1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
// Copyright ©2012 The bíogo Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package graph
import (
"errors"
"fmt"
)
var (
NodeExists = errors.New("graph: node exists")
NodeDoesNotExist = errors.New("graph: node does not exist")
NodeIDOutOfRange = errors.New("graph: node id out of range")
EdgeDoesNotExist = errors.New("graph: edge does not exist")
)
// An Undirected is a container for an undirected graph representation.
type Undirected struct {
nodes, compNodes Nodes
edges, compEdges Edges
}
// NewUndirected creates a new empty Undirected graph.
func NewUndirected() *Undirected {
return &Undirected{
nodes: Nodes{},
compNodes: Nodes{},
edges: Edges{},
compEdges: Edges{},
}
}
// NextNodeID returns the next unused available node ID. Unused IDs may be available for nodes with
// ID in [0, NextNodeID()) from deletion of nodes.
func (g *Undirected) NextNodeID() int {
return len(g.nodes)
}
func (g *Undirected) NewNode() Node {
return &node{id: len(g.nodes)}
}
// NextEdgeID returns the next unused available edge ID.
func (g *Undirected) NextEdgeID() int {
return len(g.edges)
}
// Order returns the number of nodes in the graph.
func (g *Undirected) Order() int {
return len(g.compNodes)
}
// Size returns the number of edges in the graph.
func (g *Undirected) Size() int {
return len(g.compEdges)
}
// Nodes returns the complete set of nodes in the graph.
func (g *Undirected) Nodes() Nodes {
return g.compNodes
}
// Node returns the node with the specified ID.
func (g *Undirected) Node(id int) Node {
if id >= len(g.nodes) {
return nil
}
return g.nodes[id]
}
// Edges returns the complete set of edges in the graph.
func (g *Undirected) Edges() []Edge {
return g.compEdges
}
// Edge returns the edge with the specified ID.
func (g *Undirected) Edge(id int) Edge {
if id >= len(g.edges) {
return nil
}
return g.edges[id]
}
// Node methods
// Add adds a node n to the graph. If a node with already exists in the graph with the same id
// an error NodeExists is returned.
func (g *Undirected) Add(n Node) error {
id := n.ID()
if ok, _ := g.HasNodeID(id); ok {
return NodeExists
}
g.addNode(n, id)
n.setIndex(len(g.compNodes))
g.compNodes = append(g.compNodes, n)
return nil
}
// AddID adds a node with a specified ID. If a node with this ID already exists,
// it is returned with an error NodeExists.
func (g *Undirected) AddID(id int) (Node, error) {
if ok, _ := g.HasNodeID(id); ok {
return g.Node(id), NodeExists
}
n := newNode(id)
g.addNode(n, id)
n.setIndex(len(g.compNodes))
g.compNodes = append(g.compNodes, n)
return n, nil
}
func (g *Undirected) addNode(n Node, id int) {
switch {
case id == len(g.nodes):
g.nodes = append(g.nodes, n)
case id > len(g.nodes):
ns := make(Nodes, id+1)
copy(ns, g.nodes)
g.nodes = ns
g.nodes[id] = n
default:
g.nodes[id] = n
}
}
// DeleteByID deletes the node with the specified from the graph. If the specified node does not exist
// an error, NodeDoesNotExist is returned.
func (g *Undirected) DeleteByID(id int) error {
ok, _ := g.HasNodeID(id)
if !ok {
return NodeDoesNotExist
}
g.deleteNode(id)
return nil
}
// Delete deletes the node n from the graph. If the specified node does not exist an error,
// NodeDoesNotExist is returned.
func (g *Undirected) Delete(n Node) error {
return g.DeleteByID(n.ID())
}
func (g *Undirected) deleteNode(id int) {
n := g.nodes[id]
g.nodes[n.ID()] = nil
for _, h := range n.Hops(nil) {
h.Edge.disconnect()
h.Node.drop(h.Edge)
g.compEdges = g.compEdges.delFromGraph(h.Edge.index())
g.edges[h.Edge.ID()] = nil
h.Edge.setID(-1)
}
g.compNodes = g.compNodes.delFromGraph(n.index())
n.setID(-1)
}
// Has returns a boolean indicating whether the node n exists in the graph. If the ID of n is no in
// [0, NextNodeID()) an error, NodeIDOutOfRange is returned.
func (g *Undirected) Has(n Node) (bool, error) {
return g.HasNodeID(n.ID())
}
// HasNodeID returns a boolean indicating whether a node with ID is exists in the graph. If ID is no in
// [0, NextNodeID()) an error, NodeIDOutOfRange is returned.
func (g *Undirected) HasNodeID(id int) (bool, error) {
if id < 0 || id > len(g.nodes)-1 {
return false, NodeIDOutOfRange
}
return g.nodes[id] != nil, nil
}
// Neighbours returns a slice of nodes that are reachable from the node n via edges that satisfy
// the criteria specified by the edge filter ef. If the node does not exist, an error NodeDoesNotExist
// or NodeIDOutOfRange is returned.
func (g *Undirected) Neighbors(n Node, ef EdgeFilter) ([]Node, error) {
ok, err := g.Has(n)
if !ok {
if err == nil {
err = NodeDoesNotExist
}
return nil, err
}
return n.Neighbors(ef), nil
}
// Merge merges the node src into the node dst, transfering all the edges of src to dst.
// The node src is then deleted. If either src or dst do not exist in the graph,
// an appropriate error is returned.
func (g *Undirected) Merge(dst, src Node) error {
var (
ok bool
err error
)
ok, err = g.Has(dst)
if !ok {
return err
}
ok, err = g.Has(src)
if !ok {
return err
}
for _, e := range src.Edges() {
e.reconnect(src, dst)
if e.Head() != e.Tail() {
dst.add(e)
}
}
src.dropAll()
g.deleteNode(src.ID())
return nil
}
// Edge methods
// newEdge makes a new edge joining u and v with weight w. The ID chosen for the
// edge is NextEdgeID().
func (g *Undirected) newEdge(u, v Node) Edge {
e := newEdge(len(g.edges), len(g.compEdges), u, v)
g.edges = append(g.edges, e)
g.compEdges = append(g.compEdges, e)
return e
}
// newEdgeKeepID makes a new edge joining u and v with ID id and weight w.
func (g *Undirected) newEdgeKeepID(id int, u, v Node) Edge {
if id < len(g.edges) && g.edges[id] != nil {
panic("graph: attempted to create a new edge with an existing ID")
}
e := newEdge(id, len(g.compEdges), u, v)
switch {
case id == len(g.edges):
g.edges = append(g.edges, e)
case id > len(g.edges):
es := make(Edges, id+1)
copy(es, g.edges)
g.edges = es
g.edges[id] = e
default:
g.edges[id] = e
}
e.setIndex(len(g.compEdges))
g.compEdges = append(g.compEdges, e)
return e
}
// ConnectWith join nodes u and v with the provided edge. An error is returned if
// either of the nodes does not exist.
func (g *Undirected) ConnectWith(u, v Node, with Edge) error {
var (
ok bool
err error
)
ok, err = g.Has(u)
if !ok {
return err
}
ok, err = g.Has(v)
if !ok {
return err
}
e := with
e.setID(len(g.edges))
e.setIndex(len(g.compEdges))
e.join(u, v)
g.edges = append(g.edges, e)
g.compEdges = append(g.compEdges, e)
u.add(e)
if v != u {
v.add(e)
}
return nil
}
// Connect creates a new edge joining nodes u and v with weight w.
// The new edge is returned on success. An error is returned if either of the nodes does not
// exist.
func (g *Undirected) Connect(u, v Node) (Edge, error) {
var (
ok bool
err error
)
ok, err = g.Has(u)
if !ok {
return nil, err
}
ok, err = g.Has(v)
if !ok {
return nil, err
}
e := g.newEdge(u, v)
u.add(e)
if v != u {
v.add(e)
}
return e, nil
}
// Connect creates a new edge joining nodes with IDs uid and vid with weight w, and specifying edge
// flags f. The id of the new edge is returned on success. An error is returned if either of the
// nodes does not exist.
func (g *Undirected) ConnectByID(uid, vid int) (int, error) {
var (
ok bool
err error
)
ok, err = g.HasNodeID(uid)
if !ok {
return -1, err
}
ok, err = g.HasNodeID(vid)
if !ok {
return -1, err
}
e := g.newEdge(g.nodes[uid], g.nodes[vid])
g.nodes[uid].add(e)
if vid != uid {
g.nodes[vid].add(e)
}
return e.ID(), nil
}
// Connected returns a boolean indicating whether the nodes u and v share an edge. An error is returned
// if either of the nodes does not exist.
func (g *Undirected) Connected(u, v Node) (bool, error) {
var (
ok bool
err error
)
ok, err = g.Has(u)
if !ok {
return false, err
}
ok, err = g.Has(v)
if !ok {
return false, err
}
if u == v {
return true, nil
}
uedges, vedges := u.Edges(), v.Edges()
if len(uedges) > len(vedges) {
uedges, v = vedges, u
}
for _, e := range uedges {
if a, b := e.Nodes(); a == v || b == v {
return true, nil
}
}
return false, nil
}
// ConnectingEdges returns a slice of edges that are shared by nodes u and v. An error is returned
// if either of the nodes does not exist.
func (g *Undirected) ConnectingEdges(u, v Node) ([]Edge, error) {
var (
ok bool
err error
)
ok, err = g.Has(u)
if !ok {
return nil, err
}
ok, err = g.Has(v)
if !ok {
return nil, err
}
var c []Edge
uedges := u.Edges()
if u == v {
for _, e := range uedges {
if a, b := e.Nodes(); a == b {
c = append(c, e)
}
}
return c, nil
}
vedges := v.Edges()
if len(uedges) > len(vedges) {
uedges, v = vedges, u
}
for _, e := range uedges {
if a, b := e.Nodes(); a == v || b == v {
c = append(c, e)
}
}
return c, nil
}
// DeleteEdge deleted the edge e from the graph. An error is returned if the edge does not exist in
// the graph.
func (g *Undirected) DeleteEdge(e Edge) error {
i := e.index()
if i < 0 || i > len(g.compEdges)-1 {
return EdgeDoesNotExist
}
h := e.Head()
t := e.Tail()
e.disconnect()
h.drop(e)
t.drop(e)
g.compEdges = g.compEdges.delFromGraph(i)
g.edges[e.ID()] = nil
e.setID(-1)
return nil
}
// Structure methods
// ConnectedComponents returns a slice of slices of nodes. Each top level slice is the set of nodes
// composing a connected component of the graph. Connection is determined by traversal of edges that
// satisfy the edge filter ef.
func ConnectedComponents(g *Undirected, ef EdgeFilter) []Nodes {
var cc []Nodes
df := NewDepthFirst()
c := []Node{}
f := func(n Node) bool {
c = append(c, n)
return false
}
for _, s := range g.Nodes() {
if df.Visited(s) {
continue
}
df.Search(s, ef, f, nil)
cc = append(cc, []Node{})
cc[len(cc)-1] = append(cc[len(cc)-1], c...)
c = c[:0]
}
return cc
}
func (g *Undirected) String() string {
return fmt.Sprintf("G:|V|=%d |E|=%d", g.Order(), g.Size())
}
|