File: api_op_StartMLModelTrainingJob.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.30.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 662,428 kB
  • sloc: java: 16,875; makefile: 432; sh: 175
file content (231 lines) | stat: -rw-r--r-- 8,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Code generated by smithy-go-codegen DO NOT EDIT.

package neptunedata

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/service/neptunedata/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Creates a new Neptune ML model training job. See [Model training using the modeltraining command]modeltraining .
//
// When invoking this operation in a Neptune cluster that has IAM authentication
// enabled, the IAM user or role making the request must have a policy attached
// that allows the [neptune-db:StartMLModelTrainingJob]IAM action in that cluster.
//
// [Model training using the modeltraining command]: https://docs.aws.amazon.com/neptune/latest/userguide/machine-learning-api-modeltraining.html
// [neptune-db:StartMLModelTrainingJob]: https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actions.html#startmlmodeltrainingjob
func (c *Client) StartMLModelTrainingJob(ctx context.Context, params *StartMLModelTrainingJobInput, optFns ...func(*Options)) (*StartMLModelTrainingJobOutput, error) {
	if params == nil {
		params = &StartMLModelTrainingJobInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "StartMLModelTrainingJob", params, optFns, c.addOperationStartMLModelTrainingJobMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*StartMLModelTrainingJobOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type StartMLModelTrainingJobInput struct {

	// The job ID of the completed data-processing job that has created the data that
	// the training will work with.
	//
	// This member is required.
	DataProcessingJobId *string

	// The location in Amazon S3 where the model artifacts are to be stored.
	//
	// This member is required.
	TrainModelS3Location *string

	// The type of ML instance used in preparing and managing training of ML models.
	// This is a CPU instance chosen based on memory requirements for processing the
	// training data and model.
	BaseProcessingInstanceType *string

	// The configuration for custom model training. This is a JSON object.
	CustomModelTrainingParameters *types.CustomModelTrainingParameters

	// Optimizes the cost of training machine-learning models by using Amazon Elastic
	// Compute Cloud spot instances. The default is False .
	EnableManagedSpotTraining *bool

	// A unique identifier for the new job. The default is An autogenerated UUID.
	Id *string

	// Maximum total number of training jobs to start for the hyperparameter tuning
	// job. The default is 2. Neptune ML automatically tunes the hyperparameters of the
	// machine learning model. To obtain a model that performs well, use at least 10
	// jobs (in other words, set maxHPONumberOfTrainingJobs to 10). In general, the
	// more tuning runs, the better the results.
	MaxHPONumberOfTrainingJobs *int32

	// Maximum number of parallel training jobs to start for the hyperparameter tuning
	// job. The default is 2. The number of parallel jobs you can run is limited by the
	// available resources on your training instance.
	MaxHPOParallelTrainingJobs *int32

	// The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3
	// resources. This must be listed in your DB cluster parameter group or an error
	// will occur.
	NeptuneIamRoleArn *string

	// The job ID of a completed model-training job that you want to update
	// incrementally based on updated data.
	PreviousModelTrainingJobId *string

	// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the
	// output of the processing job. The default is none.
	S3OutputEncryptionKMSKey *string

	// The ARN of an IAM role for SageMaker execution.This must be listed in your DB
	// cluster parameter group or an error will occur.
	SagemakerIamRoleArn *string

	// The VPC security group IDs. The default is None.
	SecurityGroupIds []string

	// The IDs of the subnets in the Neptune VPC. The default is None.
	Subnets []string

	// The type of ML instance used for model training. All Neptune ML models support
	// CPU, GPU, and multiGPU training. The default is ml.p3.2xlarge . Choosing the
	// right instance type for training depends on the task type, graph size, and your
	// budget.
	TrainingInstanceType *string

	// The disk volume size of the training instance. Both input data and the output
	// model are stored on disk, so the volume size must be large enough to hold both
	// data sets. The default is 0. If not specified or 0, Neptune ML selects a disk
	// volume size based on the recommendation generated in the data processing step.
	TrainingInstanceVolumeSizeInGB *int32

	// Timeout in seconds for the training job. The default is 86,400 (1 day).
	TrainingTimeOutInSeconds *int32

	// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data
	// on the storage volume attached to the ML compute instances that run the training
	// job. The default is None.
	VolumeEncryptionKMSKey *string

	noSmithyDocumentSerde
}

type StartMLModelTrainingJobOutput struct {

	// The ARN of the new model training job.
	Arn *string

	// The model training job creation time, in milliseconds.
	CreationTimeInMillis *int64

	// The unique ID of the new model training job.
	Id *string

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationStartMLModelTrainingJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsRestjson1_serializeOpStartMLModelTrainingJob{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsRestjson1_deserializeOpStartMLModelTrainingJob{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "StartMLModelTrainingJob"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = addClientRequestID(stack); err != nil {
		return err
	}
	if err = addComputeContentLength(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = addComputePayloadSHA256(stack); err != nil {
		return err
	}
	if err = addRetry(stack, options); err != nil {
		return err
	}
	if err = addRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = addRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addTimeOffsetBuild(stack, c); err != nil {
		return err
	}
	if err = addUserAgentRetryMode(stack, options); err != nil {
		return err
	}
	if err = addOpStartMLModelTrainingJobValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opStartMLModelTrainingJob(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opStartMLModelTrainingJob(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "StartMLModelTrainingJob",
	}
}