default is 86,400 (1 day).
TrainingTimeOutInSeconds *int32
// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data
// on the storage volume attached to the ML compute instances that run the training
// job. The default is None.
VolumeEncryptionKMSKey *string
noSmithyDocumentSerde
}
type StartMLModelTrainingJobOutput struct {
// The ARN of the new model training job.
Arn *string
// The model training job creation time, in milliseconds.
CreationTimeInMillis *int64
// The unique ID of the new model training job.
Id *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationStartMLModelTrainingJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsRestjson1_serializeOpStartMLModelTrainingJob{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsRestjson1_deserializeOpStartMLModelTrainingJob{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "StartMLModelTrainingJob"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = addClientRequestID(stack); err != nil {
return err
}
if err = addComputeContentLength(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = addComputePayloadSHA256(stack); err != nil {
return err
}
if err = addRetry(stack, options); err != nil {
return err
}
if err = addRawResponseToMetadata(stack); err != nil {
return err
}
if err = addRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addTimeOffsetBuild(stack, c); err != nil {
return err
}
if err = addUserAgentRetryMode(stack, options); err != nil {
return err
}
if err = addOpStartMLModelTrainingJobValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opStartMLModelTrainingJob(options.Region), middleware.Before); err != nil {
return err
}
if err = addRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opStartMLModelTrainingJob(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "StartMLModelTrainingJob",
}
}
|