File: csi.go

package info (click to toggle)
golang-github-biogo-hts 1.0.1%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,376 kB
  • ctags: 798
  • sloc: makefile: 3
file content (327 lines) | stat: -rw-r--r-- 7,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright ©2015 The bíogo Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package csi implements CSIv1 and CSIv2 coordinate sorted indexing.
package csi

import (
	"errors"
	"sort"

	"github.com/biogo/hts/bgzf"
	"github.com/biogo/hts/bgzf/index"
)

var csiMagic = [3]byte{'C', 'S', 'I'}

const (
	// DefaultShift is the default minimum shift setting for a CSI.
	DefaultShift = 14

	// DefaultDepth is the default index depth for a CSI.
	DefaultDepth = 5
)

const (
	nextBinShift  = 3
	statsDummyBin = 0x924a
)

// MinimumShiftFor returns the lowest minimum shift value that can be used to index
// the given maximum position with the given index depth.
func MinimumShiftFor(max int64, depth uint32) (uint32, bool) {
	for shift := uint32(0); shift < 32; shift++ {
		if validIndexPos(int(max), shift, depth) {
			return shift, true
		}
	}
	return 0, false
}

// MinimumDepthFor returns the lowest depth value that can be used to index
// the given maximum position with the given index minimum shift.
func MinimumDepthFor(max int64, shift uint32) (uint32, bool) {
	for depth := uint32(0); depth < 32; depth++ {
		if validIndexPos(int(max), shift, depth) {
			return depth, true
		}
	}
	return 0, false
}

func validIndexPos(i int, minShift, depth uint32) bool { // 0-based.
	return -1 <= i && i <= (1<<(minShift+depth*nextBinShift)-1)-1
}

// New returns a CSI index with the given minimum shift and depth.
// The returned index defaults to CSI version 2.
func New(minShift, depth int) *Index {
	if minShift == 0 {
		minShift = DefaultShift
	}
	if depth == 0 {
		depth = DefaultDepth
	}
	return &Index{Version: 0x2, minShift: uint32(minShift), depth: uint32(depth)}
}

// Index implements coordinate sorted indexing.
type Index struct {
	Auxilliary []byte
	Version    byte

	refs     []refIndex
	unmapped *uint64

	minShift uint32
	depth    uint32

	isSorted   bool
	lastRecord int
}

type refIndex struct {
	bins  []bin
	stats *index.ReferenceStats
}

type bin struct {
	bin     uint32
	left    bgzf.Offset
	records uint64
	chunks  []bgzf.Chunk
}

// NumRefs returns the number of references in the index.
func (i *Index) NumRefs() int {
	return len(i.refs)
}

// ReferenceStats returns the index statistics for the given reference and true
// if the statistics are valid.
func (i *Index) ReferenceStats(id int) (stats index.ReferenceStats, ok bool) {
	s := i.refs[id].stats
	if s == nil {
		return index.ReferenceStats{}, false
	}
	return *s, true
}

// Unmapped returns the number of unmapped reads and true if the count is valid.
func (i *Index) Unmapped() (n uint64, ok bool) {
	if i.unmapped == nil {
		return 0, false
	}
	return *i.unmapped, true
}

// Record wraps types that may be indexed by an Index.
type Record interface {
	RefID() int
	Start() int
	End() int
}

// Add records the Record as having being located at the given chunk with the given
// mapping and placement status.
func (i *Index) Add(r Record, c bgzf.Chunk, mapped, placed bool) error {
	if !validIndexPos(r.Start(), i.minShift, i.depth) || !validIndexPos(r.End(), i.minShift, i.depth) {
		return errors.New("csi: attempt to add record outside indexable range")
	}

	if i.unmapped == nil {
		i.unmapped = new(uint64)
	}
	if !placed {
		*i.unmapped++
		return nil
	}

	rid := r.RefID()
	if rid < len(i.refs)-1 {
		return errors.New("csi: attempt to add record out of reference ID sort order")
	}
	if rid == len(i.refs) {
		i.refs = append(i.refs, refIndex{})
		i.lastRecord = 0
	} else if rid > len(i.refs) {
		refs := make([]refIndex, rid+1)
		copy(refs, i.refs)
		i.refs = refs
		i.lastRecord = 0
	}
	ref := &i.refs[rid]

	// Record bin information.
	b := reg2bin(int64(r.Start()), int64(r.End()), i.minShift, i.depth)
	for i, bin := range ref.bins {
		if bin.bin == b {
			for j, chunk := range ref.bins[i].chunks {
				if vOffset(chunk.End) > vOffset(c.Begin) {
					ref.bins[i].chunks[j].End = c.End
					ref.bins[i].records++
					goto found
				}
			}
			ref.bins[i].records++
			ref.bins[i].chunks = append(ref.bins[i].chunks, c)
			goto found
		}
	}
	i.isSorted = false // TODO(kortschak) Consider making use of this more effectively for bin search.
	ref.bins = append(ref.bins, bin{
		bin:     b,
		left:    c.Begin,
		records: 1,
		chunks:  []bgzf.Chunk{c},
	})
found:

	if r.Start() < i.lastRecord {
		return errors.New("csi: attempt to add record out of position sort order")
	}
	i.lastRecord = r.Start()

	// Record index stats.
	if ref.stats == nil {
		ref.stats = &index.ReferenceStats{
			Chunk: c,
		}
	} else {
		ref.stats.Chunk.End = c.End
	}
	if mapped {
		ref.stats.Mapped++
	} else {
		ref.stats.Unmapped++
	}

	return nil
}

// Chunks returns a []bgzf.Chunk that corresponds to the given interval.
func (i *Index) Chunks(rid int, beg, end int) []bgzf.Chunk {
	if rid < 0 || rid >= len(i.refs) {
		return nil
	}
	i.sort()
	ref := i.refs[rid]

	// Collect candidate chunks according to a scheme modified
	// from the one described in the SAM spec under section 5
	// Indexing BAM.
	var chunks []bgzf.Chunk
	for _, bin := range reg2bins(int64(beg), int64(end), i.minShift, i.depth) {
		b := uint32(bin)
		c := sort.Search(len(ref.bins), func(i int) bool { return ref.bins[i].bin >= b })
		if c < len(ref.bins) && ref.bins[c].bin == b {
			left := vOffset(ref.bins[c].left)
			for _, chunk := range ref.bins[c].chunks {
				if vOffset(chunk.End) > left {
					chunks = append(chunks, chunk)
					break
				}
			}
		}
	}

	// Sort and merge overlaps.
	if !sort.IsSorted(byBeginOffset(chunks)) {
		sort.Sort(byBeginOffset(chunks))
	}

	return adjacent(chunks)
}

var adjacent = index.Adjacent

func (i *Index) sort() {
	if !i.isSorted {
		for _, ref := range i.refs {
			sort.Sort(byBinNumber(ref.bins))
			for _, bin := range ref.bins {
				sort.Sort(byBeginOffset(bin.chunks))
			}
		}
		i.isSorted = true
	}
}

// MergeChunks applies the given MergeStrategy to all bins in the Index.
func (i *Index) MergeChunks(s index.MergeStrategy) {
	if s == nil {
		return
	}
	for _, ref := range i.refs {
		for b, bin := range ref.bins {
			if !sort.IsSorted(byBeginOffset(bin.chunks)) {
				sort.Sort(byBeginOffset(bin.chunks))
			}
			ref.bins[b].chunks = s(bin.chunks)
			if !sort.IsSorted(byBeginOffset(bin.chunks)) {
				sort.Sort(byBeginOffset(bin.chunks))
			}
		}
	}
}

func makeOffset(vOff uint64) bgzf.Offset {
	return bgzf.Offset{
		File:  int64(vOff >> 16),
		Block: uint16(vOff),
	}
}

func isZero(o bgzf.Offset) bool {
	return o == bgzf.Offset{}
}

func vOffset(o bgzf.Offset) int64 {
	return o.File<<16 | int64(o.Block)
}

type byBinNumber []bin

func (b byBinNumber) Len() int           { return len(b) }
func (b byBinNumber) Less(i, j int) bool { return b[i].bin < b[j].bin }
func (b byBinNumber) Swap(i, j int)      { b[i], b[j] = b[j], b[i] }

type byBeginOffset []bgzf.Chunk

func (c byBeginOffset) Len() int           { return len(c) }
func (c byBeginOffset) Less(i, j int) bool { return vOffset(c[i].Begin) < vOffset(c[j].Begin) }
func (c byBeginOffset) Swap(i, j int)      { c[i], c[j] = c[j], c[i] }

// calculate bin given an alignment covering [beg,end) (zero-based, half-close-half-open)
func reg2bin(beg, end int64, minShift, depth uint32) uint32 {
	end--
	s := minShift
	t := uint32(((1 << (depth * nextBinShift)) - 1) / 7)
	for level := depth; level > 0; level-- {
		offset := beg >> s
		if offset == end>>s {
			return t + uint32(offset)
		}
		s += nextBinShift
		t -= 1 << (level * nextBinShift)
	}
	return 0
}

// calculate the list of bins that may overlap with region [beg,end) (zero-based)
func reg2bins(beg, end int64, minShift, depth uint32) []uint32 {
	end--
	var list []uint32
	s := minShift + depth*nextBinShift
	for level, t := uint32(0), uint32(0); level <= depth; level++ {
		b := t + uint32(beg>>s)
		e := t + uint32(end>>s)
		for i := b; i <= e; i++ {
			list = append(list, i)
		}
		s -= nextBinShift
		t += 1 << (level * nextBinShift)
	}
	return list
}