File: api_op_StartMLModelTransformJob.go

package info (click to toggle)
golang-github-aws-aws-sdk-go-v2 1.30.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 662,428 kB
  • sloc: java: 16,875; makefile: 432; sh: 175
file content (211 lines) | stat: -rw-r--r-- 7,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Code generated by smithy-go-codegen DO NOT EDIT.

package neptunedata

import (
	"context"
	"fmt"
	awsmiddleware "github.com/aws/aws-sdk-go-v2/aws/middleware"
	"github.com/aws/aws-sdk-go-v2/service/neptunedata/types"
	"github.com/aws/smithy-go/middleware"
	smithyhttp "github.com/aws/smithy-go/transport/http"
)

// Creates a new model transform job. See [Use a trained model to generate new model artifacts].
//
// When invoking this operation in a Neptune cluster that has IAM authentication
// enabled, the IAM user or role making the request must have a policy attached
// that allows the [neptune-db:StartMLModelTransformJob]IAM action in that cluster.
//
// [Use a trained model to generate new model artifacts]: https://docs.aws.amazon.com/neptune/latest/userguide/machine-learning-model-transform.html
// [neptune-db:StartMLModelTransformJob]: https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actions.html#startmlmodeltransformjob
func (c *Client) StartMLModelTransformJob(ctx context.Context, params *StartMLModelTransformJobInput, optFns ...func(*Options)) (*StartMLModelTransformJobOutput, error) {
	if params == nil {
		params = &StartMLModelTransformJobInput{}
	}

	result, metadata, err := c.invokeOperation(ctx, "StartMLModelTransformJob", params, optFns, c.addOperationStartMLModelTransformJobMiddlewares)
	if err != nil {
		return nil, err
	}

	out := result.(*StartMLModelTransformJobOutput)
	out.ResultMetadata = metadata
	return out, nil
}

type StartMLModelTransformJobInput struct {

	// The location in Amazon S3 where the model artifacts are to be stored.
	//
	// This member is required.
	ModelTransformOutputS3Location *string

	// The type of ML instance used in preparing and managing training of ML models.
	// This is an ML compute instance chosen based on memory requirements for
	// processing the training data and model.
	BaseProcessingInstanceType *string

	// The disk volume size of the training instance in gigabytes. The default is 0.
	// Both input data and the output model are stored on disk, so the volume size must
	// be large enough to hold both data sets. If not specified or 0, Neptune ML
	// selects a disk volume size based on the recommendation generated in the data
	// processing step.
	BaseProcessingInstanceVolumeSizeInGB *int32

	// Configuration information for a model transform using a custom model. The
	// customModelTransformParameters object contains the following fields, which must
	// have values compatible with the saved model parameters from the training job:
	CustomModelTransformParameters *types.CustomModelTransformParameters

	// The job ID of a completed data-processing job. You must include either
	// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
	DataProcessingJobId *string

	// A unique identifier for the new job. The default is an autogenerated UUID.
	Id *string

	// The job ID of a completed model-training job. You must include either
	// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
	MlModelTrainingJobId *string

	// The ARN of an IAM role that provides Neptune access to SageMaker and Amazon S3
	// resources. This must be listed in your DB cluster parameter group or an error
	// will occur.
	NeptuneIamRoleArn *string

	// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt the
	// output of the processing job. The default is none.
	S3OutputEncryptionKMSKey *string

	// The ARN of an IAM role for SageMaker execution. This must be listed in your DB
	// cluster parameter group or an error will occur.
	SagemakerIamRoleArn *string

	// The VPC security group IDs. The default is None.
	SecurityGroupIds []string

	// The IDs of the subnets in the Neptune VPC. The default is None.
	Subnets []string

	// The name of a completed SageMaker training job. You must include either
	// dataProcessingJobId and a mlModelTrainingJobId , or a trainingJobName .
	TrainingJobName *string

	// The Amazon Key Management Service (KMS) key that SageMaker uses to encrypt data
	// on the storage volume attached to the ML compute instances that run the training
	// job. The default is None.
	VolumeEncryptionKMSKey *string

	noSmithyDocumentSerde
}

type StartMLModelTransformJobOutput struct {

	// The ARN of the model transform job.
	Arn *string

	// The creation time of the model transform job, in milliseconds.
	CreationTimeInMillis *int64

	// The unique ID of the new model transform job.
	Id *string

	// Metadata pertaining to the operation's result.
	ResultMetadata middleware.Metadata

	noSmithyDocumentSerde
}

func (c *Client) addOperationStartMLModelTransformJobMiddlewares(stack *middleware.Stack, options Options) (err error) {
	if err := stack.Serialize.Add(&setOperationInputMiddleware{}, middleware.After); err != nil {
		return err
	}
	err = stack.Serialize.Add(&awsRestjson1_serializeOpStartMLModelTransformJob{}, middleware.After)
	if err != nil {
		return err
	}
	err = stack.Deserialize.Add(&awsRestjson1_deserializeOpStartMLModelTransformJob{}, middleware.After)
	if err != nil {
		return err
	}
	if err := addProtocolFinalizerMiddlewares(stack, options, "StartMLModelTransformJob"); err != nil {
		return fmt.Errorf("add protocol finalizers: %v", err)
	}

	if err = addlegacyEndpointContextSetter(stack, options); err != nil {
		return err
	}
	if err = addSetLoggerMiddleware(stack, options); err != nil {
		return err
	}
	if err = addClientRequestID(stack); err != nil {
		return err
	}
	if err = addComputeContentLength(stack); err != nil {
		return err
	}
	if err = addResolveEndpointMiddleware(stack, options); err != nil {
		return err
	}
	if err = addComputePayloadSHA256(stack); err != nil {
		return err
	}
	if err = addRetry(stack, options); err != nil {
		return err
	}
	if err = addRawResponseToMetadata(stack); err != nil {
		return err
	}
	if err = addRecordResponseTiming(stack); err != nil {
		return err
	}
	if err = addClientUserAgent(stack, options); err != nil {
		return err
	}
	if err = smithyhttp.AddErrorCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = smithyhttp.AddCloseResponseBodyMiddleware(stack); err != nil {
		return err
	}
	if err = addSetLegacyContextSigningOptionsMiddleware(stack); err != nil {
		return err
	}
	if err = addTimeOffsetBuild(stack, c); err != nil {
		return err
	}
	if err = addUserAgentRetryMode(stack, options); err != nil {
		return err
	}
	if err = addOpStartMLModelTransformJobValidationMiddleware(stack); err != nil {
		return err
	}
	if err = stack.Initialize.Add(newServiceMetadataMiddleware_opStartMLModelTransformJob(options.Region), middleware.Before); err != nil {
		return err
	}
	if err = addRecursionDetection(stack); err != nil {
		return err
	}
	if err = addRequestIDRetrieverMiddleware(stack); err != nil {
		return err
	}
	if err = addResponseErrorMiddleware(stack); err != nil {
		return err
	}
	if err = addRequestResponseLogging(stack, options); err != nil {
		return err
	}
	if err = addDisableHTTPSMiddleware(stack, options); err != nil {
		return err
	}
	return nil
}

func newServiceMetadataMiddleware_opStartMLModelTransformJob(region string) *awsmiddleware.RegisterServiceMetadata {
	return &awsmiddleware.RegisterServiceMetadata{
		Region:        region,
		ServiceID:     ServiceID,
		OperationName: "StartMLModelTransformJob",
	}
}