1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
// Copyright ©2011-2013 The bíogo Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package kmerindex performs Kmer indexing package based on Bob Edgar and
// Gene Meyers' approach used in PALS.
package kmerindex
import (
"errors"
"fmt"
"math"
"unsafe"
"github.com/biogo/biogo/alphabet"
"github.com/biogo/biogo/seq/linear"
"github.com/biogo/biogo/util"
)
var (
ErrKTooLarge = errors.New("kmerindex: k too large")
ErrKTooSmall = errors.New("kmerindex: k too small")
ErrShortSeq = errors.New("kmerindex: sequence to short for k")
ErrBadAlphabet = errors.New("kmerindex: alphabet size != 4")
ErrBadKmer = errors.New("kmerindex: kmer out of range")
ErrBadKmerTextLen = errors.New("kmerindex: kmertext length != k")
ErrBadKmerText = errors.New("kmerindex: kmertext contains illegal character")
)
// Constraints on Kmer length.
var (
MinKmerLen = 4 // default minimum
// MaxKmerLen is the maximum Kmer length that can be used.
// It is 16 on 64 bit architectures and 14 on 32 bit architectures.
MaxKmerLen = 16 - offset
)
const offset = int(unsafe.Sizeof(int(0))%0x4) / 2
var Debug = false // Set Debug to true to prevent recovering from panics in ForEachKmer f Eval function.
// 2-bit per base packed word
type Kmer uint32 // Sensible size for word type uint64 will double the size of the index (already large for high k)
// Kmer index type
type Index struct {
finger []Kmer
pos []int
seq *linear.Seq
lookUp alphabet.Index
k int
kMask Kmer
indexed bool
}
// Create a new Kmer Index with a word size k based on sequence
func New(k int, s *linear.Seq) (*Index, error) {
switch {
case k > MaxKmerLen:
return nil, ErrKTooLarge
case k < MinKmerLen:
return nil, ErrKTooSmall
case k+1 > s.Len():
return nil, ErrShortSeq
case s.Alpha.Len() != 4:
return nil, ErrBadAlphabet
}
ki := &Index{
finger: make([]Kmer, util.Pow4(k)+1), // Need a Tn+1 finger position so that Tn can be recognised
k: k,
kMask: Kmer(util.Pow4(k) - 1),
seq: s,
lookUp: s.Alpha.LetterIndex(),
indexed: false,
}
ki.buildKmerTable()
return ki, nil
}
// Build the table of Kmer frequencies - called by New
func (ki *Index) buildKmerTable() {
incrementFinger := func(index *Index, _, kmer int) {
index.finger[kmer]++
}
ki.ForEachKmerOf(ki.seq, 0, ki.seq.Len(), incrementFinger)
}
// Build the Kmer position table destructively replacing Kmer frequencies
func (ki *Index) Build() {
var sum Kmer
for i, v := range ki.finger {
ki.finger[i], sum = sum, sum+v
}
locatePositions := func(index *Index, position, kmer int) {
index.pos[index.finger[kmer]] = position
index.finger[kmer]++
}
ki.pos = make([]int, ki.seq.Len()-ki.k+1)
ki.ForEachKmerOf(ki.seq, 0, ki.seq.Len(), locatePositions)
ki.indexed = true
}
// Return an array of positions for the Kmer string kmertext
func (ki *Index) KmerPositionsString(kmertext string) (positions []int, err error) {
switch {
case len(kmertext) != ki.k:
return nil, ErrBadKmerTextLen
case !ki.indexed:
return nil, errors.New("kmerindex: index not built: call Build()")
}
var kmer Kmer
if kmer, err = ki.KmerOf(kmertext); err != nil {
return nil, err
}
return ki.KmerPositions(kmer)
}
// Return an array of positions for the Kmer kmer
func (ki *Index) KmerPositions(kmer Kmer) (positions []int, err error) {
if kmer > ki.kMask {
return nil, ErrBadKmer
}
i := Kmer(0)
if kmer > 0 { // special case: An has no predecessor
i = ki.finger[kmer-1]
}
j := ki.finger[kmer]
if i == j {
return
}
positions = make([]int, j-i)
for l, p := range ki.pos[i:j] {
positions[l] = int(p)
}
return
}
// Return a map containing absolute Kmer frequencies and true if called before Build().
// If called after Build returns a nil map and false.
func (ki *Index) KmerFrequencies() (map[Kmer]int, bool) {
if ki.indexed {
return nil, false
}
m := map[Kmer]int{}
for i, f := range ki.finger {
if f > 0 {
m[Kmer(i)] = int(f) // not always safe - perhaps check that Kmer <= MaxInt
}
}
return m, true
}
// Return a map containing relative Kmer frequencies and true if called before Build().
// If called after Build returns a nil map and false.
func (ki *Index) NormalisedKmerFrequencies() (map[Kmer]float64, bool) {
if ki.indexed {
return nil, false
}
m := map[Kmer]float64{}
l := float64(ki.seq.Len())
for i, f := range ki.finger {
if f > 0 {
m[Kmer(i)] = float64(f) / l
}
}
return m, true
}
// Returns a Kmer-keyed map containing slices of kmer positions and true if called after Build,
// otherwise nil and false.
func (ki *Index) KmerIndex() (map[Kmer][]int, bool) {
if !ki.indexed {
return nil, false
}
m := make(map[Kmer][]int)
for i := range ki.finger {
if p, _ := ki.KmerPositions(Kmer(i)); len(p) > 0 {
m[Kmer(i)] = p
}
}
return m, true
}
// Returns a string-keyed map containing slices of kmer positions and true if called after Build,
// otherwise nil and false.
func (ki *Index) StringKmerIndex() (map[string][]int, bool) {
if !ki.indexed {
return nil, false
}
m := make(map[string][]int)
for i := range ki.finger {
if p, _ := ki.KmerPositions(Kmer(i)); len(p) > 0 {
m[ki.Format(Kmer(i))] = p
}
}
return m, true
}
// errors should be handled through a panic which will be recovered by ForEachKmerOf
type Eval func(index *Index, j, kmer int)
// Applies the f Eval func to all kmers in s from start to end. Returns any panic raised by f as an error.
func (ki *Index) ForEachKmerOf(s *linear.Seq, start, end int, f Eval) (err error) {
if !Debug {
defer func() {
if r := recover(); r != nil {
var ok bool
err, ok = r.(error)
if !ok {
err = fmt.Errorf("kmerindex: %v", r)
}
}
}()
}
kmer := Kmer(0)
high := 0
var currentBase int
// Preload the first k-1 bases of the first well defined k-mer or set high to the next position
basePosition := start
for ; basePosition < start+ki.k-1; basePosition++ {
currentBase = ki.lookUp[s.Seq[basePosition]]
if currentBase >= 0 {
kmer = (kmer << 2) | Kmer(currentBase)
} else {
kmer = 0
high = basePosition + 1
}
}
// Call f(position, kmer) for each of the next well defined k-mers
for position := basePosition - ki.k + 1; basePosition < end; position++ {
currentBase = ki.lookUp[s.Seq[basePosition]]
basePosition++
if currentBase >= 0 {
kmer = ((kmer << 2) | Kmer(currentBase)) & ki.kMask
} else {
kmer = 0
high = basePosition
}
if position >= high {
f(ki, position, int(kmer))
}
}
return
}
// Return the Kmer length of the Index.
func (ki *Index) K() int {
return ki.k
}
// Returns a pointer to the indexed seq.Seq.
func (ki *Index) Seq() *linear.Seq {
return ki.seq
}
// Returns the value of the finger slice at p. This signifies the absolute kmer frequency of the Kmer(p)
// if called before Build() and points to the relevant position lookup if called after.
func (ki *Index) FingerAt(p int) int {
return int(ki.finger[p])
}
// Returns the value of the pos slice at p. This signifies the position of the pth kmer if called after Build().
// Not valid before Build() - will panic.
func (ki *Index) PosAt(p int) int {
return ki.pos[p]
}
// Convert a Kmer into a string of bases
func (ki *Index) Format(kmer Kmer) string {
s, _ := Format(kmer, ki.k, ki.seq.Alpha)
return s
}
// Convert a string of bases into a len k Kmer, returns an error if string length does not match k.
// lookUp is an index lookup table as returned by alphabet.Alphabet.LetterIndex().
func KmerOf(k int, lookUp alphabet.Index, kmertext string) (kmer Kmer, err error) {
if len(kmertext) != k {
return 0, ErrBadKmerTextLen
}
for _, v := range kmertext {
x := lookUp[v]
if x < 0 {
return 0, ErrBadKmerText
}
kmer = (kmer << 2) | Kmer(x)
}
return
}
// Return the GC fraction of a Kmer
func (ki *Index) GCof(kmer Kmer) float64 {
return GCof(ki.k, kmer)
}
// Return the GC fraction of a Kmer of len k
func GCof(k int, kmer Kmer) float64 {
gc := 0
for i := k - 1; i >= 0; i, kmer = i-1, kmer>>2 {
gc += int((kmer & 1) ^ ((kmer & 2) >> 1))
}
return float64(gc) / float64(k)
}
// Convert a Kmer into a string of bases
func Format(kmer Kmer, k int, alpha alphabet.Alphabet) (string, error) {
if alpha.Len() != 4 {
return "", ErrBadAlphabet
}
kmertext := make([]byte, k)
for i := k - 1; i >= 0; i, kmer = i-1, kmer>>2 {
kmertext[i] = byte(alpha.Letter(int(kmer & 3)))
}
return string(kmertext), nil
}
// Reverse complement a Kmer. Complementation is performed according to letter index:
//
// 0, 1, 2, 3 = 3, 2, 1, 0
func (ki *Index) ComplementOf(kmer Kmer) (c Kmer) {
return ComplementOf(ki.k, kmer)
}
// Reverse complement a Kmer of len k. Complementation is performed according to letter index:
//
// 0, 1, 2, 3 = 3, 2, 1, 0
func ComplementOf(k int, kmer Kmer) (c Kmer) {
for i, j := uint(0), uint(k-1)*2; i <= j; i, j = i+2, j-2 {
c |= (^(kmer >> (j - i)) & (3 << i)) | (^(kmer>>i)&3)<<j
}
return
}
// Convert a string of bases into a Kmer, returns an error if string length does not match word length
func (ki *Index) KmerOf(kmertext string) (kmer Kmer, err error) {
if len(kmertext) != ki.k {
return 0, ErrBadKmerTextLen
}
for _, v := range kmertext {
x := ki.lookUp[v]
if x < 0 {
return 0, ErrBadKmerText
}
kmer = (kmer << 2) | Kmer(x)
}
return
}
// Return the Euclidean distance between two sequences measured by abolsolute kmer frequencies.
func Distance(a, b map[Kmer]float64) (dist float64) {
c := make(map[Kmer]struct{}, len(a)+len(b))
for k := range a {
c[k] = struct{}{}
}
for k := range b {
c[k] = struct{}{}
}
for k := range c {
dist += math.Pow(a[k]-b[k], 2)
}
return math.Sqrt(dist)
}
// Confirm that a Build() is correct. Returns boolean indicating this and the number of kmers indexed.
func (ki *Index) Check() (ok bool, found int) {
ok = true
f := func(index *Index, position, kmer int) {
hit := false
var base Kmer
if kmer == 0 {
base = 0
} else {
base = index.finger[kmer-1]
}
for j := base; j < index.finger[kmer]; j++ {
if index.pos[j] == position {
found++
hit = true
break
}
}
if !hit {
ok = false
}
}
if err := ki.ForEachKmerOf(ki.seq, 0, ki.seq.Len(), f); err != nil {
ok = false
}
return
}
// Return a copy of the internal finger slice.
func (ki *Index) Finger() (f []Kmer) {
f = make([]Kmer, len(ki.finger))
copy(f, ki.finger)
return
}
// Return a copy of the internal pos slice.
func (ki *Index) Pos() (p []int) {
p = make([]int, len(ki.pos))
copy(p, ki.pos)
return
}
|