1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
// Code generated by smithy-go-codegen DO NOT EDIT.
package neptunedata
import (
"context"
"fmt"
awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
"github.com/aws/aws-sdk-go-v2/service/neptunedata/types"
"github.com/aws/smithy-go/middleware"
smithyhttp "github.com/aws/smithy-go/transport/http"
)
// Creates a new model transform job. See [Use a trained model to generate new model artifacts].
//
// When invoking this operation in a Neptune cluster that has IAM authentication
// enabled, the IAM user or role making the request must have a policy attached
// that allows the [neptune-db:StartMLModelTransformJob]IAM action in that cluster.
//
// [Use a trained model to generate new model artifacts]: https://docs.aws.amazon.com/neptune/latest/userguide/machine-learning-model-transform.html
// [neptune-db:StartMLModelTransformJob]: https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actions.html#startmlmodeltransformjob
func (c *Client) StartMLModelTransformJob(ctx context.Context, params *StartMLModelTransformJobInput, optFns ...func(*Options)) (*StartMLModelTransformJobOutput, error) {
if params == nil {
params = &StartMLModelTransformJobInput{}
}
result, metadata, err := c.invokeOperation(ctx, "StartMLModelTransformJob", params, optFns, c.addOperationStartMLModelTransformJobMiddlewares)
if err != nil {
return nil, err
}
out := result.(*StartMLModelTransformJobOutput)
out.ResultMetadata = metadata
return out, nil
}
type StartMLModelTransformJobInput struct {
// The location in Amazon S3 where the model artifacts are to be stored.
//
// This member is required.
ModelTransformOutputS3Location *string
// The type of ML instance used in preparing and managing training of ML models.
// This is an ML compute instance chosen based on memory requirements for
// processing the training data and model.
BaseProcessingInstanceType *string
// The disk volume size of the training instance in gigabytes. The default is 0.
// Both input data and the output model are stored on disk, so the volume size must
// be large enough to hold both data sets. If not specified or 0, Neptune ML
// selects a disk volume size based on the recommendation generated in the data
// processing step.
BaseProcessingInstanceVolumeSizeInGB *int32
// Configuration information for a model transform using a custom model. The
// customModelTransformParameters object contains the following fields, which must
// have values compatible with the saved model parameters from the training job:
CustomModelTransformParameters *types.CustomModelTransformParameters
// The job ID of a completed data-processing job. You must include either
// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
DataProcessingJobId *string
// A unique identifier for the new job. The default is an autogenerated UUID.
Id *string
// The job ID of a completed model-training job. You must include either
// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
MlModelTrainingJobId *string
// The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3
// resources. This must be listed in your DB cluster parameter group or an error
// will occur.
NeptuneIamRoleArn *string
// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the
// output of the processing job. The default is none.
S3OutputEncryptionKMSKey *string
// The ARN of an IAM role for SageMaker execution. This must be listed in your DB
// cluster parameter group or an error will occur.
SagemakerIamRoleArn *string
// The VPC security group IDs. The default is None.
SecurityGroupIds []string
// The IDs of the subnets in the Neptune VPC. The default is None.
Subnets []string
// The name of a completed SageMaker training job. You must include either
// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
TrainingJobName *string
// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data
// on the storage volume attached to the ML compute instances that run the training
// job. The default is None.
VolumeEncryptionKMSKey *string
noSmithyDocumentSerde
}
type StartMLModelTransformJobOutput struct {
// The ARN of the model transform job.
Arn *string
// The creation time of the model transform job, in milliseconds.
CreationTimeInMillis *int64
// The unique ID of the new model transform job.
Id *string
// Metadata pertaining to the operation's result.
ResultMetadata middleware.Metadata
noSmithyDocumentSerde
}
func (c *Client) addOperationStartMLModelTransformJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
return err
}
err = stack.Serialize.Add(&awsRestjson1_serializeOpStartMLModelTransformJob{}, middleware.After)
if err != nil {
return err
}
err = stack.Deserialize.Add(&awsRestjson1_deserializeOpStartMLModelTransformJob{}, middleware.After)
if err != nil {
return err
}
if err := addProtocolFinalizerMiddlewares(stack, options, "StartMLModelTransformJob"); err != nil {
return fmt.Errorf("add protocol finalizers: %v", err)
}
if err = addlegacyEndpointContextSetter(stack, options); err != nil {
return err
}
if err = addSetLoggerMiddleware(stack, options); err != nil {
return err
}
if err = addClientRequestID(stack); err != nil {
return err
}
if err = addComputeContentLength(stack); err != nil {
return err
}
if err = addResolveEndpointMiddleware(stack, options); err != nil {
return err
}
if err = addComputePayloadSHA256(stack); err != nil {
return err
}
if err = addRetry(stack, options); err != nil {
return err
}
if err = addRawResponseToMetadata(stack); err != nil {
return err
}
if err = addRecordResponseTiming(stack); err != nil {
return err
}
if err = addClientUserAgent(stack, options); err != nil {
return err
}
if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
return err
}
if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
return err
}
if err = addTimeOffsetBuild(stack, c); err != nil {
return err
}
if err = addUserAgentRetryMode(stack, options); err != nil {
return err
}
if err = addOpStartMLModelTransformJobValidationMiddleware(stack); err != nil {
return err
}
if err = stack.Initialize.Add(newServiceMetadataMiddleware_opStartMLModelTransformJob(options.Region), middleware.Before); err != nil {
return err
}
if err = addRecursionDetection(stack); err != nil {
return err
}
if err = addRequestIDRetrieverMiddleware(stack); err != nil {
return err
}
if err = addResponseErrorMiddleware(stack); err != nil {
return err
}
if err = addRequestResponseLogging(stack, options); err != nil {
return err
}
if err = addDisableHTTPSMiddleware(stack, options); err != nil {
return err
}
return nil
}
func newServiceMetadataMiddleware_opStartMLModelTransformJob(region string) *awsmiddleware.RegisterServiceMetadata {
return &awsmiddleware.RegisterServiceMetadata{
Region: region,
ServiceID: ServiceID,
OperationName: "StartMLModelTransformJob",
}
}
|